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Birth-jump models are designed to describe population models for which growth and spatial spread
cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two
different derivations of this equation, one based on a random walk approach and the other based on a
two-compartmental reaction–diffusion model. In the case that the redistribution kernels are highly con-
centrated, we show that the integro-differential equation can be approximated by a reaction–diffusion
equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We
completely solve the corresponding critical domain size problem and the minimal wave speed problem.
Birth-jump models can be applied in many areas in mathematical biology. We highlight an application
of our results in the context of forest fire spread through spotting. We show that spotting increases the
invasion speed of a forest fire front.

Keywords: birth-jump processes; integro-differential equations; diffusion limit; reaction–diffusion equa-
tions; critical domain size; minimal wave speed; wildfire spotting
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1. Introduction

Typical mathematical models for spatial spread of growing and interacting populations assume
that growth and spatial spread are independent processes. For example, one typically models the
evolution of a population that undergoes diffusion and logistic growth with the Fisher equation

ut = Duxx + μu
(

1 − u

C

)
,

where u(x, t) denotes the population density at time t and location x, D is a constant diffusion
coefficient, and the nonlinearity μu(1 − u/C) describes logistic growth with growth rate μ > 0
and carrying capacity C > 0.

In many situations, however, growth and spread cannot be decoupled as in the model above.
For example, ovarian cancer in advanced stages sheds new cancer cells into the peritoneal cleav-
age. These cancer cells are transported by the peritoneal fluid to distant locations, possibly
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2 T. Hillen et al.

starting metastatic growth. Here, the spatial spread of cells is directly related to cell division
[6,37]. Similar examples include any form of metastasis that results from shedding of tumour
cells into the blood stream. A different example is the spread of wildfires, where burning embers
are released into the wind and transported downwind. If not extinguished during flight, they
might start a new fire ahead of the main fire front; this process is called spotting [1,28]. Yet
another example is that of a territorial species, where young individuals are forced to leave the
pack and find their own territories.

In this paper, we discuss models that are suitable to describe situations in which growth and
spread cannot be decoupled. These models arise from what we call birth-jump processes and
their corresponding birth-jump partial differential equations; PDEs. The birth-jump processes
are generalizations of position-jump processes as discussed, for example, in [18,31] on the one
hand and of reaction–diffusion models on the other hand [36].

In its general form, for the density of one population, u(x, t), the birth-jump integro-differential
equation in a given domain � ⊂ R

n can be written as

ut(x, t) =
∫

�

K(x, y, u(x, t))α(u(y, t)) u(y, t) dy − α(u(x, t))u(x, t)︸ ︷︷ ︸
position−jump process

+
∫

�

S(x, y, u(x, t))β(u(y, t))u(y, t) dy︸ ︷︷ ︸
birth−jump process

− δ(u(x, t))u(x, t)︸ ︷︷ ︸
death

. (1)

The first two terms describe a nonlinear position-jump process, where α(u) is the rate for an
individual to leave location x. The kernel K is a redistribution kernel representing the probability
density of an individual to jump from y to x, conditioned on the local occupancy at x given by
u(x, t). The dependence of K on u(x, t) can be used to model volume constraints, such that new
individuals can only arrive at x if there is space available [17]. The third term is new, and it
describes the proper birth-jump process. The function β(u) is a proliferation rate at location y,
and S is the redistribution kernel for newly generated individuals at y to jump to x. The birth-
jump process does not lead to a negative term in the equations since it acts on newly generated
individuals only. The transport mechanisms for existing individuals and for newly generated
individuals may be the same, as in the case of metastatic cancer spread, implying K = S. This
is different for forest fire spread, where local spread happens through convection, conduction
and diffusion, while long-range spotting occurs through wind transport [21], hence K �= S in that
case. The last term in Equation (1) is a standard death term with the death rate δ(u). To introduce
notation that is used later, we combine the terms related to population growth and death as

f (u) = (β(u) − δ(u))u (2)

with β, δ ≥ 0.
Lutscher [25] studied a similar idea for a discrete-time integro-difference spread model. In

[25], it is assumed that a fraction g of new-born individuals stays stationary, while the other
fraction 1 − g is distributed according to a redistribution kernel. Lutscher computes spreading
speeds for this case using moment-generating functions.

In Section 2, we present two derivations of the birth-jump process leading to Equation (1):
one from a discrete random walk and another from a system of reaction–diffusion equations.
In Section 3, we use moment expansions of the integral terms in Equation (1) to derive corre-
sponding generalized reaction–diffusion equations. We show that it is important to choose the
relocation rate α(u) and the proliferation rate β(u) carefully to ensure that the diffusion limit is
well defined. We then consider two standard problems for the diffusion limit, namely the critical
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Journal of Biological Dynamics 3

domain size problem and the travelling wave problem. Under very general suitable assumptions,
we can fully characterize the critical domain size and the invasion speed. In Section 4, we dis-
cuss an application of our model to forest fire spotting. Spotting describes the launch of burning
material into the wind column, its transport ahead of the fire, its landing, and the subsequent igni-
tion of a new fire. Spotting is an important factor of wildfire spread, and new models that take
the spotting phenomenon into account are needed. We use the birth-jump framework to develop
models for spotting, and we apply the results from Section 3 to determine critical domain size
and invasion speed. Our model predicts that spotting increases fire spread. We conclude with
Section 5, where we argue that birth-jump models can be a useful tool in a wide variety of
biological situations, from cancer metastasis to habitat selection and the ideal free distribution
(IFD). We also discuss interesting mathematical questions that arise in the context of birth-jump
processes.

2. Derivations of the birth-jump process

We use two different approaches1 to derive our birth-jump model, both times arriving at the
same type of integro-differential equation (1). In Section 2.1, we present the random walk
approach. This first derivation is very general. In Section 2.2, we present a derivation via a
two-compartmental reaction–diffusion model. This second derivation leads to very specific redis-
tribution kernels K and S. For ease of discussion, we cast both derivations of the birth-jump
process in the context of cell populations; the resulting equation can be interpreted more broadly,
for example in terms of firebrands or populations of animals, depending on the application.

2.1. Derivation from a random walk

In order to model the birth-jump process, we imagine the domain of interest as an infinite line
so that the model will be one dimensional. A similar derivation for a space-jump process is
found in [18], however, the birth-jump process is not included there. We first discretize time
into disjoint intervals of length �t that cover the non-negative real line and discretize space
into disjoint patches of size �x that cover the whole real line. Each time step is represented by
t = n�t, and all patches are represented by integers i, j ∈ Z. Let ui(t) be the number of cells at
location i at time t. We imagine that this number changes over time due to spatial movement
(shedding and settlement) as well as population dynamics (birth and death/survival). Hence, a
descriptive equation for the number of cells in one patch is as follows:

cells at time t + �t = − leaving cells

+ arriving cells

+ new-born cells

+ surviving cells from time t,

where the four terms on the right-hand side arise from the four concepts shedding, settlement,
proliferation, and survival, respectively.

