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We study a transport model for populations whose individuals move according to a velocity

jump process and stop moving in areas which provide shelter or food. This model has direct

applications in ecology (e.g. homeranges, territoriality, stream ecosystems, travelling waves)

or cellular biology (e.g. movement of bacteria or movement of proteins in the cell nucleus).

In this paper we consider a general model from a mathematical point of view. This provides

general insight into the features of these models, which in turn is useful in the modelling

process. We consider a singular perturbation expansion and show that the leading order term

of the outer solution satisfies a reaction-advection-diffusion equation. The advective term

describes taxis toward homeranges or toward regions of shelter. The reaction terms are given

by “effective” birth and death rates. Within this framework, the parameters of the reaction-

advection-diffusion model (like mobility, drift, birth or death rates) are directly related to the

individual movement behaviour of the species at hand (like velocity, frequency of directional

changes, response to spatial in-homogeneities, death, or reproduction). We prove that in a

homogeneous environment the diffusion limit approximates the solution of the resting-phase

transport model to second order in the perturbation parameter.

1 Introduction

A widely used class of mathematical models to describe spatial spread of growing

populations are reaction-diffusion models (e.g. see Murray [18] or Britton [4]). They are

based on an uncorrelated random walk (Brownian motion) and they assume instantaneous

birth, neglecting resting periods due to birth events.

The assumption of uncorrelated random walk has been extended to models which are

based on correlated random walk and which lead to transport equations (e.g. Stroock [23],

Alt [1], Othmer et al. [19], Hadeler [11], Dickinson [10], Hillen & Othmer [13, 20]). The

parameters for transport models are mean speed, mean turning rates and turning-angle

distribution: parameters which can be measured from the movement paths of individuals.

For that reason the transport models are more closely related to the natural process

than the diffusion-based models. In fact, using appropriate scaling analysis, the transport

model leads to reaction-diffusion models. In particular, in Hillen & Othmer [13], a theory

has been introduced to obtain the parabolic limit of a transport model in a general and

transparent way.

In this paper, we extend the modelling with transport equations to include periods of

resting where the individuals do not move. The reasons are manifold and range from

shelter, den sites, or nests, to hunting spots, or feeding grounds. We give examples below.
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614 T. Hillen

Since the decision when to move and when to rest is an individual one, it is natural to

study this dynamic in the framework of transport models (rather than diffusion models).

In Othmer & Hillen [20] a resting-phase transport model with constant stopping rates

was already formulated. In this paper we extend that model to include spatially variable

stopping rates (inhomogeneous environment) and we give proofs for the various results

(which are not contained in Othmer & Hillen [20]).

The model presented here combines a transport model for correlated random walk

with resting periods on preferred locations. Using a singular perturbation analysis it is

shown that the long time asymptotics (i.e. outer solution) are described by a reaction-

advection-diffusion model. It appears that the diffusion coefficient is proportional to the

mean fraction of the population which is moving and the birth term is proportional to

the mean fraction of resting particles. The spatial non-homogeneities lead to a drift term

toward preferred areas.

Typically, reproductions and deaths occur on a slower time scale than the random

walk. The ratio of these two corresponding time scales defines a small parameter (ε). A

singular perturbation analysis leads to reaction-advection-diffusion equations (parabolic

limit). We show that the inner solution relaxes to a homogeneous distribution and that the

outer expansion is well described by a reaction-advection-diffusion model with effective

birth and death rates. We match inner and outer expansions and we prove that, in the

spatial homogeneous case with linear birth and death rates, the long time asymptotics are

approximated by the outer expansion to second order in the perturbation parameter. We

discuss various special cases, which include small perturbations to homogeneous initial

conditions, the case of large or small fraction of resting particles and we compare the

results to a resting-phase diffusion model.

1.1 Applications

Models for movement including resting-phases are relevant in ecology and also in cellular

biology:

Recent studies of stream ecosystems use reaction-diffusion models to investigate the drift

paradox [17, 21]. The drift paradox occurs for aquatic insects, like the Baetidis mayflies

and stoneflies, who occur as persistent populations in streams. The larvae are relatively

immobile on the bottom of the stream (resting), while the adults are able to swim and

as they rise from the bottom they are transported downstream. Although individuals are

drained from that location, the population as a whole remains persistent (drift paradox).

The inclusion of moving-resting dynamics, as in Pachepsky et al. [21] sheds a new light

on possible resolutions of the drift paradox.

The dynamics of oriented movement (searching) and resting is also important to

understand the survival of endangered species in fragmented habitats. In Carroll &

Lamberson [6] the territoriality of spotted owls was studied. In their model the juvenile

owls are assumed to search for suitable territories (moving), while the adults have already

occupied a suitable territory (resting). Carroll and Lamberson study a compartmental

model of habitat clusters, which does not include any spatial information. To include the

given landscape in a model, a transport model, like the one studied here, would be a

natural starting point.
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Another application of a similar nature occurs for modelling the formation of hom-

eranges. Homeranges provide shelter and include feeding grounds. In many cases they

include a den site for resting and reproduction. Homeranges for wolves have been studied

by Briscoe et al. [3] without inclusion of resting phases. There the formation of hom-

eranges was triggered by scent marking. It would be interesting to see the influence of

resting-moving dynamics on the home range formation.

Lewis & Schmitz [16] and Hadeler & Lewis [12] study the effect of resting-moving

dynamics on the invasion of microbes. Certain microbes reproduce while they are sta-

tionary and only when they are not reproducing they can be spread spatially by wind or

by water. In both papers a resting-phase Fisher model is investigated, which divides the

whole population into a moving part, which does not reproduce, and a resting part, which

only can reproduce. The model of Lewis et al. is a special case of the model studied here.

In collaboration with J. Müller, we are currently investigating homeranges of bats.

The movement of individual bats shows interesting interactions of moving and resting

dynamics. In detailed studies the movement path’s of ten individual bats has been recorded.

From this data set we plan to estimate mean speed, turning rates, turn-angle distributions

and spatially dependent stopping rates.

In collaboration with M. Lewis and J. M. Lee, we are currently working on an model

for prey-taxis. The predator stops movement at locations with high prey density. This

process in turn leads to prey-taxis in the parabolic limit [14].

A totally different application occurs for the movement of proteins in the cell nucleus. In

fluorescence-recovery-after-photobleaching experiments it was shown that certain proteins

in the cell nucleus show movement patterns which cannot be described by simple diffusion.

In Carrero et al. [5] a resting-phase diffusion model was used to successfully analyze the

fluorescence recovery curves. In addition, with use of this model it is possible to predict

the average number of bound (=resting) proteins. This information cannot be directly

determined in experiments.

Cosner & Lou [8] and Belgacem & Cosner [2] consider a reaction-diffusion model with

drift toward better environments. They study the benefit for populations which use this

strategy. In fact, their model is a special case of the parabolic limit equation derived here

(3.14). In Cosner et al., the modelling of the corresponding drift term is done ad hoc. The

asymptotic scaling analysis as done here relates the drift mechanism to individual move-

ment behaviour and it gives an a posteriori justification of the model used by Cosner et al.

