![]() ![]() ![]() |
2006 |
![]() |
G. de Vries, T. Hillen, M. Lewis, J. M�ller, B. Sch�nfisch A Course in Mathematical Biology; Quantitative Modelling with Mathematical and Computational Methods. SIAM, 2006. ISBN: 0-89871-612-8 |
Math-Bio book-page |
1st edition 2012 |
T. Hillen, E. Leonard, H.
van Roessel Partial Differential Equations: Theory and Completely solved problems. Wiley, 2012-2018. ISBN: 978-1-118-06330-9 |
discontinued |
|
2nd edition 2019 |
![]() |
T. Hillen, E. Leonard, H. van
Roessel Partial Differential Equations: Theory and Completely solved problems. 2nd edition, 2019, Friesen Press |
PDE book page Instructional Videos |
2016 |
![]() |
P.
Ciarletta, T. Hillen, H. Othmer, L. Preziosi, D. Trucu Mathematical Models and Methods for Living Systems, Springer Basel, 2016, Lecture Notes in Mathematics 2167 (eds: L. Preziosi, M. Chaplain, A. Pugliese) |
Springer book page |
2018 |
![]() |
A. Bianchi, T. Hillen, M.A. Lewis, Y.
Yi. The Dynamics of Biological Systems. Springer, Plant-Earth Series, 2018 |
Springer
book page |
Art-Book 2020 |
![]() |
F. Matthaeus, S. Matthaeus, S. Harris, T.
Hillen The Art of Theoretical Biology. Springer 2019 |
Springer
book page Amazon.ca |
2021 |
![]() |
A. Buttenschoen, T. Hillen. Non-Local Cell Adhesion Models: Symmetries and Bifurcations in 1-D CMS/CAIMS Book Series No1, Springer, 2021 |
Springer
book page |
2023 |
![]() |
T. Hillen Elements of Applied Functional Analysis AMS Open Notes, 2023. Youtube videos for this text |
free access: AMS Open Notes Archive-link |
|
![]() |
V. Giunta, T. Hillen, MA. Lewis, J. Potts.
Numerical Exploration of the non-local multi-species
aggregation Model in 2-D. 2024 |
in preparation |
|
![]() |
R. Thiessen, T. Hillen. Travelling Wave
Solutions to a Microtube-Driven Glioma Invasion Model.
2024 |
in preparation |
|
![]() 111 |
A. Shyntar, T. Hillen. Mathematical Modelling of Microtube-driven regrowth of glioma after local resection. Math Biosciences and Engineering, 22(1) 52-72 2025. doi: 10.3934/mbe.2025003 |
open access |
|
![]() |
M. Conte, T. Hillen, T. Stepien, R.
Thiessen. Go-or-Grow Models in Biology, A Review. 2024 |
submitted |
|
![]() |
AA. Baabdulla, F. Cristi, M. Shmulevitz, T.
Hillen, Mathematical Modelling of Reoviruses in Cancer Cell Cultures, Plos One, 2025 |
accepted |
bioRxiv |
![]() |
T. Hillen, M.R. D'Orsogna, JC. Mantooth,
A.E. Lindsay, Mean First Passage Times for Transport Equations. SIAM J. Appl. Math., 85 1) 2025. 10.1137/24M16476672023 |
open access |
|
![]() |
A. Shyntar, Y. Kuzay, E. Troost, T.
Hillen, Mathematical Modelling of Gross Tumor Volume Data for Non-Small Cell Lung Cancer following Radiation Treatments, 2023 |
in preparation |
|
![]() |
A. Baabdulla, T. Hillen, Oscillations in a Spatial Oncolytic Virus Model. Bulletin of Mathematical Biology, 2024, 86(8). doi:10.1007/s11538-024-01322-z |