The ‘shedding’ term counts the cells that leave location i:

− α̃(ui(t))ui(t), (3)

where α̃(ui(t)) is the shedding probability.
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4 T. Hillen et al.

The complementary ‘settlement’ term counts the cells that leave locations j and arrive at
location i:

+∞∑
j=−∞

α̃(uj(t))kijuj(t), (4)

where kij denotes the probability of a cell that was released at location j to settle at location i.
Here, we implicitly assume that the release α̃ and transport kij are independent processes. At
this stage, we could allow the transport kernel to depend on occupancy at the target site, that is,
kij = kij(ui).

The ‘proliferation’ term counts the cells that are born at locations j, leave j, and arrive at
location i:

+∞∑
j=−∞

β̃(uj(t))sijuj(t), (5)

where β̃(uj(t)) is the probability that a cell at j divides into two daughter cells during the time
interval [t, t + �t). An important assumption in this context is that one daughter cell moves to
some location i, while the other daughter cell replaces the mother. Consequently, the fate of the
latter is governed by the shedding and settlement terms and does not affect the proliferation
term. For the leaving daughter cells, we use the transitional probabilities sij. Depending on the
application, the redistributions might be imperfect, i.e. cells might get lost. Hence, we assume
kij, sij ≥ 0 and the sums

∑+∞
j=−∞ kij,

∑+∞
j=−∞ sij ≤ 1.

Finally, we need to count the individuals that stay at location i. The ‘survival’ term is

(1 − δ̃(ui(t)))ui(t), (6)

where δ̃(ui(t)) is the death rate.
Adding the terms (3)–(6) leads to the difference equation

ui(t + �t) − ui(t) =
+∞∑

j=−∞
α̃(uj(t))kijuj(t) − α̃(ui(t))ui(t) +

+∞∑
j=−∞

β̃(uj(t))sijuj(t) − δ̃(ui(t))ui(t).

(7)

The first two terms on the right-hand side of Equation (7) represent a standard discrete position-
jump process (e.g. as discussed in [31]), the third term describes a discrete birth-jump process,
and the last term describes cell death.

We now convert the discrete model into a continuous model. This is done by taking the limit as
the time and space intervals become small and interpreting the sums in Equation (7) as integrals.
Hence, the result has the form of an integro-differential equation. We let x = i�x and y = j�x
and introduce a continuous population density u(x, t) via

u(x, t)�x = ui(t),

rates α(u), β(u), and δ(u) via

α(u(x, t))�t = α̃(ui(t)), β(u(x, t))�t = β̃(ui(t)), δ(u(x, t))�t = δ̃(ui(t)),

and redistribution kernels

K(x, y)�x = kij, S(x, y)�x = sij.
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Journal of Biological Dynamics 5

Converting the discrete variables in Equation (7) into continuous ones yields the equation

(u(x, t + �t) − u(x, t))�x =
+∞∑

j=−∞
α(u(y, t))K(x, y)u(y, t)�x2�t − α(u(x, t))u(x, t)�x�t

+
+∞∑

j=−∞
β(u(y, t))S(x, y)u(y, t)�x2�t − δ(u(x, t))u(x, t)�x�t. (8)

It should be noted that for β = 0, the equation coincides with Equation (5) in [18]. We cancel
�x, divide by �t, and consider the limit as �x, �t → 0. The sums in Equation (8) are Riemann
sums, which converge to integrals. We obtain model (1) in one dimension, which reads

ut(x, t) =
∫ +∞

−∞
K(x, y)α(u(y, t))u(y, t)dy − α(u(x, t))u(x, t)

+
∫ +∞

−∞
S(x, y)β(u(y, t))u(y, t) dy − δ(u(x, t))u(x, t). (9)

Finally, if we use the analogous model in higher dimensions on a given domain � ⊂ R
n and

allow the integration kernels to depend on the local density u, then we obtain model (1).

Remarks

(1) The derivation in this subsection is unchanged if we allow the kernels kij and sij to depend
on ui.

(2) If volume constraints are important, then we often write the kernel in product form, i.e.
K(x, y, u(x, t)) = κ(x, y)�(u(x, t)), where κ(x, y) is a redistribution kernel, and �(u) is a
decreasing function in u [7].

2.2. Derivation from a reaction–diffusion system

We can use a system of two reaction–diffusion equations to derive model (1) for a particular
kernel. The system describes the shedding of cells with two classes, namely a class u(x, t) for
stationary cells and a class w(x, t) for cells that are transported. We assume that cell division
occurs only in the stationary phase (since nutrients are available), but newly created cells are shed
and transported immediately. The equation for u thus describes cell kinetics (birth and death),
while the equation for w describes redistribution of the cells. We follow the ideas of Lutscher
et al. [27] and assume that movement is fast relative to reproduction. The second equation is
then in a quasi-steady state, and we solve it using the corresponding Green’s function. This
Green’s function then leads to non-local terms in the first equation.

Let � ⊂ R
n be an open domain. If � is bounded, then we assume a piecewise smooth bound-

ary ∂� and assume that the density of moving cells at the boundaries is zero, i.e. w(x, t) = 0
on ∂�. Based on our assumptions, we construct the following equations for the stationary class
u(x, t) and the mobile class w(x, t):

ut(x, t) = −α(u(x, t))u(x, t) + η(x)w(x, t) − δ(u(x, t))u(x, t),

τwt(x, t) = (� − η(x))w(x, t) + α(u(x, t))u(x, t) + β(u(x, t))u(x, t),
(10)

where � is the Laplace operator, representing diffusive cell movement, α(u) is the shedding rate,
η(x) is a spatially dependent rate of settlement, δ(u) is the death rate, and β(u) the mitosis rate.
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6 T. Hillen et al.

Note that newly created individuals enter the mobile class immediately. The variable τ is a time-
scaling parameter which indicates that population growth and spread might act on different time
scales. Since we assume that diffusion is fast compared to mitosis, we can replace the second
equation in (10) by

− (� − η(x))w(x, t) = (α(u(x, t)) + β(u(x, t)))u(x, t). (11)

If � = R
n, then Green’s function is the standard normal distribution in R

n. If � is a bounded
domain with smooth boundary, then we denote by G(x, y) Green’s function of the elliptic problem

−(� − η(x))w(x) = δx in �,

w(x) = 0 on ∂�.

Using this Green’s function [10], we can write the solution of Equation (11) as

w(x, t) =
∫

�

G(x, y)(α(u(y, t)) + β(u(y, t))) u(y, t) dy.

If we substitute this expression for w into the first equation of (10), then we obtain

ut(x, t) =
∫

�

η(x)G(x, y)α(u(y, t))u(y, t) dy − α(u(x, t))u(x, t)

+
∫

�

η(x)G(x, y)β(u(y, t))u(y, t) dy − δ(u(x, t))u(x, t),

which is in fact (1) with K(x, y) = S(x, y) = η(x)G(x, y).