1.2 The model

To model a population whose members are moving according to a correlated random walk

and which rest occasionally, we split the total population density N(t, x) into a density

p(t, x, v) of individuals moving with velocity v ∈ V and a density r(t, x) for particles resting

at x ∈ Ω. The velocity set V is assumed to be bounded with ω = |V | and symmetric of

the form that v ∈ V implies −v ∈ V . We study a model for (p, r) which is based on the

following assumptions:

(1) The pure movement process is a velocity jump process

pt + v · ∇p = −µp+ µ

∫
V

T (v, v′)p(., ., v′) dv′. (1.1)
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We assume that the kernel T (v, v′) satisfies the following basic assumptions (T1)–

(T4), which were first introduced in Hillen & Othmer [13]:

(T1) T (v, v′) � 0,
∫
V
T (v, v′) dv = 1, and

∫
V

∫
V
T 2(v, v′) dv′ dv < ∞.

(T2) There exist some u0 � 0 with u0 � 0, some integer N and a constant ρ > 0

such that for all (v, v′) ∈ V × V

u0(v) � TN(v′, v) � ρu0(v),

where the Nth iterate of T is

TN(v, v′) :=

∫
. . .

∫
T (v, w1)T (w1, w2) · · ·T (wN−1, v

′) dw1 . . . dwN−1.

(T3) We introduce an integral operator T by

Tp =

∫
V

T (v, v′)p(v′) dv

and we assume that ‖T‖〈1〉⊥ < 1, where 〈1〉⊥ denotes the orthogonal com-

plement of the subspace 〈1〉 ⊂ L2(V ) of functions constant in v.

(T4)
∫
V
T (v, v′) dv′ = 1.

(2) There is a spatially dependent rate α(x) > 0 such that individuals stop moving at

location x with that rate α(x).

(3) At rest particles give birth at a rate g(N) � 0 (g for ‘gain’).

(4) Individuals start moving with constant rate β > 0 and they choose a direction with

equal distribution on V .

(5) Death occurs for moving and resting particles at the same rate l(N) � 0. (l for

‘loss’).

We denote the turning operator as L := −µ(I − T) and Proposition 1.1 of Hillen &

Othmer [13] applies:

Proposition 1.1 Assume (T1)–(T4). Then

(1) 0 is a simple eigenvalue of L with eigenfunction φ(v) ≡ 1.

(2) There exists an orthogonal decomposition L2(V ) = 〈1〉 ⊕ 〈1〉⊥, and for all ψ ∈ 〈1〉⊥

we have ∫
ψLψ dv � −ν2‖ψ‖2

L2(V ), with ν2 ≡ µ
(
1 − ‖T‖〈1〉⊥

)
.

(3) Each eigenvalue λ� 0 satisfies −2µ < Re λ � −ν2 < 0, and there is no other positive

eigenfunction.

(4) ‖L‖L(L2(V ),L2(V )) � 2µ.
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(5) L restricted to 〈1〉⊥ ⊂ L2(V ) has a linear inverse F with norm

‖F‖L(〈1〉⊥ ,〈1〉⊥) �
1

ν2
.

The resting-phase transport model reads

pt + v · ∇p = Lp− α(x)p+
β

ω
r − l(N)p (1.2)

rt = α(x)

∫
V

p(., ., v) dv − βr + g(N)r − l(N)r, (1.3)

where the total particle density N is given by

N(t, x) =

∫
V

p(t, x, v) dv + r(t, x).

We assume compactly supported initial data on Ω = IRn, which are L2-integrable on

IRn × V . Then the solution will have compact support as long as it exists. Note that the

velocity v appears as a parameter in (1.2). Hence, no conditions on ∂V are required.

For later use we define the pure kinetic birth-death process without any movement by

u̇ = f(u) := g(u)u− l(u)u.

We study the parabolic limit of (1.2), (1.3) in the framework of singular perturbation

theory and matching asymptotic expansions. For that purpose we identify appropriate

scalings of space and time (parabolic scaling). As pointed out in Hillen & Othmer [13],

these scalings occur quite naturally for biological populations. For a given small quantity

ε > 0 we consider fast and slow time scales, t and τ = ε2t, respectively, on microscopic and

macroscopic space scales x and ξ = εx, respectively. In singular perturbation theory one

splits the dynamics into two parts. The first part (inner solution) describes the relaxation

of the initial data on the fast time scale t. The outer solution describes the long time

behaviour on the slow time scale τ. The initial data for the outer solution are not directly

specified by the initial data of the original problem (1.2), (1.3). This can be achieved by

matching inner and outer expansions in an intermediate region. Roughly speaking, the

asymptotics of the inner solution for t → ∞ defines the initial condition for the outer

solution at τ = 0.

We begin with local and global existence of solutions to (1.2), (1.3). Then we study

the outer solution (p̃, r̃) which leads to the diffusion limit equation (3.14). This gives

approximations of second order in the perturbation parameter ε (Theorem 5.5). After

that, we study the inner solution and we illustrate that both parts match correctly.

2 Assumptions, existence, positivity

Here we collect a set of basic assumptions which we use throughout the paper.

(A1) f ∈ C1(IR), g, l ∈ C1
b (IR) and l(N∗) � g(N∗) for some N∗ > 0.

(A2) The initial data

p(0, x, v) = ϕ(x, v) � 0, r(0, x) = ψ(x) � 0

https://doi.org/10.1017/S0956792503005291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792503005291


618 T. Hillen

are spatially compact supported with
∫
ϕ(x, v) dv + ψ(x) � N∗, ϕ(x, .) ∈ L2(V ) for

all x ∈ IRn and ϕ(., v) ∈ C0,σ(IRn) for almost all v ∈ V and some 0 < σ < 1.

(A3) α(x) > 0, and α ∈ H1(IRn) ∩W 1,∞(IRn).

(A4) V = sSn−1 or V = Bs(0) for some s > 0, and ω = |V |.
(A5) T > 0 is fixed.

The assumption (A5) is not important for our existence result. But the assumption will

be used for the approximation estimates later. Hence we choose to state it here together

with the other assumptions.

First we show global existence:

Theorem 2.1 Assume (T1)–(T4) and (A1)–(A4). For each pair of initial data ϕ,ψ with

ϕ ∈ D(Φ) and ψ ∈ L2(IRn) with ϕ(., v), ψ ∈ L1(IRn) there is a unique solution (p, r) of (1.2),

(1.3) with

p ∈ C1([0,∞), L2(IRn × V )) ∩ C0([0,∞), D(Φ)), r ∈ C1([0,∞), L2(IRn))

and p(0, .) = ϕ and r(0) = ψ, where Φ is the shift operator as defined below.

Proof We collect a number of arguments and apply standart semigroup theory:

(1) The shift operator Φ = −v · ∇ with domain

D(Φ) = {ϕ ∈ L2(IRn × V ) : ϕ(., v) ∈ H1(IRn)}

generates a strongly continuous, positive, unitary group of translations on L2(IRn ×
V ) (see also Dautray & Lions [9, Ch XXI, Sect. 2, Prop 1]).