open
access |
|
![]() |
V. Giunta, T. Hillen, MA. Lewis, J.
Potts Positivity and global existence for non-local advection-diffusion models of interactig populations. 2024. |
submitted |
arXiv |
![]() |
G. Carrero, T. Hillen, A. Wong, How the Tulip Breaking Virus Creates Striped Tulips. Communications Biology, 8, 129, 2025. |
open access |
|
![]() |
K.J. Painter, J.R. Potts, T. Hillen. Biological Modelling with Nonlocal Advection Diffusion Equations. Math Models and Methods in Applied Sciences (M3AS), 2023. doi.org/10.1142/S0218202524400025 |
open
access |
|
![]() |
V. Giunta, T. Hillen, MA. Lewis, JR.
Potts, Weakly nonlinear analysis of a two-species non-local advection-diffusion system Nonlinear Analysis: Real World Applications, 2024, 78, 104086. |
open
access |
|
![]() |
T. Hillen, A Shyntar Modelling of Cancer Stem Cell Driven Solid Tumors. In Problems in Mathematical Biophysics - a volume in memory of Alberto Gandolfi, Springer, book chapter, 2023. |
preprint |
|
![]() |
T. Hillen, N. Loy, K.J. Painter, R.
Thiessen, Modelling Microtube Driven Invasion of Glioma, Journal of Mathematical Biology, 88(4) , 2024. |
open access | |
![]() |
K. Deutscher, T. Hillen,
J. Newby A Computational Model for the Cancer Field Effect. Frontiers in Artificial Intelligence 6, 2023. DOI=10.3389/frai.2023.1060879 |
open access |
|
![]() |
T. Hillen A Classification of Musical Scales Using Binary Sequences Journal of Humanistic Mathematics, 13(1), 118-130, 2023. |
Archive https://doi.org/10.7939/r3-zcte-ct11 |
open access |
![]() |
V. Giunta, T. Hillen,
M.A. Lewis, J. Potts, Detecting minimum energy states and multi-stability in nonlocal advection-diffusion models for interacting species, Journal of Math. Biol., 85:(56) 1-44, https://link.springer.com/article/10.1007/s00285-022-01824-1 |
open access |
|
![]() |
A. Shyntar, A. Patel, M. Rhodes, H.
Enderling, T. Hillen The Tumor Invasion Paradox in Cancer Stem Cell-Driven Solid Tumors, Bulletin of Math. Biol. 84(12) 139-163, 2022. https://link.springer.com/article/10.1007/s11538-022-01086-4 |
open
access |
|
![]() |
M. Rhodes, T. Hillen, V. Putkaradze Comparing the effects of linear and one-term Ogden elasticity in a model of glioblastoma invasion, Brain Multiphysics, 3:100050, 2022. https://www.sciencedirect.com/science/article/pii/S2666522022000077 |
open
access |
|
![]() |
V. Giunta, T. Hillen, M.A. Lewis, J.R.
Potts Local and Global Existence for Nonlocal Multispecies Advection-Diffusion Models, SIAM Applied Dynamical Systems, 21(3):1686-1708, 2022. |
open access arXiv |
|
![]() |
R. Thiessen, T. Hillen Anisotropic Network Patterns in Kinetic and Diffusive Chemotaxis Models, MDPI Mathematics, 9(13), 1-22, 202. open access: doi 10.3390/math9131561 |