3. Reaction–diffusion limit

In this section, we focus on the case in which the birth-jump process has concentrated kernels
K and S, and we study approximations of the birth-jump equation (1). A moment expansion of
the integral terms allows us in Section 3.1 to derive a diffusion limit (17), which is a nonlinear
generalization of the well-known Fisher–KPP reaction–diffusion equation. The analysis of the
critical domain size problem and the travelling wave problem are common methods for reaction–
diffusion equations of the Fisher–KPP type [39], but both problems have not been studied for
our limit Equation (17). In the critical domain size problem, discussed in Section 3.2, one is
interested in finding the smallest habitat able to sustain a stable population. In the case of the
travelling wave problem, discussed in Section 3.3, one is interested in how quickly a population
would invade into an uninhabited habitat. We are able to find complete solutions for these two
problems.

3.1. Derivation of the diffusion limit

In Section 3.1.1, we derive a nonlinear diffusion limit (17) through a moment expansion. In
Section 3.1.2, we investigate an important special case, namely the case of a pure birth-jump
process which has no spontaneous travel and where spread is only via newborns. In Section 3.1.3,
we review a few specific growth models that will be used later to highlight key results.
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3.1.1. General case

A diffusion limit can be obtained for concentrated kernels K and S by using a moment expansion
of the integral terms. We assume that a given function h(y, t) is analytic so that we can use
the Taylor series expansion of h(y, t) about y = x. For kernel K, rewriting the integral operator
leads to ∫

�

K(x, y)h(y, t) dy =
∫

�

K(x, y)
+∞∑
i=0

h(i)(x, t)

i!
(y − x)i dy

=
+∞∑
i=0

h(i)(x, t)M K
i (x), (12)

where the term h(i) denotes the ith partial spatial derivative of h, and M K
i (x) is the ith moment of

K defined as

M K
i (x) :=

∫
�

K(x, y)
(y − x)i

i!
dy. (13)

The ith moment of S, M S
i (x), is defined analogously. We assume that these moments exist

at least up to order 2. Note that if the kernel is symmetric in the sense that K(x, x + z) = K
(x, x − z), then all odd moments are zero. When, in addition, the kernel is sufficiently local, then
the higher moments are small, and we can truncate the sum in Equation (12) after the third-order
or fifth-order term without losing much precision. Hence, for a symmetric kernel K, the moment
expansion formula is ∫

�

K(x, y)h(y, t) dy ≈ M K
0 (x)h(x, t) + M K

2 (x)hxx(x, t) (14)

or ∫
�

K(x, y)h(y, t) dy ≈ M K
0 (x)h(x, t) + M K

2 (x)hxx(x, t) + M K
4 (x)hxxxx(x, t). (15)

Analogous moment expansion formulas can be written for a symmetric kernel S. In the following,
we mostly use the second-order expansions.

We now include the density dependence of the integration kernels and use these moment
expansions in the birth-jump process (1) to obtain

ut = M K
2 (x, u)(α(u)u)xx + M S

2 (x, u)(β(u)u)xx

+ (M K
0 (x, u) − 1)α(u)u + (M S

0 (x, u)β(u) − δ(u))u, (16)

which is the birth-jump PDE corresponding to Equation (1).
An interesting special case arises if we assume that there is no volume effect, i.e. K and

S do not depend on u, that K and S are mass conserving, and that they only depend on the
distance x − y but not on the location x. Then, M K

0 = 1, M S
0 = 1, M K

2 = dK = const, and M S
2 =

dS = const. Equation (16) then reduces to a generalization of the Fisher–KPP reaction–diffusion
equation, namely

ut = ((dKα(u) + dSβ(u))u)xx + (β(u) − δ(u))u. (17)

Notice that in Equation (17), the birth rate β arises both in the diffusion term as well as in the
kinetic term, whereas the death rate contributes to the kinetic term only. In the next sections, we
analyse this nonlinear reaction–diffusion model in detail to derive the critical domain size and
the minimal travelling wave speed.
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8 T. Hillen et al.

We can rewrite Equation (17) in a more compact form as a nonlinear Fisher–KPP equation,
namely

ut = (D(u)u)xx + f (u) (18)

with

D(u) = dKα(u) + dSβ(u) (19)

and f (u) as defined in Equation (2). One immediate observation is the fact that, for general rates
α(u) and β(u), the above model can lead to negative diffusion, which is not well defined. To
avoid this, we make a simple assumption.

Assumption A1 Assume that D(u) satisfies

inf
u

{D′(u)u + D(u)} > 0. (20)

With Assumption (A1), Equation (18) is uniformly parabolic [10] and standard solution theory
can be applied. If Equation (18) is equipped with proper boundary conditions on a smooth spa-
tial domain, then the corresponding initial-value problem has unique classical solutions. Since
existence theory for equations of the type (18) is covered in the classical literature [24], we do
not treat the details of the existence theory here.

3.1.2. The pure birth-jump case

An important special case arises if there is no spontaneous travel, i.e. α = 0, and spatial spread is
possible only by newly created individuals. In this case, Equation (1) describes a pure birth-jump
process,

ut =
∫

�

S(x, y, u)β(u)u dy − δ(u)u. (21)

Equation (21) is closely related to well-known integro-differential spread models. In particular,
if β is constant, and if we allow δ to include all population dynamics, i.e. −δ(u)u = g(u), where
we relax the assumption that δ should be non-negative, then we obtain

ut = β

∫
�

S(x, y)u dy + g(u), (22)

which has been studied extensively (see [14,19,20,26,40]). Note that Equation (22) assumes
independence of spatial spread and reproduction. Our pure birth-jump process described by
Equation (21) is significantly different as reproduction triggers spread. Nevertheless, many
methods developed for Equation (22) can and will be used for the analysis of Equation (21).

The diffusion limit for Equation (21) is (compare with Equation (17))

ut = dS(β(u)u)xx + (β(u) − δ(u))u, (23)

and Assumption (A1) then is an assumption on the growth rate, namely

inf
u

{β ′(u)u + β(u)} > 0.
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3.1.3. Examples

Here, we highlight three specific examples of well-known growth models.

(1) In the case of logistic growth, f (u) = μu(1 − u/C), we can choose

β(u) = μ and δ(u) = μu

C

to satisfy Assumption (A1).
(2) For Ricker growth, f (u) = μu e−γ u, we have to be a bit more careful. Each choice φ ≥ 1

with

β(u) = μ(φ + u) and δ(u) = μ(φ + u − e−γ u)

leads to rates that satisfy Assumption (A1).
(3) Also, an Allee effect can be included in this framework. If the kinetic term has the form

f (u) = μu(1 − u)(u − γ ) for 0 < γ < 1, then a suitable choice is

β(u) = μ(1 + γ )u and δ(u) = μ(γ + u2).