(2) The nonlinearities are of the form g(ϕ)ψ, l(ϕ)ψ with ϕ,ψ ∈ L2(IRn × V ) with

bounded and differentiable rates g and l. Hence g(ϕ)ψ, l(ϕ)ψ ∈ L2(IRn × V ).

Moreover, the mappings ((ϕ,ψ) �→ g(ϕ)ψ) and ((ϕ,ψ) �→ l(ϕ)ψ) are globally

Lipschitz continuous on both L2(IRn × V )2 and H1(IRn × V )2.

(3) With α given as in (A3) also the mappings p �→ α(x)p, and p �→ α(x)
∫
p dv are

Lipschitz continuous on both spaces L2(IRn × V )2 and H1(IRn × V )2.

(4) The turning operator L is linear and compact.

Hence local and global existence of solutions to (1.2, 1.3) follows from standard Perron-

iteration and perturbation arguments (e.g. see Taylor [24] or Pazy [22]). �

System (1.2), (1.3) also preserves positivity:

Lemma 2.2 Under the assumptions of the previous Theorem we have

p(t, x, v) � 0 and r(t, x) � 0.

Proof If we assume that the solution (p(t), r(t)) becomes negative somewhere then there

is a first time t0 where either p(t0) = 0, or r(t0) = 0, or both.
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In the first case, p(t0) = 0, we find for t = t0 from (1.2) that

pt + v · ∇p =
β

ω
r � 0.

In the second case, r(t0) = 0, we find from (1.3) that at t = t0

rt = α(x)

∫
V

p(., ., v) dv � 0.

Note that Φ = −v · ∇ generates a positive group of translations. Hence in both cases p(t),

or r(t) cannot decay below 0. �

3 The outer expansion

3.1 Scaling

In Hillen & Othmer [13] we introduced the scaling of

τ = ε2t, ξ = εx,

for small 0 < ε � 1.

We assume that there is a large number of individual directional changes per birth or

death event. This means that birth and death events occur on a much slower time scale

than the random walk process. As t denotes the fast time scale (as for the random walk)

and τ denotes the slow time scale we assume that the pure kinetics is described by

uτ = f̃(u),

or equivalently

ut = ε2f̃(u).

We identify as follows:

f(u) = ε2f̃(u) = ε2(g̃(u)u− l̃(u)u).

System (1.2), (1.3) in the new variables (τ, ξ) reads

ε2p̃τ + εv · ∇ξp̃ = Lp̃− α̃p̃+
β

ω
r̃ − ε2 l̃(Ñ)p̃ (3.1)

ε2r̃τ = α̃

∫
p̃(., ., v) dv − βr̃ + ε2g̃(Ñ)r̃ − ε2 l̃(Ñ)r̃, (3.2)

where p̃(τ, ξ, v) = p(τ/ε2, ξ/ε, v), r̃(τ, ξ) = r(τ/ε2, ξ/ε), and α̃(ξ) = α(ξ/ε). We consider series

expansions in ε up to order k > 2:

p̃(τ, ξ, v) :=

k∑
j=0

εjpj(τ, ξ, v), r̃(τ, ξ) :=

k∑
j=0

εjrj(τ, ξ)

Ñ(τ, ξ) :=

k∑
j=0

εjNj(τ, ξ), Nj(τ, ξ) = rj(τ, ξ) +

∫
V

pj(τ, ξ, v) dv, 0 � j � k.
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We expand the nonlinearities g̃, l̃ according to this representation:

g̃(Ñ) = g̃(N0) + g̃′(N0)


 k∑

j=1

εjNj


 + l.o.t.

l̃(Ñ) = l̃(N0) + l̃′(N0)


 k∑

j=1

εjNj


 + l.o.t..

3.2 Formal derivation of the diffusion limit

We introduce all of the above expansions into system (3.1), (3.2) and collect orders of ε.

During this section we neglect the subscript ξ at the ∇-operator:

ε0 :

{
0 = Lp0 − α̃p0 + β

ω
r0

0 = α̃
∫
p0 dv − βr0

(3.3)

ε1 :

{
v · ∇p0 = Lp1 − α̃p1 + β

ω
r1

0 = α̃
∫
p1 dv − βr1

(3.4)

ε2 :

{
p0,τ + v · ∇p1 = Lp2 − α̃p2 + β

ω
r2 − l̃(N0)p0

r0,τ = α̃
∫
p2 dv − βr2 + g̃(N0)r0 − l̃(N0)r0.

(3.5)

From (3.3) it follows that

r0 =
α̃

β

∫
p0 dv.

Hence the first equation of (3.3) reads

0 = Lp0 − α̃p0 +
α̃

ω

∫
p0 dv =: Lαp0, (3.6)

where the operator Lα(ξ) is given for α̃(ξ) > 0 and ψ ∈ L2(V ) by

Lα(ξ)[ψ(v)] = −(µ+ α̃(ξ))ψ(v)

+ (µ+ α̃(ξ))

∫
V

(
µ

µ+ α̃(ξ)
T (v, v′) +

α̃(ξ)

(µ+ α̃(ξ))ω

)
ψ(v′) dv′. (3.7)

We denote the modified turning kernel by

Tα(ξ, v, v
′) :=

µ

µ+ α̃(ξ)
T (v, v′) +

α̃(ξ)

(µ+ α̃(ξ))ω
(3.8)

and Tα is the integral operator defined by Tα. For α =constant the formula for Lα and

Tα were already given in Othmer & Hillen [20].

Lemma 3.1 For each ξ ∈ IRn the kernel Tα satisfies conditions (T1)–(T4).

Proof Since T is assumed to satisfy (T1)–(T4) it satisfies T � 0. Hence, for α̃(ξ) > 0 we

have Tα(ξ, v, v
′) > 0 for all (v, v′) ∈ V 2. Then (T2) and the first condition of (T1) follow.
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Integration of the kernel gives:

∫
Tα(ξ, v, v

′) dv =
µ

µ+ α̃(ξ)
+

α̃(ξ)

µ+ α̃(ξ)
= 1 =

∫
Tα(ξ, v, v

′) dv′.

Hence (T4) and the second condition in (T1) are satisfied. Moreover

∫ ∫
T 2
α (ξ, v, v′) dv dv′ =

(
µ2

∫ ∫
T 2(v, v′) dv dv′ + 2µα̃(ξ) + α̃(ξ)2

)
(µ+ α̃(ξ))−2 < ∞.

Then (T1) is satisfied as well and it remains to check (T3):

‖Tα‖〈1〉⊥ = sup
ψ∈L2(V ),‖ψ‖=1,

∫
ψ dv=0

∣∣∣∣
∫

µ

µ+ α̃(ξ)
T (v, v′)ψ(v′) dv′ +

α̃(ξ)

(µ+ α̃(ξ))ω

∫
ψ(v) dv

∣∣∣∣
� ‖T‖〈1〉⊥ < 1.

