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SUMMARY

Osaki and Yagi (2001) give a proof of global existence for the classical chemotaxis model in one
space dimension with use of energy estimates. Here we present an alternative proof which uses the
regularity properties of the heat-equation semigroup. With this method we can identify a large selection
of admissible spaces, such that the chemotaxis model de�nes a global semigroup on these spaces.
We use scaling arguments to derive the asymptotic pro�le of the solutions and we show numerical

simulations. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we study local and global existence for the following one-dimensional
chemotaxis model:

ut = uxx − �(uvx)x
vt = �vxx + u− av (1)

on a bounded interval �= [0; l] with homogeneous Neumann boundary conditions

ux(t; 0)= ux(t; l)= vx(t; 0)= vx(t; l)=0 (2)

or with periodic boundary conditions

u(t; 0)= u(t; l); ux(t; 0)= ux(t; l); v(t; 0)= v(t; l); vx(t; 0)= vx(t; l) (3)
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1784 T. HILLEN AND A. POTAPOV

The parameters a; d, and � are constants. We prove that solutions are global in time for all
�¿0 and we study the case of � → 0 qualitatively and numerically.
The above model appears as a special case of the Patlak-Keller-Segel equations for

chemotaxis [1,2]. The model has been used to describe the oriented movement of cell
populations, guided by a chemical gradient which is produced by the cells themselves. In
the biological interpretation u(x; t) is a (scalar) particle density, v(x; t) denotes the chemical
concentration, � is called chemotactic sensitivity, � is the di�usion constant for the signal, the
di�usion constant of the species has been scaled to 1, and a is the decay rate of the chemical
signal.
Model (1) is easily extended to more than one space dimension (just replace the space

derivative by ∇). And it is known that solutions to (1) in dimensions n¿2 can blow up
in �nite time. For n=2 there is a threshold such that blow-up happens, whereas for n¿3
blow-up can happen for small initial particle densities (e.g. References [3–8]). Model (1) was
already studied by Childress and Percus [9] from a theoretical point of view. They use scaling
arguments which speak against �nite time blow-up in one dimension. Nagai [10] announced a
result on equations (1) with no di�usion in the signal �=0, which states that the solution (u; v)
blows up in �nite or in�nite time. Levine and Sleeman [11] constructed an explicit solution
to (1) with �=0 and a=0 which blows up in �nite time. Numerical simulations (not shown
here) suggest that system (1) with �=0 and a �=0 should have �nite time blow-up solutions
as well, but a proof of that is still missing.
For �¿0 solutions exist globally as was recently shown by Osaki and Yagi [12]. They

studied solutions in Hilbert spaces, (u; v) ∈ L2 × H 1 and they use energy estimates to prove
global existence. Moreover, they show the existence of a global attractor under certain as-
sumptions. Osaki and Yagi allow more general chemotactic sensitivities �(v), but they need
two basic assumptions, which are not needed in the proof presented here. First they study
solutions in separable spaces, in particular L2 and H 1, since energy methods are used. In this
paper, we do not assume separability and we give a large selection of admissible spaces, such
that system (1) de�nes a strongly continuous global solution semigroup on those spaces. We
give a systematic way to �nd admissible spaces in Appendix A. Our proof of global exis-
tence is based on the regularity properties of the heat-equation semigroup (see Lemma 2.1).
It presents a very transparent way to deal with cross di�usion systems in general and this
method was successfully applied in Hillen and Painter [13] to a related problem. We can also
see in our proof that the result cannot be generalized to two or higher dimensions. This makes
sense, since we know about �nite time bow-up in higher dimensions. A second di�erence to
Osaki and Yagi appears related to the initial conditions. Osaki and Yagi assume throughout
their paper that the initial condition for v is bounded away from 0 : inf � v0(x)¿�¿0. An
assumption of that nature is not needed here, we only use v0¿0. Osaki and Yagi show the
existence of an attractor, we derive the asymptotic pro�le for u and v as t → ∞.
The semigroup approach of this paper was also used in Yagi [14] for the two-dimensional

chemotaxis model. There it is mentioned that the semigroup approach is applicable to the one-
dimensional case as well. This was not done in the paper of Yagi, so we do it here. In doing
so it turns out that the application to one dimension is not so straightforward. In particular,
some of the estimates which we use in our proof are not extendible to two dimensions. Also
Yagi uses the assumption of inf � v0(x)¿�¿0, which we can relax here.
In this paper we �rst identify appropriate Sobolev spaces, such that solutions to (1) ex-

ist locally. We �nd that a choice of (u; v) ∈ L∞ × W�;p is appropriate for 1¡�¡2 and
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ONE-DIMENSIONAL CHEMOTAXIS MODEL 1785

p¿1=(� − 1). We extend the a priori estimate of Childress and Percus to global estimates
for the solutions constructed above. This in fact proves global existence in time and excludes
any form of blow up.
We use scaling arguments and numerical simulation to show that the maximum of the

solution grows like 1=� for � → 0. In numerical examples we show how the solutions grow
fast to a level of order 1=� until they saturate.
The proofs for local and global existence use a combination of an Lp space for u and a

space of higher regularity, W�;p, for v with 1¡�¡2. Such spaces were applied to related
problems in Yagi [14], Hillen and Painter [13], and Osaki et al. [15]. In Hillen and Painter
a modi�ed chemotaxis model is studied which accounts for volume �lling e�ects of particles
which have �nite volume. There local and global existence is proven for each space dimension
n¿1. In Osaki et al. the classical chemotaxis model is studied with the addition of growth
and death terms for the cellular species. The existence of an exponential attractor is proven
in L2 × H 1+�0 . In all �ve articles, [12–15] and this one, it turns out that, by choosing a
space of higher regularity for v, we take advantage of the triangular form of the leading order
di�erential operator in (1). If the system would have cross-di�usion terms in both equations,
then this method would not work. In that case, the theory of Amann and others applies [16]
and we have to ensure that the corresponding coe�cient matrix is coercive. Here we do not
need that. Since v has higher regularity, the vxx-term appears as a lower order term, compared
to uxx.
The paper is organized as follows. In Section 2 we state the existence results. In Section