3.2. Critical domain size problem

For the critical domain size problem, we are interested in finding the smallest domain able to
sustain a stable population [39]. We study this problem for the nonlinear diffusion limit (17) on
an interval [0, L] with homogeneous Dirichlet boundary conditions u(0, t) = 0 and u(L, t) = 0.
To find the critical domain size, we use two methods. In Section 3.2.1, we analyse the critical
length L(1)

crit such that the homogeneous steady state u ≡ 0 becomes linearly unstable for L > L(1)

crit.
Second, in Section 3.2.2, we find the critical length L(2)

crit such that Equation (17) has a non-trivial
steady-state solution. In the case of D(u) = const, it is well known that these two critical values
coincide [39]. This is the case here too, and we show that

L(1)

crit = L(2)

crit = π

√
D(0)

f ′(0)
= π

√
dKα(0) + dSβ(0)

β(0) − δ(0)
. (24)

In Section 3.2.3, we summarize the critical domain size results in the context of the pure birth-
jump process (i.e. α = 0) for the logistic growth model and the Ricker growth model, and we
conclude with a numerical investigation of the critical domain size problem.

3.2.1. Critical domain size from linearization at zero

To develop the critical domain size, we work with the compact form of Equation (17), namely
the nonlinear Fisher–KPP Equation (18). We rewrite Equation (18) as

ut = (D′′(u)u + 2 D′(u))u2
x + (D′(u)u + D(u))uxx + f (u),

and linearization at zero gives

ut = D(0)uxx + f ′(0)u. (25)

A Fourier transform leads to an eigenvalue problem

λ = −ω2D(0) + f ′(0),

where on [0, L] with homogeneous Dirichlet boundary conditions we have the characteristic
values of ω = nπ/L for n = 1, 2, . . . . We are interested in the leading positive eigenvalue for
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10 T. Hillen et al.

n = 1. The condition for the critical length L(1)

crit arises from the equality

− π2

(L(1)

crit)
2
D(0) + f ′(0) = 0,

which gives

L(1)

crit = π

√
D(0)

f ′(0)
.

For each L > L(1)

crit, the linearization (25) has a positive eigenvalue, making u ≡ 0 linearly unsta-
ble. Substituting D(u) as defined in Equation (19) and f (u) as defined in Equation (2) leads to
the critical domain size result (Equation (24)) stated above.

3.2.2. Critical domain size from existence of non-trivial steady states

To analyse the steady-state equation related to Equation (18), namely

(D(u)u)′′ + f (u) = 0, (26)

we introduce v := (D(u)u)′ to obtain the equivalent system

(D(u)u)′ = v,

v′ = −f (u).

Since (D(u)u)′ = (D′(u)u + D(u))u′ and D′(u)u + D(u) > 0 by assumption (A1), the system can
be rewritten as

u′ = v

D′(u)u + D(u)
,

v′ = −f (u).
(27)

Using the solution of this system, u(x), we define a monotonic transformation

ξ :=
∫ x

0
(D′(u)u + D(u))−1(y) dy. (28)

Then,
d

dx
= dξ

dx

d

dξ
= (D′(u)u + D(u))−1 d

dξ

such that the transformed variables w(ξ) = u(x), z(ξ) = v(x) satisfy

w′ = z,

z′ = −f (w)(D′(w)w + D(w)).
(29)

The dynamical systems (27) and (29) have the same orbits. Hence, whenever Equation (29)
admits non-trivial solutions with homogeneous Dirichlet boundary conditions, then so does
Equation (27). The only difference is the length of these solution, since the length parameter
x has been rescaled.
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Journal of Biological Dynamics 11

As we analyse Equation (29), we recognize that this is the critical domain size problem for the
reaction–diffusion equation with constant diffusion coefficient, i.e.

wt = wxx + F(w),

F(w) = f (w)(D′(w)w + D(w)).
(30)

This model has been analysed many times [39], and it is known in this case that the critical
domain size is

Lξ

crit = π
√

(F ′(0))−1 = π
√

(D(0)f ′(0))−1.

Equation (29) has non-trivial steady states for each L > Lξ

crit. We use the superscript ξ to indicate
that this length relates to the transformed space variable. To find a corresponding expression in
the original variable x, we need to invert the relation

Lξ

crit =
∫ L(2)

crit

0
(D′(u)u + D(u))−1(y) dy, (31)

which is hard to do. However, close to the critical value, the solution u is close to zero, and we
make the approximation

Lξ

crit =
∫ L(2)

crit

0
(D′(u)u + D(u))−1(y) dy ≈ 1

D(0)

∫ L(2)

crit

0
dy = L(2)

crit

D(0)
,

from which we obtain

L(2)

crit = D(0)Lξ

crit = π

√
D(0)

f ′(0)
.

Note that even though we cannot completely invert the integral in Equation (31), we still know
that the transformation x �→ ξ is monotonic. Hence, non-homogeneous solutions of Equation
(26) exist for all L > L(2)

crit. We have found L(2)

crit = L(1)

crit, and the critical domain size result (24)
stated above follows.

3.2.3. Examples

(1) For the case of a pure birth-jump process (α = 0) and logistic growth, we have β(u) = μ

and δ(u) = μu/C. Then, the critical domain size result (24) gives

Lcrit = π
√

dS .

Notice that this value does not depend on the growth rate μ, which is related to the fact that
the growth rate μ appears in both the diffusion term and the kinetic term, and they cancel
each other in the formula for Lcrit.

(2) For the case α = 0 and Ricker growth, we have β(u) = μ(φ + u) and δ(u) = μ(φ + u −
e−γ u) with φ ≥ 1. In this case, the critical domain size result (24) gives

Lcrit = π
√

dSφ.

Notice that the critical domain size explicitly depends on the free parameter φ, which shows
that it is important to choose the birth and death rates β(u) and δ(u) carefully.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

lb
er

ta
] 

at
 1

4:
50

 0
8 

Se
pt

em
be

r 
20

14
 



12 T. Hillen et al.

Figure 1. Illustration of the critical domain size problem. Numerical simulation of model (32) with a = 1, μ = 2, and
C = 1, for L = 3 (left) and L = 8 (right). On the left, the time shots for t = 0, 3, 6, 9, and 12 show a decaying solution;
on the right, the time shots for t = 0, 1.5, 3, and 4.5 show a growing solution.

(3) To numerically illustrate our critical domain size result, we consider the logistic growth
model with

dK = dS = 1, α(u) = u

a + u
, β(u) = μ, δ(u) = μu

C
,

where the free parameters a, μ, and C are all assumed to be positive. We choose a monotoni-
cally increasing, saturating shedding rate α, which implies that we expect that shedding does
not increase unboundedly with density. Inserting these forms into Equation (17), we obtain

ut =
((

μ + u

a + u

)
u

)
xx

+ μ
(

1 − u

C

)
u. (32)

Here, D(u) = μ + u/(a + u) and f (u) = μu(1 − u/C), so our result (24) implies that the
critical domain size in this case is

Lcrit = π .

We use the software package FlexPDE to solve this nonlinear equation for parameter val-
ues a = 1, μ = 2, and C = 1. FlexPDE employs a finite-element, Newton–Raphson method
to numerically solve the Dirichlet initial-boundary value problem for Equation (32) [32]. The
spatio-temporal mesh is adaptively refined at each time step to control numerical error. We
assume that the population is non-zero initially and smoothly varies throughout the entire
domain. We model this by the initial condition

u(x, 0) = 0.1
(

sin
πx

L

)
. (33)

In Figure 1, we show solutions for two values of L, namely one subcritical (L = 3) and
one supercritical (L = 8). For the domain size L = 3, the solution decays to zero, while for
L = 8, the solution grows to a stationary distribution. We simulated many more parameter
choices, and the critical length Lcrit result was confirmed in each case (results not shown).