online access | |
![]() |
C. Contreras, J. Newby, T. Hillen Personalized Virus-Load Curves of SARS-CoV-2 Infection, Viruses 13(9), 1815, 2021. |
online
access |
|
![]() |
A. Baabdulla, H. Now, JA Park, WJ.
Kim, S. Jung, JY. Yoo, T. Hillen Homogenization of a Reaction-Diffusion Equation can Explain Influenza A Virus Load Data, Journal of Theoretical Biology, 527(21) 1-10, 2020. doi: 10.1016/j.jtbi.2021.110816 |
paper |
|
![]() |
N. Loy, T. Hillen, KJ. Painter, Direction-Dependent Turning Leads to Anisotropic Diffusion and Persistence. European Journal of Applied Mathematics, 2021. doi: 10.1017/S0956792521000206 |
paper |
|
![]() |
F. Lutscher, T. Hillen Correlated Random Walks in Heterogeneous Landscapes: Derivation, Homogenization, and Invasion Fronts. AIMS Mathematics, 6(8), 8920-8948, 2021 DOI:10.3934/math.2021518 |
online access |
|
![]() |
M. Getz, Y. Wang,
G. An, M. Asthana,
A. Becker, C. Cockrell,
N. Collier, M. Craig,
C.L. Davis,
R. Faeder,
A.N. Ford Versypt,
T. Mapder,
J.F. Gianlupi,
J.A. Glazier,
S. Hamis, R. Heiland,
T. Hillen, D. Hou,
M.A. Islam, A.L. Jenner,
F. Kurtoglu, C.
I. Larkin, B. Liu,
F. Macfarlane, P.
Maygrundter, P.A. Morel,
A. Narayanan,
J. Ozik, E. Pienaar,
P. Rangamani, A.S. Saglam,
J. E. Shoemaker,
A.M. Smith,
J.J.A. Weaver, P. Macklin bioRxiv 2020.04.02.019075v4, 2021 |
Preprint |
bioRxiv |
![]() |
T. Hillen A Standard Virus-Load Function, preprint, 2020. |
Preprint |
medRxiv |
![]() |
A. Rhodes, T.
Hillen. Implications of immune-mediated metastatic growth on metastatic dormancy, blow-up, early detection, and treatment. J. Math. Biol., 81: 799-843, 2020. doi: 10.1007/s00285-020-01521-x |
paper |
|
![]() |
A. Rhodes, T. Hillen A Mathematical Model for the Immune-Mediated Theory of Metastasis. J. Theoretical Biology, Vol 482, https://doi.org/10.1016/j.jtbi.2019.109999 2019 |
Journal
link |
bioarXiv 10.1101/565531v1 |
![]() |
T. Hillen, M.A. Lewis Dynamical Systems in Biology - A Short Introduction. In "Biological Dynamics" A. Bianchi, T. Hillen, M.A. Lewis, Y. Yi, Springer 2018. |
||
![]() |
K. Painer, T. Hillen From Random Walks to Fully Anisotropic Diffusion Models for Cell and Animal Movement. In "Cell Movement: Modelling and Applications" M. Stolarska, N. Tarfulea (eds) 2018 (book chapter). |
||
![]() |
C. Frei, T. Hillen, A. Rhodes A Stochastic Model for Cancer Metastasis: Branching Stochastic Processes with Settlement. Math. Medicine and Biology, 37(2) 153-182, 2020. |
Journal
link |
bioarXiv 10.1101/294157 |
![]() |
A. Buttenschoen, T. Hillen Nonlocal Adhesion Models for Microorganisms on Bounded Domains. SIAM J. Appl. Math, 80 (1), 382-401, 2020 |
Journal
link |
arXiv 1903.06635 |
![]() |
O. Olobatuyi, G. de Vries, T. HIllen Effects of G2 checkpoint dynamics on the low dose hyper-radiosensitivity and increased radioresistance. J. Math. Biol. (Hadeler issue), 77:(6�7), 1969�1997, 2018. |
bioarxiv 10.1101/185371 |
|
![]() |
A. Buttenschoen, T. Hillen, A. Gerisch, K.J.
Painter A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis. J. Math. Biol., 76, (1�2), 429�456, 2018. |
|
biorxiv
093617 Springer link |
![]() |
O. Olobatuyi, G. de Vries, T. Hillen A Reaction-Diffusion Model for Radiation-Induced Bystander Effects J. Math. Biol., 75, (2), 341�372, 2017. |
biorxiv
094375 Springer link |
|
![]() |
A. Swan, T. Hillen, J. Bowman, A. Murtha A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread Bulletin Math. Biol. 80, (5), 1259�1291, 2017. |
pdf-file |
|
![]() |
T. Hillen, K.J. Painter, A. Swan, A. Murtha Moments of von Mises and Fisher Distributions and Applications Math. Biosciences and Engineering, 14(3), 673-694, 2017. |
pdf-file |
|
![]() |
J. Martin, T. Hillen The Spotting Distribution of Wildfires. Applied Sciences, 6(6) 177-211, 2016. doi:10.3390/app6060177 |
weblink |
|
![]() |
A. Rhodes, T. Hillen Mathematical Modeling of the Role of Survivin on Dedifferentiation and Radioresistance in Cancer. Bulletin Math. Biol., 78(6), 1162-1188, 2016. |
Preprint |
|
![]() |
A.