�

Hence Proposition 1.1 applies for Lα(ξ), and we have the following properties.

Corollary 3.2 Assume (T1)–(T4) for T (v, v′) and let Lα(ξ) be defined by (3.7) for α̃ > 0.

Then for each ξ ∈ IRn

(1) 0 is a simple eigenvalue of Lα(ξ) and the corresponding eigenfunction is φ(v) ≡ 1.

(2) There is a decomposition L2(V ) = 〈1〉 ⊕ 〈1〉⊥ and for all ψ ∈ 〈1〉⊥

∫
ψLα(ξ)ψ dv � −να(ξ)‖ψ‖2

L2(V ), where να(ξ) ≡ (µ+α̃(ξ))(1−‖Tα‖〈1〉⊥). (3.9)

(3) All nonzero eigenvalues λ satisfy −2(µ + α̃(ξ)) < Re λ � −να(ξ) < 0, and to within

scalar multiples there is no other positive eigenfunction.

(4) ‖Lα(ξ)‖L(L2(V ),L2(V )) � 2(µ+ α̃(ξ)).

(5) Lα(ξ) restricted to 〈1〉⊥ ⊂ L2(V ) has a linear inverse Fα(ξ) with norm

‖Fα(ξ)‖L(〈1〉⊥ ,〈1〉⊥) �
1

να(ξ)
. (3.10)

Now we go back to consider the εj-systems for j = 0, 1, 2.

ε0 : With the above Corollary it follows from (3.6) that p0 = p0(τ, ξ) does not depend on

velocity v ∈ V . Then

r0 =
α̃

β

∫
p0 dv =

α̃ω

β
p0. (3.11)

ε1 : From the second equation of (3.4) it follows that r1 = α̃/β
∫
p1 dv, hence in the first

equation of (3.4) the operator Lα appears again:

v · ∇p0 = Lαp1.
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This equation is solvable since

∫
(v · ∇p0) dv =

∫
v dv · ∇p0 = 0.

Then

p1 = Fα(v · ∇p0), with Fα :=
(
Lα|〈1〉⊥

)−1
. (3.12)

Since Fα is one-to-one on 〈1〉⊥ we have
∫
p1 dv = 0 and then r1 = 0.

ε2 : From the second equation of (3.5) we obtain

β

ω
r2 =

1

ω

(
α̃

∫
p2 dv + g̃0r0 − l̃0r0 − r0,τ

)
,

where for now we write g̃0 := g̃(N0) and similarly for l̃0. With (3.11) we get

β

ω
r2 =

α̃

ω

∫
p2 dv +

α̃

β
(g̃0p0 − l̃0p0 − p0,τ).

We introduce this expression into the first equation of (3.5):

p0,τ + v · ∇p1 = Lαp2 +
α̃

β
(g̃0 − l̃0)p0 − α̃

β
p0,τ − l̃0p0. (3.13)

The solvability condition with respect to Lα reads, with use of (3.12),

∫
V

(
1 +

α̃

β

)
p0,τ dv + ∇ ·

∫
V

vFαv dv∇p0 =
α̃

β
(g̃0 − l̃0)

∫
V

p0 dv − l̃0

∫
V

p0 dv.

Since p0 does not depend upon velocity v ∈ V this equation becomes

ω

(
1 +

α̃

β

)
p0,τ + ∇ ·

∫
V

vFαv dv · ∇p0 = g̃0
α̃

β
ωp0 − l̃0

(
1 +

α̃

β

)
ωp0.

Now g̃0 = g̃(N0) and

N0 = r0 + ωp0 =

(
1 +

α̃

β

)
ωp0.

Finally, we write the above equation as an equation for N0. Note that the ∇p0-term

produces an additional drift term, since α̃ depends on space ξ. The parabolic limit

equation reads

N0,τ = ∇
(
Dα,β(ξ)∇ N0 − Dα,β(ξ)

N0∇α̃(ξ)
β + α̃(ξ)

)
+

α̃(ξ)

α̃(ξ) + β
g̃(N0)N0 − l̃(N0)N0 (3.14)

with diffusion tensor

Dα,β(ξ) := − β

ω(α̃(ξ) + β)

∫
vFα(ξ)v dv. (3.15)

Remark 3.3 (1) Due to the non-homogeneous environment we obtain a taxis term in

direction of −∇α̃. The population moves toward regions of high stopping probability,
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which reflects shelter and safe environment near the den sites or homeranges. This

gives an a posteriori justification for a model studied by Cosner & Lou [8], who

directly assume taxis toward favorable environments.

(2) We obtain a birth rate reduced by a factor α̃(ξ)/(α̃(ξ) + β). This factor describes

the mean fraction of the population at a location ξ, which is at rest at any time.

(3) It turns out that, in general, we obtain non-isotropic diffusion. The diffusion tensor

is scaled by a factor β/(α̃(ξ) + β), which describes the mean proportion of moving

particles at location ξ. In § 6 we will discuss special cases for the diffusion tensor

Dα,β .

4 Inner expansion and matching

For the inner expansion we consider the original fast time scale t and the macroscopic

space scale ξ. Then p̂(t, ξ, v) = p(t, x/ε, v) and r̂(t, ξ) = r(t, x/ε) satisfy the initial value

problem

p̂t + εv · ∇p̂ = Lp̂− α̃p̂+ β
ω
r̂ − ε2 l̂(N̂)p̂

r̂t = α̃
∫
p̂ dv − βr̂ + ε2ĝ(N̂)r̂ − ε2 l̂(N̂)r̂

p̂(0, ξ, v) = ϕ(ξ/ε, v) r̂(0, ξ) = ψ(ξ/ε),

(4.1)

where N̂ =
∫
p̂ dv + r̂ and l̂(N̂) = l̃(Ñ(ε2t, ξ)) and ĝ(N̂) = g̃(Ñ(ε2t, ξ)).

Again, we study expansions in ε

p̂(t, ξ, v) :=

k∑
j=0

εj p̂j(t, ξ, v), r̂(t, ξ) :=

k∑
j=0

εj r̂j(t, ξ)

N̂(t, ξ), :=

k∑
j=0

εjN̂j(t, ξ), N̂j(t, ξ) = r̂j(t, ξ) +

∫
p̂j(t, ξ, v) dv, 0 � j � k,

and we collect orders of ε of order zero only:

ε0 :

{
p̂0,t = Lp̂0 − α̃p̂0 + β

ω
r̂0

r̂0,t = α̃
∫
p̂0 dv − βr̂0

. (4.2)

We show that the functional

E(p, r) :=
ω

2

∫
V

p2 dv + r

∫
V

p dv +
r2

2

is a Lyapunov function of the integro-differential system (4.2). Note that E is bounded

below by 0, since the solutions are non-negative (Lemma 2.2).