3.3. Travelling wave problem

Travelling waves for the diffusion limit (17) are self-similar solutions of the form u(x − ct),
where c denotes the invasion speed. We determine the minimal wave speed for this equation in
Section 3.3.1, and we discuss examples in Section 3.3.2.
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Journal of Biological Dynamics 13

3.3.1. Minimal wave speed

To develop the minimal wave speed, we again work with Equation (18), the compact form of
the nonlinear Fisher–KPP equation (17). If we substitute u(x − ct) into Equation (18), then we
obtain

−cu′ = (D(u)u)′′ + f (u),

where the prime denotes differentiation with respect to η = x − ct. We introduce v := (D(u)u)′

and obtain the system

(D(u)u)′ = v,

v′ = −cu′ − f (u).

We have v = (D(u)u)′ = (D′(u)u + D(u))u′, where D′(u)u + D(u) > 0, by Assumption (A1), so
that the above system can be rewritten as

u′ = v

D′u + D
,

v′ = − cv

D′u + D
− f (u).

As in the preceding subsection, we use a spatial rescaling of the system (see Equations (28) and
(30)): we multiply both equations by a common positive factor D′u + D, which leaves the orbits
invariant. Hence, we study the orbits of

wt = z,

zt = −cw − f (w)(D′(w)w + D(w)).

We recognize that this system is the travelling wave system corresponding to Equation (30).
The travelling wave problem for this equation has been solved many times [8,10,36]. Before we
can apply the general results for this equation to our situation, we need to ensure that the new
nonlinearity F(w) = f (w)(D′(w)w + D(w)) is monostable and satisfies linear determinacy. This
means

(1) monostability: F(0) = 0, F′(0) > 0, F(w̄) = 0, and F(w) > 0 for all w ∈ (0, w̄), where w̄ =
∞ is possible.

(2) linear determinacy: F ′(w) ≤ F ′(0)w for all w ∈ (0, w̄).

Theorem 3.1 Assume (A1) and assume that f (u) = (β(u) − δ(u))u is monostable, then F(u)

also is monostable. If, in addition, F(u) is linearly determined, then there exists a minimal wave
speed of Equation (17) given by

c∗ = 2
√

D(0)(β(0) − δ(0)) = 2
√

(dKα(0) + dSβ(0))(β(0) − δ(0)). (34)

Initial conditions with compact support will approximate, two waves traveling left and right with
speed c∗ and −c∗, respectively. Moreover, for each c > c∗ there exists a self-similar solution with
speed c.

Proof We apply the results of [8] to Equation (30). Given the above assumptions, the minimal
wave speed for Equation (30) is

c∗ = 2
√

F ′(0) = 2
√

f ′(0)D(0) + 2 f (0)D′(0).

Using f (u) as defined in Equation (2), we have f (0) = 0 and f ′(0) = β(0) − δ(0), and the
minimal wave speed result for Equation (17) follows. �
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14 T. Hillen et al.

3.3.2. Examples

(1) For the case of a pure birth-jump process (α = 0) and logistic growth, we have β(u) = μ

and δ(u) = μu/C. Then, F(u) = μ2dSu(1 − u/C), which is clearly monostable and linearly
determined. In this case, the minimal wave speed (Equation (34)) is

c∗ = 2
√

dSμ2.

(2) For the case α = 0 and Ricker growth, we have β(u) = μ(φ + u) and δ(u) = μ(φ + u −
e−γ u) with φ ≥ 1. Then, F(u) is given by

F(u) = μ2dSu2φ e−γ u.

In this case, F′(0) = 0, and F(u) is not linearly determined as assumed above. Hence, the
above theorem does not apply to this case.

(3) To numerically illustrate the travelling wave solution, we again use example (Equation
((32)). In this case, α(0) = 0, dS = 1, β(0) = μ, and δ(0) = 0, so that our result (Equation
((34)) implies that the minimal wave speed is

c∗ = 2μ. (35)

We use FlexPDE [32] to solve Equation (32) on the domain [0, L] with homogeneous Neu-
mann boundary conditions. We again use parameter values a = 1, μ = 2, and C = 1 and set
L = 100. The initial condition u0, given by

u0(x) = exp

(
− x2

0.01

)
, (36)

concentrates the initial mass near zero. The solution then develops into a travelling wave
until it reaches the boundary at L. In Figure 2, we show the wave profile at various times.
We observe a wave speed of c∗ = 4, as predicted by Equation (35). We tried several other
combinations of parameters, and all confirm the minimal wave speed to be given by Equation
(35) (results not shown).

4. Application to fire spotting

Birth-jump models have been used in several applications, and we discuss a few of them in the
discussion section. In this section, we apply the birth-jump process to the phenomenon of forest
fire spotting. In Section 4.1, we give an introduction to forest fire spotting. In Section 4.2, we
use the birth-jump framework to develop the spotting model. In Section 4.3, we apply the results
from Section 3, and determine the critical domain size and invasion speed of a forest fire. We
show that spotting can substantially increase the rate of spread of a fire invasion front.

4.1. Introduction to forest fire spotting

Wildfire is an essential phenomenon for many terrestrial ecosystems.2 Wildfires are typically
classified as surface, ground or canopy (crown) fires, the latter being the most intense. In the
Boreal forest, crown fires leave few trees standing in their wake; the carbon-rich environment
left behind is prime real-estate for the establishment of new plants, as in the case of aspen or
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Figure 2. Illustration of the travelling wave problem. Travelling wave profile for Equation (32) at times t = 4, 8, 12,
16, and 20, from left to right. Parameter values are a = 1, μ = 2, and c = 1, and the domain length is L = 100. The
minimal wave speed is c∗ = 4.

lodgepole pine. Wildfires become dangerous when they occur in the wildland–urban interface,
as they may cause serious damage to human developments like industry or property. Due to the
ever-expanding radius of human activity, fire management operations must be as well informed
as possible – in turn, this further mandates an improvement of our fundamental understanding of
wildfire behaviour.

Much empirical data have been collected for local wildfire spread [12]. The most important
metric is the rate of spread, which characterizes how fast a wildfire front will expand with time in
the direction normal to itself. Regression analysis of field data, for a variety of spread scenarios,
provides the rate of spread as a function of fuel type and distribution, topography, and weather.
Because of the enormous variety of grassland, shrub, or forest stand types, which vary in char-
acter across the globe, many empirically based systems have been developed to predict wildfire
front evolutions for fire management [5,11,12,38].