Konstorum, J. Lowengrub, T. Hillen Feedback regulation in a cancer cell model can cause an Allee effect. Bulletin Math. Biology, 78(4), 754-785, 2016. DOI 10.1007/s11538-016-0161-5 |
Preprint |
|
![]() |
K.J.
Painter, T. Hillen Navigating the flow, individual and continuum models for homing behavior in flowing environments. Royal Society Interface, 12: 20150647, 2015 |
Preprint biorxiv 029389 |
|
![]() |
I. Bica, T.
Hillen, K.J. Painter Aggregation of biological particles under radial directional guidance. J. Theor. Biol. 427:77-89, 2017. |
Preprint biorxiv 096602 |
|
![]() |
J.R. Potts,
T. Hillen, M.A. Lewis Edge effects and the spatio-temporal scale of animal movement decisions. Theoretical Ecology, 9920 233-247, 2015, free online. |
weblink |
|
![]() |
T. Hillen,
A. Swan The diffusion limit of transport equations in biology book chapter, CIME lectures, Springer |
pdf-file |
|
![]() |
M. Winkler,
T. Hillen, K.J. Painter Global solvability and explicit bounds for a non-local adhesion model. European J. Appl. Math., 2017, online first |
Preprint |
|
![]() |
T. Stocks,
T. Hillen, J. Gong, M. Burger A stochastic model for the normal tissue complication probability (NTCP) in radiation treatment of cancer. Math. Med. and Biol. 2016, 1-24, doi: 10.1093/imammb/dqw013 |
|
arXiv: 1412.3441 Preprint |
![]() |
I. Borsi,
A. Fasano, M. Primicerio, T. Hillen Mathematical properties of a non-local integro-PDE model for cancer stem cells. Mathematical Medicine and Biology, 2015, doi:10.1093/imammb/dqv037 |
biorxiv 019604
|
|
![]() |
T. Hillen,
D. White, A. Dawes, G. de Vries Existence and uniqueness for a coupled PDE model for motor induced microtubule organization. J. Biol. Dynamics, 2017, DOI 10.1080/17513758.2017.1310939 |
Preprint |
|
![]() |
T. Hillen,
B. Greese, J. Martin, G. de Vries Birth-jump processes and Application to Forest Fire Spotting. Journal of Biological Dynamics 9, 104-127, 2015. |
pdf-file |
|
![]() |
C.
Engwer, T. Hillen, M.P. Knappitsch, C. Surulescu A DTI-Based multiscale model for glioma growth including cell-ECM interactions. J. Math. Biol. 71(3), 551--582, 2015. |
pdf-file |
|
![]() |
T.
Hillen, J. Zielinski, K.J. Painter Merging-emerging systems can describe spatio-temporal patterning in a chemotaxis model Discrete and Continuous Dynamical Systems - B (DCDS-B), 18 (10), 2013 Pages 2513-2536. |
Preprint (big file, 15 MB) |
|
![]() |
Jeff
W.N.
Bachman, T. Hillen Mathematical optimization of the combination of radiation and differentiation therapies for cancer Frontiers in Molecular and Cellular Oncology (Front. Oncol.) 2013, doi: 10.3389/fonc.2013.00052 free online at: http://www.frontiersin.org/ |
Preprint |
|
![]() |
K.J. Painter, T. Hillen Mathematical modelling of glioma growth: the use of Diffusion Tensor Imaging (DTI) data to predict the anisotropic pathways of cancer invasion. J. Theoretical Biol., 323, 25-39, 2013. |
Preprint |
|
![]() |
M.