Theorem 4.1 For solutions (p̂0, r̂0) of (4.2) we have

d

dt
E(p̂0, r̂0) � −α̃ω

∫ (
p̂0 − 1

ω

∫
p̂0 dv

′
)2

dv.
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Proof

d

dt

ω

2

∫
p̂2

0 dv = ω

∫
p̂0Lp̂0 dv − ωα̃

∫
p̂2

0 dv + β

∫
p̂0 dv r̂0

� −α̃ω
∫
p̂2

0 dv + βr̂0

∫
p̂0 dv

d

dt

(
r̂0

∫
p̂0 dv

)
=

(
α̃

∫
p̂0 dv − βr̂0

) ∫
p̂0 dv + r̂0

(∫
Lp̂0 dv − α̃

∫
p̂0 dv +

β

ω

∫
r̂0 dv

)

= α̃

(∫
p̂0 dv

)2

− (α̃+ β)r̂0

∫
p̂0 dv + βr̂20 ,

d

dt

r20
2

= α̃r̂0

∫
p̂0 dv − βr̂20 .

From these inequalities it follows that

d

dt
E(p̂0, r̂0) � −ωα̃

∫
p̂2

0 dv + α̃

(∫
p̂0 dv

)2

= −α̃ω
∫ (

p̂0 − 1

ω

∫
p̂0 dv

′
)2

dv.

�

For now we abbreviate the mean value by

φ0(t, ξ) :=

∫
p̂0(t, ξ, v

′) dv′.

Since E is a Lyapunov function we have

lim
t→∞

∥∥∥∥p̂0(t, ξ, .) − 1

ω
φ0(t, ξ)

∥∥∥∥
2

= 0.

Hence in the limit of τ → ∞ the function p̂0 does not depend on v. Then Lp̂0 = 0 and

the asymptotic behaviour of (4.2) is determined by the system

φ0,t = −α̃φ0 + βr̂0
(4.3)

r̂0,t = α̃φ0 − βr̂0.

The mass N̂(ξ) = φ0(ξ) + r̂0(ξ) is preserved for all ξ ∈ IRn and the steady state (βN̂/(α̃+

β), α̃N̂/(α̃+ β)) is asymptotically stable. The initial data

p(0, ξ, v) = ϕ(ξ, v), r(0, ξ) = ψ(ξ)

determines N̂ as

N̂(ξ) =

∫
ϕ(ξ, v) dv + ψ(ξ).
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Hence the limit of the inner solution (p̂0, r̂0) for t → ∞ is given by

P̂0(ξ) =
β

ω(α̃(ξ) + β)

(∫
ϕ(ξ, v′) dv′ + ψ(ξ)

)
(4.4)

R̂0(ξ) =
α̃(ξ)

α̃(ξ) + β

(∫
ϕ(ξ, v′) dv′ + ψ(ξ)

)
. (4.5)

Matching: to match inner and outer solutions we use the asymptotic limit of the inner

solution (4.4, 4.5) as initial condition for the outer solution. These are homogeneous in

v, as was expected for the outer solution. The corresponding initial condition for the

parabolic limit N0(τ, ξ) is then given by

N0(0, ξ) = ωP̂0(ξ) + R̂0(ξ) =

∫
V

ϕ(ξ, v) dv + ψ(ξ). (4.6)

This matches exactly the initial conditions of the outer expansion which we used in (5.4).

5 Spatially homogeneous environment

In this section we consider the case of α(x) = α= constant in more detail. We prove that

the outer solution provides a good approximation. The approximation is of order ε2 in

intervals of the form θ/ε2 < t � T/ε2 on compact sets Ω ⊂ IRn.

First we show a global L2-estimate for p0. For that purpose we need some information

on mean values of p. Let

p̌(t, x) :=

∫
p(t, x, v) dv p̄(t) :=

∫
p̌(t, x) dx,

r̄(t) :=

∫
r(t, x) dx, N̄(t) :=

∫
N(t, x) dx = p̄(t) + r̄(t).

(5.1)

Lemma 5.1
N̄(t) � N̄(0)e‖g‖∞t. (5.2)

Proof Integration of system (1.2, 1.3) with respect to space and velocity gives

p̄t = −αp̄+ βr̄ −
∫
l(N)p̌ dx

r̄t = αp̄− βr̄ +

∫
g(N)r dx−

∫
l(N)r dx.

(5.3)

Note that due to
∫
T (v, v′) dv = 1 the V -integral of Lp vanished. The above equations

add to

N̄t =

∫
g(N)r dx−

∫
l(N)(r + p̌) dx.

where the last term is non-positive. Then N̄t � ‖g‖∞N̄ and we obtain (5.2). �

Proposition 5.2 Assume (A1)–(A5). Let (p, r) denote a solution of (1.2), (1.3). Then for each

t with 0 < t � T there is a constant c1 = c1(α, β, ω, µ,min{l}, ‖g‖∞, T ) such that

‖p(t, ., .)‖L2(IRn×V ) � c1N̄(0).

https://doi.org/10.1017/S0956792503005291 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792503005291


626 T. Hillen

Proof With use of (1.2) we obtain

d

dt

1

2

∫
p2 dv =

∫
p

(
−v · ∇p+ Lp− αp+

β

ω
r − l(N)p

)
dv

= −∇ · 1

2

∫
vp2 dv +

∫
pLp dv − α

∫
p2 dv +

β

ω

∫
p dv r − l(N)

∫
p2 dv.

In view of the inequality
∫
pLp dv � 0 (see Proposition 1.1), integration of the equation

above with respect to space gives

d

dt

1

2
‖p‖2

L2(IRn×V ) � −α‖p‖2
L2(IRn×V ) +

β

ω
N̄2 − min{l}‖p‖2

L2(IRn×V ).

Here we used Lemma 5.1 and the fact that
∫
(
∫
p dv r) dx � N̄2. With use of Gronwall’s

Lemma and Lemma 5.1 the assertion follows. �

5.1 Regularity properties of the limit equation

Here we study regularity properties of the parabolic limit initial value problem in case of

α = const.

N0,τ = ∇Dα,β∇N0 + α
α+ β

g̃(N0)N0 − l̃(N0)N0,

N0(0, ξ) =
∫
ϕ(ξ, v) dv + ψ(ξ).

(5.4)

Lemma 5.3 The interval Γ := [0, N∗] is positively invariant for solutions of (5.4).

Proof A result of Chuey et al. [7] applies. �

Proposition 5.4 For ϑ with 0 < ϑ < T we have

(i) sup
ϑ�τ�T

‖D2N0(τ, .)‖∞ � Kϑ,T‖N0(0, .)‖C0,σ ,

(ii) sup
ϑ�τ�T

‖N0,τ(τ, .)‖∞ � κα,βKϑ,T‖N0(0, .)‖C0,σ + c3N
∗,

where

Kϑ,T = c2
(
ϑσ/2−1 + Tσ/22[2TK1(N

∗)]+1
)
.

c3 =
α

α+ β
‖g̃‖C0(Γ ) + ‖l̃‖C0(Γ )

κα,β =
βs2

ω(α+ β)να
,

c2 is defined by (5.5) and K1(N
∗) is given by (5.9).