Despite these developments, there remain several aspects of wildfire behaviour that are poorly
understood. Of particular importance for fire management is wildfire spotting (or simply spot-
ting). Spotting describes the launch of burning material into the wind column, its transport ahead
of the fire, its landing, and the subsequent ignition of a new fire (a spot fire) [1,2,15,22]. Spotting
distances are often quite short (several metres), but in many cases long-distance spotting is also
observed (up to several kilometres). Spotting is the most common cause for the escape of pre-
scribed fires. Spot fires can cause breaches across roads, rivers or regions which might otherwise
slow local spread, perhaps placing valuable assets in unexpected danger. Spot fires also may be
responsible for increased rates of spread or acceleration of fronts.

4.2. Development of the spotting model

Since spotting is an important factor of fire spread, many of its sub-processes (firebrand gen-
eration, launching in the convection column, downwind transport, combustion, terminal falling
velocity, and fuel bed ignition) have received detailed scientific attention. It is impossible, in this
paper, to explain the complete physical processes, hence we will only present and discuss the
resulting fire spotting model from [28]. We refer to [28] for details on the underlying physical
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16 T. Hillen et al.

combustion laws. Our fire spotting model is based on the idea of a spotting distribution, which
was formulated for the first time in [28,29].

The birth-jump framework is naturally suited to model forest fire spotting. Indeed, burning
firebrands are ‘shed’ from the main fire into the atmosphere and subsequently ‘settle’ downwind
to possibly start a new fire. To relate our general model (1) to forest fire spread, we imagine a
long fire front spreading in the y direction. The probability of having no fire at location x before
a time T is assumed to be governed by a Poisson process, such that the cumulative probability P
satisfies

P(no fire at x before T) = exp

(
−

∫ T

0
u(x, t) dt

)
,

where u(x, t) is the expected instantaneous fire probability at location x at time t. In what follows,
we focus on deriving a model for u(x, t). We consider the fire expectation u(x, t) to be influenced
by three processes: (i) local spread, (ii) spotting, (iii) combustion and extinction. We assume our
medium to be homogeneous and flat, as in the case of an extended, dense coniferous forest.

The first two terms on the right-hand side of Equation (1) are used to describe local fire spread.
We assume a constant spread rate α = const, and we assume that the kernel K is locally concen-
trated. Hence, as done before, this term becomes a standard diffusion term. Many other fire
spread models use diffusion for local spread as well [4,5]. Fire does tend to spread faster in the
wind direction, which might motivate an anisotropic diffusion term, but we assume that spotting
is more affected by wind, and local spread not so much, hence standard diffusion is sufficient to
describe local spread.

The spotting process is described by the birth-jump term in Equation (1). The kernel S now
has the meaning of a spotting kernel [28,29], i.e. S(x, y, u(x, t))�x is the probability that a fire
at location y creates a spot fire in [x, x + �x] during the time interval [t, t + �t]. Implicit in this
definition is the assumption that spotting is instantaneous, i.e. the flight time of burning firebrands
is short (minutes) compared to the overall fire progression (hours or days). In [28], it is shown
how the model can be extended if the flight time, or the time to crowning, needs to be accounted
for. This leads to a time delay in the spotting term. The spotting kernel S depends on the expected
fire probability u(x, t) at the landing site x. When a fire is already burning at x, then spotting will
not much increase the fire probability. In [28], physical principles have been used to find explicit
forms for the spotting kernel S. We present some of them with our numerical simulations later.

The last term in Equation (1) is used to describe combustion and extinction. At this point, we
need to introduce a new variable v(x, t) for the total fuel loading density (a measure of how much
fuel is available for combustion). Our first forest fire spread model for a fire front that advances
in the x direction is given by

ut = Duxx +
∫ ∞

−∞
S(x, y, u(x, t))u(y, t) dy + γ c̃(u, v)v − δ(u)u,

vt = −c̃(u, v)v.

(37)

The term c̃(u, v) is the combustion rate and the factor γ converts fuel into fire probability.
An important case arises if we assume that fuel consumption is relatively slow such that v ≈

const. Then, system (37) reduces to

ut = Duxx +
∫ ∞

−∞
S(x, y, u(x, t))u(y, t) dy + c(u)u − δ(u)u, (38)

with c = γ c̃. When the spotting kernel S is symmetric, we call Equation (38) as the no-wind
spotting equation.
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Journal of Biological Dynamics 17

If the wind is blowing in the x direction, then we can assume that burning embers fly downwind
and spotting occurs in the positive x direction only. In this case, the spotting kernel S(x, y, u) will
only depend on burning locations y that are to the left of x, resulting in

ut = Duxx +
∫ x

−∞
S(x, y, u(x, t))u(y, t) dy + c(u)u − δ(u)u. (39)

We call Equation (39) as the constant-wind spotting equation.

4.3. Critical domain size and invasion speed

In this section, we use the theory developed in Section 3 to estimate the critical domain size and
the minimal invasion speed for the spotting models and to determine their dependence on the
spotting kernel S. We do this in two steps. In Section 4.3.1, we consider the no-wind spotting
equation (38). In Section 4.3.2, we consider the constant-wind spotting equation (39). In this case,
the integral term is no longer symmetric, and an additional drift term arises. We show numerical
simulations to support the theoretical results; as in Section 3, we use FlexPDE to generate our
numerical results [32].

For the numerical simulations, we choose a logistic birth term c(u)u = μu(1 − u/C), with
constant per-capita heat loss δ = d > 0. These and other forms of the combustion and heat-loss
terms have been analysed in [28], where some models could be derived from regression analysis
of field data (see, e.g. [12]). Our choice above is a typical representation of these models. It is a
goal of future research to determine quantitatively more accurate functional forms for c(u)u and
δ(u)u, in the context of models (38) and (40).

4.3.1. No wind case

In this section, we consider the no-wind spotting Equation (38) and assume that the spotting
kernel S is symmetric with zero- and second-moments given as

σ(x, u) =
∫ ∞

−∞
S(x, y, u) dy, ds(x, u) =

∫ ∞

−∞

(y − x)2

2
S(x, y, u) dy.

We assume that the medium is homogeneous, such that the moments of S are the same at each
location, and we assume that the spotting intensity σ is constant, i.e.

σ = const. ds = ds(u).

Using the moment expansion from Section 3, we obtain the following parabolic equation to
second order:

ut = ((D + ds(u))u)xx + (σ + c(u) − δ(u))u. (40)

This equation is of the form of Equation (17), and so we can directly apply our general results
for the critical domain size Equation (24) and for the minimal invasion speed Equation (34).

Lemma 4.1 Assume that σ = const., and ds(u) satisfies d ′
s(u)u + D + ds(u) > 0 and that

f (u) = (σ + c(u) − δ(u))u is monostable. Then, the critical domain size is given by

Lcrit = π

√
D + ds(0)

σ + c(0) − δ(0)
(41)

and the minimum invasion speed is

c∗ = 2
√

(D + ds(0))(σ + c(0) − δ(0)). (42)
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18 T. Hillen et al.