Delitala, T. Hillen The Language of Systems Biology: bridging the scales. book chapter in: J.A. Marsan and M. Delitala et al. "Managing complexity, reducing perplexity. Modeling biological systems", Springer 2013.pages 131-132. |
Preprint |
|
![]() |
T. Hillen, M.A. Lewis, Mathematical Ecology of Cancer book chapter in: J.A. Marsan and M. Delitala et al. "Managing complexity, reducing perplexity. Modeling biological systems", Springer 2013, pages 1-14. |
Preprint |
|
![]() |
T. Hillen, H. Enderling, P.
Hahnfeld The Tumor Growth Paradox and Immune System-Mediated Selection for Cancer Stem Cells Bulletin for Math Biology, 75(1), 161-184, 2013. |
Preprint |
|
![]() |
T. Hillen, K.J. Painter, M. Winkler Anisotropic Diffusion in Oriented Environments can lead to Singularity Formation European J. Applied Math., 2012. First View online: |
Preprint |
|
![]() |
T.
Hillen, K.J. Painter, M. Winkler Convergence of a cancer invasion model to a logistic chemotaxis model. Math. Models and Methods in Applied Sci. (M3AS), 23(1), 165-198, 2013. |
Preprint |
|
![]() |
T.
Hillen, K. Painter Transport Models for Movement in Oriented Habitats and Anisotropic Diffusion. In: Dispersal, individual movement and spatial ecology: A mathematical perspective. Eds: M.A. Lewis, P. Maini, S. Petrovskii, Heidelberg, Springer, 2012, 46 pages. |
Preprint |
|
![]() |
J.
Gong, M. dos Santos, C. Finlay, T. Hillen Are More Complicated Tumor Control Probability Models Better? Math. Medicine and Biol. 2011, 30(1):1-19. online October 17, 2011 doi:10.1093/imammb/dqr023 |
Preprint | |
![]() |
K.
Painter, T. Hillen Spatio-Temporal Chaos in a Chemotaxis Model Physica D, 240, 363-375, 2011. |
Preprint |
|
![]() |
Barber, J., Bose, C.,
Bourlioux, A., Braun, J., Brunelle, E., Garcia, T.,
Hillen, T. Ong, B., Burning Issues with
PROMETHEUS, the Canada's Wildfire Growth
Simulator. CAMQ (Canad. Appl. Math Quart) 16(4), 337-378, 2008 (published in 2010). |
Preprint | |
![]() |
Hillen,
T. Existence Theory for Correlated Random Walks on Bounded Domains CAMQ, (Canad. Appl. Math. Quart.) 18(1), 1-40, 2010. |
Preprint | |
![]() |
Hillen, T.,
de Vries, G., Gong, J., Finlay, C. From Cell Population Models to Tumour Control Probability: Including Cell Cycle Effects. Acta Oncologica, 49, 1315-1323, 2010. |
Preprint | |
![]() |
Hillen, T.
and Hinow, P. and Wang, Z.A. Mathematical Analysis of a Kinetic Models for Cell Movement in Network Tissues. Discrete and Continuous Dyn. Syst. - B, 14(3), 1055-1080, 2010 |
Preprint | |
![]() |
Khassehkan, H. Eberl, H.J. and Hillen,
T. A Nonlinear Master Equation for a Degenerate Diffusion Model of Biofilm Growth. Lecture Notes Computer Science, Vol 5544, p 735-744,2009 |
Preprint | |
![]() |
Lee, J.M., Hillen,
T. and Lewis, M. Pattern Formation in Prey-Taxis Systems J. Biol. Dynamics, 3(6), 551 � 573, 2009. online: http://dx.doi.org/10.1080/17513750802716112 |
Preprint | |
![]() |
K.P.