Proof Since A := ∇Dα,β∇ defines a strongly elliptic sectorial operator (see Hillen &

Othmer [13, Lemma 3.3]) it generates an analytic contraction semigroup on C2+σ(IRn)

([15]). Moreover, for φ ∈ C0,σ(IRn), which does not grow faster than ec|x|2 for |x| → ∞, we
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have the regularity property that

‖D2(eAτφ)‖∞ � c2τ
σ/2−1‖φ‖C0,σ (5.5)

(See Ladyžhenskaja et al. [15, Chapt. IV, 11 formula (11.6)]). Note that for compactly

supported initial data the solutionN0(τ, ξ) of (5.4) has exactly the correct growth behaviour

as |x| → ∞. This can be seen by representing the solution with fundamental solutions

[15]. From the limit equation (5.4) we obtain

N0(τ, ξ) = eAτN0(0, ξ) +

∫ τ

0

eA(τ−θ)
(

α

α+ β
g̃(N0)N0 − l̃(N0)N0

)
dθ (5.6)

which leads to

‖N0(τ, .)‖C0,σ � ‖N0(0, .)‖C0,σ +

∫ τ

0

∥∥∥∥ α

α+ β
g̃(N0)N0 − l̃(N0)N0

∥∥∥∥
C0,σ

dθ. (5.7)

The norm ‖.‖C0,σ is defined as ‖.‖C0,σ = ‖.‖∞ + [.]σ , where [.]σ denotes the usual Hölder

seminorm. For now we define

h(N) :=
α

α+ β
g̃(N) − l̃(N)

and obtain

‖h(N0)N0‖∞ � ‖h‖C0(Γ )‖N0‖∞. (5.8)

To find a bound for the Hölder seminorm we consider x� y ∈ IRn and we get

h(N(x))N(x) − h(N(y))N(y)

|x− y|σ =
h(N(x)) − h(N(y))

|N(x) −N(y)| N(x)
|N(x) −N(y)|

|x− y|σ

+ h(N(y))
|N(x) −N(y)|

|x− y|σ

�
(
‖h‖C1(Γ )N

∗ + ‖h‖C0(Γ )

)
‖N‖C0,σ .

Hence from (5.7) and (5.8) we obtain

‖N0(τ, .)‖C0,σ � ‖N0(0, .)‖C0,σ + τ
(
‖h‖C1(Γ )N

∗ + 2‖h‖C0(Γ )

)
sup

0�θ�τ
‖N0(θ, .)‖C0,σ .

We denote

K1(N
∗) := ‖h‖C1(Γ )N

∗ + 2‖h‖C0(Γ ) (5.9)

and choose

τ0 =
1

2K1(N∗)
. (5.10)

Then we have

sup
0�θ�τ0

‖N0(θ, .)‖C0,σ � 2‖N0(0, .)‖C0,σ .

This estimate can be iterated such that for any k ∈ IN we have

sup
0�θ�kτ0

‖N0(θ, .)‖C0,σ � 2k‖N0(0, .)‖C0,σ . (5.11)
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With the regularity property mentioned above (5.5) we obtain

‖D2N0(τ, .)‖∞ � c2τ
σ/2−1‖N0(0, .)‖C0,σ + c2

∫ τ

0

(τ− θ)σ/2−1 ‖h(N0)N0‖C0,σ dθ

� c2τ
σ/2−1‖N0(0, .)‖C0,σ + c2τ

σ/2K1(N
∗) sup

0�ϑ�τ
‖N0(ϑ, .)‖C0,σ

Then for 0 < ϑ � T it follows from (5.11) that

sup
ϑ�τ�T

‖D2N0(τ, .)‖∞ � c2ϑ
σ/2−1‖N0(0, .)‖C0,σ + c2T

σ/2K1(N
∗)2k‖N0(0, .)‖C0,σ ,

with k = [T/τ0] + 1. This proves (i) of the above Proposition.

To obtain (ii), we apply this estimate directly to the equation (5.4), and we use the fact

that

‖∇Dα,β∇N0(τ, .)‖∞ � κα,β‖D2N0(τ, .)‖∞.

�

5.2 Approximation property of the outer solution

Here we show that for constant f and g the solution of the parabolic limit equation

provides a second-order approximation to the solution of the transport model.

Theorem 5.5 Let the assumptions (A1)–(A5) be satisfied and assume g̃ = g � 0 and l̃ =

l > 0 are constant with (g − l)/l�β. Suppose:

(1) The pair (p(t, x, v), r(t, x)) solves the resting-phase transport system (1.2), (1.3) for

0 � t � T with homogeneous initial conditions p(0, x, v) = ϕ(x), r(0, x) = ψ(x).

(2) N0(τ, ξ) solves the parabolic limit initial value problem (5.4) in C0,σ(IRn).
(3)

p0(τ, ξ) :=
β

ω(α+ β)
N0(τ, ξ), r0(τ, ξ) :=

α

α+ β
N0(τ, ξ).

(4)

p1(τ, ξ, v) := Fα(v · ∇p0(τ, ξ)), r1(τ, ξ, v) := 0.

We define two functions P (τ, ξ, v) and R(τ, ξ) by

p̃(τ, ξ, v) = p0(τ, ξ) + εp1(τ, ξ, v) + ε2P (τ, ξ, v)

r̃(τ, ξ) = r0(τ, ξ) + ε2R(τ, ξ)

and we assume that ∫
V

P dv =
g − l

l
R. (5.12)

Then for each ϑ and T with 0 < ϑ < T and each compact set Ω ⊂ IRn there is a constant

c4 = c4(|Ω|, T , ϑ, α, β, να, s, N∗, N̄(0), ‖N0(0, .)‖C0,σ )
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such that for all t with ϑ/ε2 < t � T/ε2 we have

‖p(t, ., .) − [p0(ε
2t, .) + εp1(ε

2t, ., .)]‖L2(Ω×V ) + ‖r(t, .) − r0(ε
2t, .)‖∞ � c4ε

2. (5.13)

Proof We show that P and R are bounded in appropriate norms, independent of ε.

The functions p0, p1, r0 and r1 are chosen to satisfy the ε0- and ε1-systems (3.3), (3.4),

respectively. It remains to study the ε2-system for P and R:

p0,τ + v · ∇p1 = LP − αP +
β

ω
R − lp̃ (5.14)

r0,τ = α

∫
P dv − βR + gr̃ − lr̃. (5.15)

We solve (5.15) for βR and insert into (5.14) to obtain

p0,τ + v · ∇p1 = LαP − 1

ω
r0,τ +

g

ω
(r0 + ε2R) − 1

ω
(r0 + ε2R) − l(p0 + εp1 + ε2P ).

The solvability for P leads to condition (5.12), since we already know that p1 ∈ 〈1〉⊥.

It follows from (5.15) that

r0,τ =

(
g − l

l
− β

)
B + gr̃ − lr̃. (5.16)

Hence

‖B(t, .)‖∞ �

(
g − l

l
− β

)−1 [
(g + l)N̄(t) +

α

α+ β
‖N0,τ(τ, .)‖∞

]
(5.17)

where N̄(t) has been defined in (5.1). With Lemma 5.1 and with Proposition 5.4(ii) there

is an ε-independent constant c5 such that

‖B(t, .)‖∞ � c5.