Figure 3. Illustration of the critical domain size problem for Equation (40), with D = 1, μ = 0.5, C = 1, σ = 1, and
l = 0.5, for which Lcrit = 3.2. Starting from the initial condition given in Equation (33), numerical simulations are shown
for L = 2 (left) and L = 4 (right). In the left image, the time shots for t = 0, 0.5, 1, 1.5, and 2 show a decaying solution;
in the right image, time shots indicate a growing solution.

The two spotting parameters are the spotting intensity or spotting rate σ and the spotting
spread (or variance) ds. We observe that a larger spotting rate σ reduces the critical domain size.
That is, a fire which shows more spotting can be sustained in a smaller environment. At the
same time, a larger spotting spread at 0, ds(0), increases the critical domain size, as one would
expect intuitively. Further, we observe that a larger spotting rate σ and a larger spotting spread
ds(0) both increase the minimum invasion speed. Based on our model, spotting thus increases
the invasion speed of a wildfire front.

For numerical illustration, we consider the example of a homogeneous environment, where the
spotting kernel is both independent of the density u and symmetric. In reality, all spotting kernels
S have compact support, since there is a finite time-horizon beyond which embers have already
burned out before landing, and no spot fires result. The specific example used below is a sym-
metric uniform kernel S = S1(−l, l)(y), where S1 is σ/2l when y ∈ [−l, l] and zero otherwise;
notice that this kernel is not necessarily normalized.

To validate our critical domain size result ((Equation (41)), we compute the second moment ds

of the uniform kernel. Since the kernel does not depend on space, we can determine the second
moment by integrating about 0. In terms of the parameter l, which measures the spatial extent of
the spotting effect, we find

ds =
∫ l

−l

σ

2l

y2

2
dy = σ l2

6
. (43)

In Figure 3, we show the solutions of Equation (40) with homogeneous Dirichlet boundary con-
ditions on [0, L] with D = 1, μ = 0.5, C = 1, σ = 1, and l = 0.5. Employing the preceding
expression for ds in the critical domain size formula (41), we expect the critical domain size to
be approximately Lcrit = 3.2. This result is confirmed in Figure 3, where we show both a sub-
critical case for the domain size (L = 2.0) as well as a supercritical case (L = 4.0). As expected,
for the sinusoidal initial conditions given in Equation (33), we observe a decaying solution when
L = 2.0, and a growing solution when L = 4.0. We tested many more parameter values (not
shown), which all confirmed the theoretical formula (41).

Next, we validate the travelling wave spreading speed formula (42). We again use parameter
values D = 1, μ = 0.5, C = 1, and σ = 1, and choose a symmetric uniform spotting kernel
with parameter l = 0.5. Starting from a half-Gaussian initial condition of the form (36), once
the solution has reached its equilibrium shape and rate of spread, we keep track of the level set
{u(x, t) = 0.3} := xf (t) over time. By comparing xf (t) at two values t1 < t2, we can approximate
the spreading speed by the difference (xf (t2) − xf (t1))/(t2 − t1). Again we checked the validity
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Figure 4. Illustration of the travelling wave problem for Equation (40) without wind (left) and Equation (45) with wind
(right). (Left) Travelling wave profile for Equation (40) at times t = 4, 8, 12, 16, and 20, from left to right. Parameter
values are D = 1, μ = 0.5, C = 1, and σ = 1; the spotting kernel is symmetric and uniform with parameter l = 0.5,
and the domain length is L = 50. The asymptotic spreading speed is c∗ ≈ 2.04. (Right) Travelling wave profile for
Equation (45) at times t = 4, 8, 12, 16, and 20, from left to right. Parameter values are D = 1, μ = 0.5, C = 1, and
σ = 1; the spotting kernel is one-sided and uniform with parameter l = 0.5, and the domain length is L = 60. The
asymptotic spreading speed is c∗ ≈ 2.54, which is clearly faster than the no-wind case illustrated on the left, where we
have employed identical parameters, but a symmetric uniform spotting kernel.

of Equation (42) for a variety of parameter choices (not shown). For our choice of parameters, we
expect a speed of c∗ ≈ 2.04. This speed is confirmed in Figure 4 (left), where we show snapshots
in time of our solution over a spatial domain of (unitless) length 50.

4.3.2. Constant-wind case

In this section, we consider the constant-wind spotting equation (Equation (39)). The integral no
longer is symmetric, and we need to adapt the definitions of our moments accordingly:

σ(x, u) :=
∫ x

−∞
S(x, y, u) dy,

ν(x, u) := −
∫ x

−∞
(y − x)S(x, y, u) dy,

ds(x, u) :=
∫ x

−∞

(y − x)2

2
S(x, y, u) dy.

For convenience, we introduce a minus sign for the first moment, such that positive ν leads to
drift in the positive x direction. Even if we assume that the spotting kernel is identical at each
location, these moments still depend on x, since the integral boundary depends on x. However,
if S has compact support, as is often the case, and if x is large enough, then the moments are
constant. Hence, we assume that S has compact support and x is large enough such that [−∞, x]
covers the support of S. This assumption implies that we cannot apply our theory from Section 3
to determine the critical domain size (since small x are considered). But we can use it for the
invasion speed, since large x are of interest. The first moment ν describes the influence of the
wind. It has dimensions of a velocity, but it is not the wind velocity; rather, it describes the net
drift on burning embers due to flight in wind. We assume this net drift is constant.

Using this assumption combined with the previous assumptions, we consider

σ = const., ν = const., ds = ds(u). (44)
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20 T. Hillen et al.

In this case, Equation (40) becomes

ut + (νu)x = ((D + ds(u))u)xx + (σ + c(u) − δ(u))u. (45)

We change to moving coordinates U(x, t) := u(x − νt, t) and obtain

Ut = ((D + ds(U))U)xx + (σ + c(U) − δ(U))U , (46)

which is identical to Equation (40). The results from Lemma 4.1 apply to U(x, t). If we transform
back to u(x, t), we obtain the following result:

Lemma 4.2 Assume S has compact support and x is larger than the support of S. Fur-
ther assume that σ = const., ν = const., and ds(u) satisfies d ′

s(u)u + D + ds(u) > 0 and that
f (u) = (σ + c(u) − δ(u))u is monostable. Then, the minimum invasion speed is

c∗ = 2
√

(D + ds(0))(σ + c(0) − δ(0)) + ν. (47)

To illustrate the wave formula (47) numerically, we again assume that spread occurs in a
homogeneous medium, and choose parameters D = 1, μ = 0.5, and C = 1. We will again work
with a uniform spotting kernel, which we will write S = S2(−l, 0)(y), where l is a parameter
which measures the extent upwind from which firebrands may reach us at location y. To be
precise, S2(−l, 0)(y) = γ /l for y ∈ [−l, 0] and zero otherwise. Before simulating Equation (39),
we compute the moments of S as

σ =
∫ 0

−l

γ

l
dy = γ ,

ν =
∫ 0

−l
−γ y

l
dy = γ l

2
,

ds =
∫ 0

−l

γ y2

2l
dy = γ l2

6
.

We assume here γ = 1 so that σ = 1, as in the no-wind case from the preceding subsection, and
again choose l = 0.5.