Hadeler, T. Hillen, M.A. Lewis Mathematical Modeling with Quiescent Phases. in "Spatial Ecology", S. Cantrell, C. Cosner, S. Ruan (eds), 2009 |
Preprint | |
![]() |
Babak, P.
and Bourlioux, A. and Hillen, T. The Effect of Wind on the Propagation of a Forest Fire. SIAM J Appl Math, 70(4), 1364-1388, 2009. |
Preprint | |
![]() |
O'Rourke,
F. and McAneney, H. and Hillen, T. Linear Quadratic and Tumour Control Probability Modelling in External Beam Radiotherapy. J. Math. Biology, 58, 799-817, 2009. |
Preprint |
|
![]() |
Lee,
J.M., Hillen, T. and Lewis, M. Continuous Travelling Waves for Prey Taxis Bull. Math. Bio., 70(3) 654-676, 2008. |
Preprint | |
![]() |
Hillen,
T. and Painter, K. A User's Guide to PDE Models for Chemotaxis. J. Math. Biol., 58(1), 183-217, 2009. electronic: http://dx.doi.org/10.1007/s00285-008-0201-3 |
Preprint | |
![]()
|
Chauviere, A. and Hillen, T. and Preziosi, L. Modeling cell movement in anisotropic and heterogeneous network tissues NHM (Networks and Heterogeneous Media), 2, 333-357, 2007. |
Preprint | |
![]() |
Chauviere, A. and Hillen, T. and Preziosi, L. Modeling the motion of a cell population in the extracellular matrix DCDS-B (Discrete and Continuous Dynamical Systems, Series B), Special Issue September 2007, pages 250-259. |
|
Preprint |
![]() |
Lewis, M.A., Lutscher, F., Hillen T. Spatial dynamics in ecology In M.A. Lewis, J. Keener, P. Maini and M. Chaplain (Eds.), Park City Mathematics Institute Volume in Mathematical Biology, (pp 25-45). Insitute for Advanced Study, Princeton. |
Preprint | |
![]() |
Wang, Zhi An, Hillen, T. and Li, M. Mesenchymal Motion Models in One Dimension SIAM J. Appl. Math. 69 (2) 375-397, 2008 |
Preprint |
|
![]() |
Wang,
Zhi An, and Hillen, T. Pattern Formation for a Chemotaxis Model with Volume Filling Effects Chaos, 17(3), 037108 (13 pages), 2007 |
Preprint |
|
![]() |
Wang,
Zhi An and Hillen, T. Shock Formation in a Chemotaxis Model Math. Methods in the Appl. Sciences, 31(1), 45-70, 2008 |
Preprint |
|
![]() |
Liu, W.
Hillen, T. and Freedman, H.I. A Mathematical Model for M-phase Specific Chemotherapy Including the G0-Phase and Immuno-Response Mathematical Biosciences and Eng., 4(2), 239-259, 2007. |
|
Preprint |
![]() |
de
Vries, Gerda and Hillen, Thomas Teaching Mathematical Biology in a Summer School for Undergraduates in Mathematical Modeling of Biological Systems, Volume II: Epidemiology, Evolution and Ecology, Immunology, Neural Systems and the Brain, and Innovative Mathematical Methods, A. Deutsch, R. Bravo de la Parra, R. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky, and H. Metz, editors, Birkhauser, Boston, 2008, pp. 369-377. |
|
Preprint |
![]() |
Hillen,
Thomas A Classification of Spikes and Plateaus SIAM REVIEWS, 49(1) 35-51, 2007. |
|
Preprint |
![]() |
Hillen,
Thomas M^5, Mesoscopic and Macroscopic Models for Mesenchymal Motion 2006, J. Math. Biol. 53(4), 585-616, 2006. (electroinc: DOI 10.1007/s00285-006-0017-y) The original publication is available a www.springerlink.com |
Preprint |
|
![]() |
Dawson