To find an estimate for P we solve (5.15) for R and substitute the resulting expression

into (5.14) to obtain

LαP = p0,τ + v · ∇Fα(v · ∇p0) − gr̃

ω
+ l

(
r̃

ω
+ p̃

)
+

1

ω
r0,τ, (5.18)

with Lα from (3.7) and Fα from Corollary 3.2. We study L2-norms. For the last term we

get

∥∥∥∥ r̃ω + p̃

∥∥∥∥
2

L2(IRn×V )

=

∫
r̃

ω

(
r̃

ω
+ 2

∫
p̃ dv

)
+ ‖p̃‖2

L2

�
2

ω2
N̄(τ)2 + c21N̄(0)2

� c6N̄(0)2, (5.19)
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where we used Lemma 5.1, Proposition 5.2 and the fact that r̃(τ, ξ)+
∫
p̃(τ, ξ, v) dv � N̄(τ).

The constant c6 is given by

c6 :=
2

ω2
e2gT + c1.

From (5.18) it follows that for all compact sets Ω ∈ IRn we have

‖LαP (τ, ., .)‖2
L2(Ω×V ) � ω|Ω|‖N0,τ(τ, .)‖2

∞ + ω‖Fα‖2s2|Ω|‖D2p0(τ, .)‖2
∞

+
1

ω
g2N̄(τ)2 + l2

∥∥∥∥ r̃(τ, .)ω
+ p̃(τ, ., .)

∥∥∥∥
2

L2

.

With use of Proposition 5.4, Lemma 5.1 and the above estimate (5.19) we arrive at

‖LαP (τ, ., .)‖2
L2(Ω×V ) � ω|Ω|

(
κα,βKϑ,T‖N0(τ, .)‖C0,σ +K2(N

∗)
)2

+
ω|Ω|s2
να

Kϑ,T‖N0(τ, .)‖C0,σ

+
1

ω
g2e2gT N̄(0)2 + c6l

2N̄(0)2,

which is bounded independent of ε. We denote the right-hand side

c7 = c7(|Ω|, T , ϑ, α, β, να, s, N∗, N̄(0), ‖N0(0, .)‖C0,σ ).

Finally, we split P according to

P =
1

ω

∫
P dv + P̃ .

Then LαP = LαP̃ = Z ∈ 〈1〉⊥ and FαZ = P̃ . For P̃ we obtain

‖P̃ (τ, ., .)‖2
L2(Ω×V ) = ‖FαZ‖2

2 � ‖Fα‖2‖Z‖2
2 �

c7

ν2
α

.

Hence ‖P̃ (τ, ., .)‖L2(Ω×V ) �
√
c7/να. Since

∫
P dv is bounded by R via (5.12) an upper

bound for P results.

Finally, we switch to the original time and space variables (t, x) and obtain the assertion

of the Theorem. �

Remark 5.6 We cannot expect to get the strong approximation property as in Theorem

5.5 for general nonlinear rates g̃(N), l̃(N). For most relevant nonlinear cases, the transport

system (1.2), (1.3) and the parabolic limit (5.4), will both have a global compact attractor.

It is not clear, however, how these attractors are related. If, for example, the attractor

of the parabolic limit equation is chaotic, then trajectories are sensitive to perturbations.

Each approximation of solutions will fail after a certain time. Even if the diffusion

limit has a stable limit-cycle it is not clear that solutions of the transport model and

the corresponding parabolic approximation enter the limit cycle with exactly the same

phase. To get more insight into the nonlinear case one has to consider upper and lower

semi-continuity of the corresponding attractors.
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6 Various special cases

6.1 Perturbations of homogeneous initial data

In the previous section we have seen that the outer solution is a good approximation to

the resting-phase transport equation for homogeneous initial conditions (matching). Here

we show that for constant α the solutions of the resting-phase transport equation (1.2),

(1.3) for initial data of the form p(0, x, v) = ϕ(x) + εϕ1(x, v) are of order ε compared to

the solution of the corresponding homogeneous problem with p(0, x, v) = ϕ(x). This result

holds for general, nonlinear kinetics, as specified in assumption (A1).

Theorem 6.1 Assume (A1)–(A5). Suppose that

(1) (r, p) solves (1.2, 1.3) with initial conditions p(0, x, v) = ϕ(x) + εϕ1(x, v) and r(0, x) =

ψ(x) with
∫
V
ϕ1(x, v) dv = 0.

(2) (a, b) solves (1.2, 1.3) with initial conditions a(0, x, v) = ϕ(x) and b(0, x) = ψ(x).

Then for each T there is a constant c8 such that for all t � T

‖p(t, ., .) − a(t, ., .)‖L2(IRn×V ) + ‖r(t, .) − b(t, .)‖∞ � εc8‖ϕ1‖D(A).

Proof We study the difference y := p−a, z := r−b and we denote N(t, x) :=
∫
p(t, x, v) dv+

r(t, x) and M(t, x) :=
∫
a(t, x, v) dv + b(t, x). Then (y, z) solves

yt + v · ∇y = Ly − αy +
β

ω
z − l(N)p+ l(M)a

zt = α

∫
V

y dv − βz + g(N)r − g(M)b− l(N)r + l(M)b

y(0, x, v) = εϕ1(x, v)

z(0, x) = 0.

Since N −M =
∫

(p− a) dv + r − b =
∫
y dv − z, we rewrite this system as

yt + v · ∇y = Ly − αy +
β

ω
z − l(N)y − a

l(N) − l(M)

N −M

(∫
y dv + z

)

zt = α

∫
V

y dv − βz + g(N)z + b
g(N) − g(M)

N −M

(∫
y dv + z

)

− l(N)z − b
l(N) − l(M)

N −M

(∫
y dv + z

)

y(0, x, v) = εϕ1(x, v)

z(0, x) = 0.

The functions g and l are supposed to be uniformly bounded in C1. Hence the above

system defines a linear evolution equation for (y, z), where the operator A is perturbed

by a bounded, time and space-dependent, multiplication operator. We know already that

the initial value problem is solvable since the solutions (p, r) and (a, b) exist. Hence there

is a bounded solution operator Q(t, x) : D(Φ) ×L2(IRn) → L2(IRn ×V ) ×L2(IRn) such that
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the solution can be written as
(
y(t, x, v)

z(t, x)

)
= Q(t, x)

(
εϕ1(x, v)

0

)
.

Then the assertion follows with c8 := supt�T ‖Q‖L(D(Φ),L2). �

6.2 Small proportion of the population in resting phase

In case of α → 0 individuals do not stop moving and hence in our model they cannot

reproduce. For the relevant operators and parameters we observe that for α → 0 (we will

not specify any norms for convergence of these operators).

Lα = −(µ+ α)I + (µ+ α)Tα −→ −µI + µT
Fα −→ F

Dα,β −→ D = − 1

ω

∫
vFv dv

N0 −→ ωp0

Then the limit equation (3.14) reduces to

N0,τ = ∇D∇N0 − l̃(N0)N0

which is a reaction-diffusion equation for the pure death process with diffusion tensor D0

as in the cases studied in Hillen & Othmer [13].