According to Equation (47), we expect the asymptotic spreading speed to increase from 2.04
to c∗ ≈ 2.54. This speed is confirmed in Figure 4 (right), where we see that the solution wave
travels with the appropriately increased speed relative to the waves displayed in Figure 4 (left).
Our spreading speed formula was validated for a variety of other model parameters (results not
shown).

5. Discussion

Birth-jump processes apply to situations in which growth and spatial spread are coupled, for
example when newly generated individuals undergo immediate translocation. Birth-jump models
thus are a distinct class of models, separate from standard reaction–diffusion models (for which
growth and spatial spread are assumed to be independent processes).

Birth-jump models take the form of nonlinear integro-differential equations. In the case
where the integral terms are linear, a sophisticated theory has been developed, which includes
existence and uniqueness of solutions, stabilities, and travelling waves [14,19,20,27,40].
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The theory for nonlinear birth-jump processes is just beginning and first theoretical results
are in preparation [7].

In this paper, we have presented two derivations of the general birth-jump integro-differential
equation. Further, we have shown that, when the redistribution kernels K and S are highly
concentrated, the integro-differential equation can be approximated by a generalized reaction–
diffusion equation (Equation (17)). It is important to note that in this generalized reaction–
diffusion equation, the proliferation rate contributes to both the diffusion term and the reaction
term. We have fully solved the critical domain size problem and the minimal wave speed prob-
lem for the resulting diffusion limit, obtaining expressions for the critical domain size (Equation
(24)), and the minimal wave speed (Equation ((34)).

One interesting theoretical result presented here is the condition specified in Assumption (A1),
namely that the rates α and β must be of a certain admissible form to ensure that the generalized
reaction–diffusion equation is well defined. This might not be always the case. For example, for
α = 0, it is easily conceivable that β(u) is a decreasing function of the population density, and
hence Assumption (A1) might be violated. In that case, we have to include the next higher order
approximation, which is a fourth-order term in Equation (14). If we keep this term, then (for
α = 0) we obtain instead of Equation (23) the limit equation

ut = M2(β(u)u)xx + M4(β(u)u)xxxx + (M0β(u) − δ(u))u.

The fourth-order term regularizes if the coefficient in front of uxxxx is negative. Here, the leading
order coefficient is (β ′(u)u + β(u))uxxxx. Fourth-order terms are well known from the study of
Cahn–Hilliard problems [3]: if the coefficient is negative, then this term regularizes and even
controls the negative diffusion term. It is interesting to note that the second- and fourth-order
terms have the same coefficient β ′u + β. The condition for a positive diffusion coefficient is
equivalent to the condition for a positive fourth-order coefficient. This means that for small
values of u, the diffusion is proper and the fourth-order term is not needed, while for larger
values of u, i.e. when β ′u + β < 0, the fourth-order term regularizes and dominates the second-
order term. It is an interesting open mathematical question to determine whether it is possible
to construct a well-defined equation which only uses the fourth-order term in cases where the
diffusion term has the wrong sign. If this were established, then Assumption (A1) could be
relaxed.

Birth-jump processes show a great potential for mathematical modelling in biology, ecology,
and medicine. In this paper, we have used the birth-jump approach to study applications to wild-
fire spotting. We have developed two equations to describe the spread of a forest fire by spotting,
namely a no-wind spotting equation and a constant-wind spotting equation. We have shown how
spotting-driven fronts may travel faster than corresponding fronts which spread only locally by
diffusion. In [28], more realistic models for kinetics and the spotting distribution are explored in
detail. In [29], a mathematical framework for predicting spot fire distributions based on phys-
ical properties of flying and burning particles is developed. Future work includes exploring
applications of the spotting distribution to wildfire breaching and rate of spread calculations.

In the context of ecology, we note a connection to the concept of the IFD of species. The
IFD was introduced by Fretwell and Lucas in 1970 [13] to describe the observation that ‘Species
distribute themselves such that fitness of each individual is the same’. It is quite normal to find
many individuals at location of food availability and shelter, and fewer in bare areas. The fit-
ness is a measure of reproductive success, which, in turn, correlates to availability of food and
shelter. There is often a monotonic relationship between species distribution and fitness. If, for
example, m(x) denotes the fitness at location x and ū(x) denotes the steady-state distribution of
the population, then the IFD assumes that these are proportional [9,23], i.e.

ū(x) ∼ m(x). (48)
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22 T. Hillen et al.

Our birth-jump process very naturally leads to the IFD. We assume that the two integral kernels
K and S are identical, and that they depend only on the target location x, i.e.

K(x, y, u) = S(x, y, u) = K(x),

where we keep the symbol K for convenience. We assume that K(x) is proportional to the fitness
m(x), i.e. K(x) = νm(x), meaning that individuals prefer to settle at favourable locations. At
steady state, the birth-jump model (1) becomes

(α(ū(x)) + δ(ū(x)))ū(x) = K(x)
∫

�

(α(ū(y)) + β(ū(y)))ū(y) dy. (49)

The integral term on the right-hand side is independent of location x, and we call this constant
J . If we further assume that the shedding rate α and the death rate δ are non-negative constants
with α + δ > 0, then the steady state becomes

ū(x) = νJ

α + δ
m(x),

and the population satisfies the IFD.
More generally, we can assume that α(u) and δ(u) are monotonic and non-decreasing in u.

Then, also h(u) = (α(u) + δ(u))u is monotonically increasing and has a monotonic inverse h−1.
The steady state ū is then a monotonic transformation of the fitness:

ū(x) = h−1(νJm(x)).

Such a monotonic relationship might be a useful extension for the IFD, since it is less restrictive
as the linear dependency. We suggest to call it a weak IFD, whereby it remains to be seen if this
notion is useful in an ecological context.

It is noteworthy to observe that the IFD arises from the assumption that the redistribution
depends on the target site only. A similar observation arises in [33], where a systematic study
of different random walks is presented. The authors study random walks where the transitional
probabilities depend on the target site, the release site, or some intermediate points. In their
context, the IFD is relevant for random walks that depend on the target site, not on the point of
release, similar to what we describe here.

The use of birth-jump processes also promises to be applicable in cancer modelling. In [17],
Hillen et al. used a birth-jump process to describe the evolution of two cancer cell populations,
namely cancer stem cells (cells with unlimited proliferative potential) and their non-stem cell
descendants. They were able to show that the model supports the tumour growth paradox, which
refers to the observation that a tumour, after incomplete treatment, may regrow to a larger size
than it was before treatment.

Reaction–diffusion equations have shown their usefulness in many applications [30] and a rich
qualitative theory is available [36]. However, they have limitations. Birth-jump processes allow
us to access new areas of modelling, and we expect that they provide an equally rich menu for
analysis and application.

Acknowledgements
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Notes

1. The development of the model is based on [6], and the derivations and the diffusion limit were developed in the
Diplom thesis of BG [16] under the supervision of TH and GdeV.

2. We summarize some basic features of wildfires based on the textbooks of Johnson and Miyanishi [21], Pyne
et al. [34], and Quintiere [35].
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