Andria and Thomas Hillen, Derivation of the Tumour Control Probability (TCP) from a Cell Cycle Model Comput. and Math. Meth. in Medicine, 2006, 7:121-142. |
Prerprint |
|
![]() |
Hillen,
Thomas and Painter, Kevin and Schmeiser, Christian Global Existence for Chemotaxis with Finite Sampling Radius Discr. Cont. Dyn. Syst. B (DCDS-B), 7(1) 125-144, (2007). |
Preprint |
|
![]() |
Hillen,
Thomas and Renclawowicz, Joanna and Wang,
Zhian Analysis of an Attraction-Repulsion Chemotaxis Model 2007, unpublished manuscript. |
unpublished | |
![]() |
Hadeler, K.P. and Hillen, T. Coupled Dynamics and Quiescent States 2006. In MATH EVERYWHERE. Deterministic and Stochastic Modelling in Biomedicine, Economics and Industry. Dedicated to the 60th birthday of Vincenzo Capasso. G. Aletti, M. Burger, A. Micheletti, D. Morale Editors, Springer, Heidelberg, 2006. |
Preprint |
|
![]() |
Hillen, Thomas, Hadeler, K.P. Hyperbolic Systems and Transport Equations in Mathematical Biology p 257-279 in G. Warnecke (ed), Analysis and Numerics for Conservation Laws, Springer, Berlin, Heidelberg, 2005. |
PDF-file |
|
![]() |
Hillen, Thomas On the L^2-Moment Closure of Transport Equations: The General Case Discr. Cont. Dyn. Systems, Series B, 5(2) 299-318, 2005 |
PDF-file |
|
![]() |
Hillen, Thomas On the L^2-Moment Closure of Transport Equations: The Cattaneo Approximation Discr. Cont. Dyn. Systems, Series B, 4(4), 961-982, 2004 |
PDF-file |
|
![]() |
Hillen,
Thomas and Potapov, Alex The One-Dimensional Chemotaxis Model: Global Existence and Asymptotic Profile Math. Meth. Appl. Sci., 27:1783-1801, 2004. |
PDF-file | |
![]() |
Potapov,
Alex and Hillen, Thomas Metastability in Chemotaxis Models J. Dyn. Diff. Eq. , 17(2), 293-330, 2005.. |
PDF-file | |
![]() |
Painter,
Kevin and Hillen, Thomas Volume-Filling and Quorum Sensing in Models for Chemosensitive Movement Canadian Applied Mathematics Quarterly, Vol 10(4), 2002, 501-543. |
PDF-file | |
![]() |
Hadeler,
K.P., Hillen, T., and Lutscher, Frithjof The Langevin or Klein-Kramers Approach to Biological Modeling. M3AS (Math. Models Methods Appl. Sci.), 14(10), 1561-1583, 2004., |
PFE-file | |
![]() |
Hillen,
Thomas and Levine, Howard Blow-up in hyperbolic models for chemotaxis. Zeitschrift fuer Angewandte Mathematik und Physik (ZAMP), vol 54(5), 839-868, 2003. |
PDF-file | |
![]() |
Hillen,
Thomas Transport Equations with Resting Phases. European J. Appl. Math. 14(5), 613-636, 2003. |
PDF-file | |
![]() |
Hillen,
Thomas Hyperbolic Models for Chemosensitive Movement. Math. Models Methods Appl. Sci., 12(7), 1007-1034, 2002. |
download
PDF-file |
|
![]() |
Dolak,
Yasmin and Hillen, Thomas Cattaneo Models for Chemotaxis, Numerical Solution and Pattern Formation. J. Math. Biol. 46 (2003) 2, 153-170. |
download
PDF-file |
|
![]() |
Hillen,
Thomas Transport Equations and Chemosensitive Movement. Habilitation Thesis, University of Tuebingen, 2001. |
download
PDF-file |
|
![]() |
Othmer,
H.G. and Hillen, Thomas The Diffusion Limit of Transport Equations II: Chemotaxis Equations. SIAM J. Appl. Math, 62(4), 1222-1250, 2002. |
download
PDF-file |
|