6.3 Large proportion of the population in resting phase

There is a large proportion of the population in the resting phase if α is large and β is

small. In that case α/(α+ β) ≈ 1 and the limit equation (3.14) becomes

N0,τ = ∇Dα,β∇N0 + f̃(N0). (6.1)

The complementary factor β/(α + β) is small, which shows that the modified diffusion

tensor Dα,β given by (3.15) is small. To be more specific we consider an example.

Example: V = sSn−1, T = 1/ω Then Tα = 1/ω and the pseudo-inverse Fα is a

multiplication operator by −(µ+ α)−1. Then

Dα,β =
β

ω(α+ β)

∫
vv dv

1

µ+ α
=

s2

(µ+ α)n

β

α+ β
I.

The diffusion tensor is isotropic and the limit equation reads

N0,τ = dα∆N0 + f̃(N0), with dα =
s2

(µ+ α)n

β

α+ β
. (6.2)

For α = 0 this reduces to d0 = s2

µn
. Hence increasing α reduces the motility.

Remark 6.2 It is easy to see that birth-death terms of order less or higher than ε2 will

not lead to a limit equation like (3.14):
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(1) For perturbations of the form f(u) = εf̃(u) the nonlinearity f would enter into the

turning operator Lα in the equation for ε1. This is longer a linear problem and we

cannot apply the framework of Fredholm operators as used here.

(2) For higher order perturbations f(u) = ε3f̃(u) the nonlinearity would not enter at all

and the limiting equation would be linear to second order with a vanishing reaction

part.

6.4 A parabolic model with resting phase

As an illustration we compare the previous results with a model where particle

movement is described by an uncorrelated random walk (Brownian motion). We keep

the assumptions of § 1 with the exception of assumption 1. Instead we assume now that

1’. The movement of the population is described by the diffusion equation ut = d∆u, d > 0

Then the parabolic model with resting phase reads

ut = d∆u− α(x)u+ βr − l(N)u

rt = α(x)u+ g(N)r − βr − l(N)r

N(t, x) = u(t, x) + r(t, x)

(6.3)

Special cases of this model have been studied for invasion speeds [12, 16] and for protein

dynamics [5].

We consider the same scaling as above for the outer expansion

τ = ε2t, ξ = εx, f(u) = ε2f̃(u).

Then the scaled system reads.

ε2uτ = ε2d∆ξu− α̃u+ βr − ε2 l̃(N)u

ε2rτ = α̃u+ ε2g̃(N)r − βr − ε2 l̃(N)r.
(6.4)

Again, we consider expansions in ε for k > 2.

u(τ, ξ) =

k∑
j=0

εjuj(τ, ξ), r(τ, ξ) =

k∑
j=0

εjrj(τ, ξ),

N(τ, ξ) =

k∑
j=0

εjNj(τ, ξ), Nj = uj + rj .

A comparison of orders of ε leads to the following systems:

ε0 :
−α̃u0 + βr0 = 0

α̃u0 − βr0 = 0
(6.5)

ε1 :
−α̃u1 + βr1 = 0

α̃u1 − βr1 = 0
(6.6)
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ε2 :
u0,τ = d∆u0 − l̃(N0)u0 − α̃u2 + βr2
r0,τ = α̃u2 − βr2 + g̃(N0)r0 − l̃(N0)r0

(6.7)

From (6.5), it follows that r0 = α̃
β
u0, hence N0 = α̃+ β

β
u0. We solve the second equation of

(6.7) for −α̃u2 + βr2 and use this in the first equation of (6.7) to obtain a single equation

for N0:

N0,τ = d∆

(
β

α̃+ β
N0

)
+

α

α+ β
g̃(N0)N0 − l̃(N0)N0,

which can be written in the form:

N0,τ = ∇
(

βd

α̃+ β
∇N0 − βd

(α̃+ β)2
∇α̃ N0

)
+

α

α+ β
g̃(N0)N0 − l̃(N0)N0. (6.8)

This equation shows exactly the same scaling in α and β as (3.14) and (3.15). The

reproduction rate is scaled by the mean proportion of the population which is at rest; the

motility is scaled by the mean proportion which is moving; and we obtain a drift toward

high values of α(x).

Remark 6.3 The entire scaling analysis also works for death rates which are different in

moving and resting stages, lp and lr , respectively. It is straightforward to show that the

corresponding term in the diffusion limit is the convex combination:

α̃

α̃+ β
l̃r +

β

α̃+ β
lp.

7 Conclusion

In this paper we consider continuum transport models for populations based on individual

movement patterns. The model studied here consists of three major processes: (i) a

correlated random walk, which is described by a transport equation; (ii) kinetics for the

transition from moving to resting, and vice versa; and (iii) kinetics for birth and death.

The resulting model (1.2), (1.3) consists of a nonlinear transport equation coupled with

an ODE.

As listed in the introduction, many applications of this model are discussed in the

literature. These include stream ecosystems, endangered species in fragmented habitats,

homeranges, invasion of new species, hunting territories, prey-taxis, bias toward better

environments, and protein movement in a cell nucleus.

Here we study (1.2), (1.3) from a mathematical point of view and we apply the theory for

the parabolic limit of transport equations which was developed in Hillen & Othmer [13].

In this paper we show:

• Local and global existence of solutions and positivity using standard semigroup argu-

ments.

• On a macroscopic length scale ξ = εx and on a slow time scale τ = ε2t the system is well

described by the outer solution, which satisfies a reaction-advection-diffusion equation

(3.14).
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• The limit equation shows interesting scaling in the relevant parameters. For non constant

α(x) there appears a drift-term toward favorable environments. The diffusion coefficient

is scaled by the mean fraction of moving particles, whereas the birth term is scaled by

the mean fraction of resting particles.

• For homogeneous environments the outer solution approximates the solution of the

transport system (1.2), (1.3) to second order in ε.

• The inner solution is driven by the initial conditions and it ‘lives’ on a fast time scale t

and the macroscopic length scale ξ. The inner solution converges to a distribution which

is homogeneous in v, which matches to the initial conditions of the outer solution.

• We consider special cases for perturbed homogeneous initial conditions, for a large

fraction of particles in resting or moving states, and we study a diffusion based model

which includes resting-moving dynamics.

In further studies we shall apply the theory to the examples mentioned earlier, in

particular to bat-territories and to prey-taxis.

Moreover, it would be interesting to see if oriented movement is beneficial for a

population, as done by Cosner et al. [8, 2] for the parabolic limit model.

We expect that the theory, as used here, can be readily extended to include different

death rates for moving and resting compartments, or to include a spatially dependent

starting rate β(x). It is more of a challenge, however, to include inhomogeneities which

show jumps in the quality of the habitat, i.e. jumps in α(x). In (A3) we assumed that α(x)

is continuous, which excludes jumps. The functional analysis, which underlies the studies,

has to be re-investigated for that case.
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