![]() |
Hillen,
Thomas and Painter, Kevin Global Existence far a Parabolic Chemotaxis Model with Prevention of Overcrowding. Advances in Applied Mathematics, 26(4), 280-301, 2001. |
download
PDF-file |
|
![]() |
Hillen,
Thomas and Rohde, Christian and Lutscher, Frithjof
Existence of weak solutions for a hyperbolic model of chemosensitive movement . J. Math. Anal. Appl., 260, 173-1999, 2001. |
download
PDF-file |
|
![]() |
Hillen,
Thomas and Othmer, H.G. The Diffusion Limit of Transport Equations Derived From Velocity Jump Processes. SIAM J. Appl. Math., 61, 751-775, 2000. |
download PDF-file |
|
![]() |
Hillen,
Thomas and Stevens, Angela Hyperbolic models for Chemotaxis in 1-D. Nonlinear Analysis: Real World Applications 1(3), 409-433, 2000. |
||
![]() |
Hillen,
Thomas Orthogonal closure procedure for the first two moments of reaction transport equations. SFB 382, Report Nr.: 124, 1999. |
||
![]() |
Hillen,
Thomas Qualitative Analysis of semilinear Cattaneo systems. Math. Models and Methods in Appl. Sci., Vol. 8, No. 3, 507-519, 1998. |
download pdf |
|
![]() |
M�ller,
Johannes
and Hillen, Thomas Modulation equations and the parabolic limits of reaction random walk systems. Math. Methods Appl. Sci., 21, 1207-1226, 1998. |
||
![]() |
Hillen,
Thomas Invariance Principles for Hyperbolic Random Walk Systems. J. Math. Analysis Appl., 210, 360-374, 1997. |
||
![]() |
Hillen,
Thomas Qualitative Analysis of hyperbolic Random Walk Systems. SFB 382, Report No. 43, April 1996. |
||
![]() |
HIllen,
Thomas Nonlinear Hyperbolic Systems Describing Random Motion and their Application on the Turing Model. Dissertation Summaries in Math., Vol 1, 121-128, 1996 |
||
![]() |
Hillen,
Thomas A Turing model with correlated random walk. J. of Math. Biology, Vol 35, 49-72, 1996 |
download PDF-file |
|
![]() |
Hillen,
Thomas Nichtlineare hyperbolische Systeme zur Modellierung von Ausbreitungsvorg�ngen und Anwendung auf das Turing Modell. Dissertation, Fakult�t f�r Mathematik, Universit�t T�bingen, 1995. |
||
![]() |
Hadeler,
K.P. and Hillen, Thomas Differential Equations on Branched Manifolds. in: Evolution Equations, Control Theory and Biomathematics, P. Clement and G. Lumer (eds), Han-sur-Lesse, 241-258, Marcel Dekker, 1994. |
download PDF-file |
6.![]() |
T. Hillen, F. Lutscher, J. M�ller
(2006) Preface. Dedicated to K.P. Hadeler's 70 birthday J. Math. Biol. 53 (4): 491-495 |
||
![]() 5. |
Hillen, Thomas Review on: Suzuki, T. Free Energy and Self-Interacting Particles Bulletin Math. Bio., 2006. |
||
![]() 4. |
Hillen,
Thomas Review on:Taubes, C. Modeling Differential Equations in Biology Mathematical Intelligencer, 27(1) 2005. |
||
![]() |
Hillen, Thomas Mathematical Biology: An Evolving Discipline and Career Over 15 years Science, Next Wave, Internet publication, March 2004: http://nextwave.sciencemag.org/cgi/content/full/2004/02/18/3 |
||
![]() 2. |
Hillen,
Thomas Applications and Limitations of the Verhulst-Model for Populations. PI in the Sky, 2003. |
||
![]() 1. |
Hillen,
Thomas Be "Careful with that Axe, Eugene". PI in the Sky, 2003. |
||