3 we prove local existence in the space L∞ ×W�;p, 1¡�¡2; p¿n=(� − 1) for each space
dimension n¿1. The proof uses Banach’s �xed-point theorem. In Section 4 we prove global
existence in time for the 1-D case and we see that this proof cannot be extended to space
dimensions n¿2. The proof starts from the global L1 estimate for u (particle conservation).
Then we use regularity properties of the solution semigroup of the heat equation to derive
global W�;r estimates for v, for r¡p. From these we �nd Lp estimates for u, with p¿1,
for example p=2 would work. These estimates in turn provide us with W�;p estimates for
v which then are used to show L∞ estimates for u. This proves global existence. In Section
5 we show some numerical simulations and we use singular perturbation methods to �nd
asymptotic pro�les for the aggregation peaks.

2. STATEMENT OF THE RESULTS

The whole analysis of this paper relies on the following lemma about the regularity of the
solution semigroup of the heat equation, as taken from Taylor [17]:

Lemma 2.1 (Taylor [17, p. 274])
Let M be a bounded n-dimensional C∞ manifold without boundary. Let T1(t)= e�t denote
the solution semigroup of the heat equation on M . Assume

0¡t61; p¿q; s¿r (4)

then

T1(t) : Wr;q(M)→ Ws;p(M) with norm Ct−� (5)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1783–1801



1786 T. HILLEN AND A. POTAPOV

where

−�= − n
2

(
1
q

− 1
p

)
− 1
2
(s− r)

The assumptions on M are met by the heat equation on a rectangular [0; l1]×· · ·× [0; ln] with
periodic boundary conditions (circle in 1−D, torus in 2−D, etc.). The regularity results also
apply to homogeneous Neumann boundary conditions, since problems with Neumann boundary
conditions can be extended to problems with periodic boundary conditions on a larger domain
by gluing together copies of mirror images of the original rectangular. Regularity properties as
in Lemma 2.1 are also known for Dirichlet or other boundary conditions (see e.g. Reference
[18]). But additional boundary estimates are required and we are not aware of a general
unifying formulation like Lemma 2.1 for that case.
In our proofs we use property (5) in about 12 di�erent ways. To be as transparent as

possible we enumerate the corresponding constants by Cj and the corresponding indices by
�j; j=1; : : : ; 12.

2.1. Local existence

To make the paper self contained we �rst show local existence. The local existence proof is
generalizable to higher dimensions, hence we formulate it for arbitrary dimension n¿1. We
study

ut =�u− ∇(�u∇v)
vt = ��v+ u− av (6)

on a bounded smooth n-dimensional manifold M without boundary (which includes an interval
[0; l] with homogeneous Neumann or periodic boundary conditions).

Theorem 2.2
Consider 1¡�¡2 and p¿n=(�− 1). We assume u0 ∈ L∞(�) and v0 ∈ W�;p(�). Then there
exists a time T¿0 and a unique solution (u(t); v(t)) of (6) with

u ∈ L∞(0; T ;L∞(�)) and v ∈ L∞(0; T ;W�;p(�))

Although this result would follow from Amann’s work [16] we give a proof in Section 3.

2.2. Global existence

For global existence we need some more indices and conditions for relations between these
indices. To keep track of all these conditions we introduce a special notation:

De�nition 2.3
A tupel of real parameters (�;p; r; P;Q) is called admissible, if

1¡�¡2;
1

� − 1¡p¡∞; 2p
�p+ 1

¡r¡
1

� − 1 (7)

1¡P¡1 +
1
p
;

1
P
+
1
Q
=1;

1
p
¡
Q
r
¡
1
p
+ 2 (8)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1783–1801



ONE-DIMENSIONAL CHEMOTAXIS MODEL 1787

Indeed, the set of admissible parameters is not empty, since

(�;p; r; P;Q)= (1:6; 2; 1:5; 1:4; 3:5)

is admissible, as is easily checked. Other admissible tupel can be found in the Appendix,
where we also describe an algorithm to �nd admissible parameters.

Theorem 2.4
Let n=1; �=[0; l] and suppose u0 ∈ L1(�)∩L∞(�) and v0 ∈ W�;p(�), where �;p belong to
an admissible set of parameters. Then for each T¿0 there is a constant K which depends on
a; �; ‖u0‖1; ‖u0‖∞; ‖v0‖�;p; T , and the admissible parameters (�;p; r; P;Q) such that the solution
of (1) with (2) (or (1) with (3)) satis�es

sup
06t6T

‖u(t)‖∞6K(T ) and sup
06t6T

‖v(t)‖�;p6K(T )

The proof is given in Section 4.
Although K depends on T it is bounded for each �nite T . This is shown at the end of the

proof of Lemma 4.1.

3. PROOF OF LOCAL EXISTENCE

In this section we prove Theorem 2.2. We use Banach’s �xed-point theorem on

X=L∞(0; T ;L∞(�))× L∞(0; T ;W�;p(�))

Step 1. We consider a given function z ∈ L∞(�T ), where, as usual, �T =(0; T ) × � and
we solve

vt = ��v+ z − av; v(0)= v0 (9)

We set w= eatv and obtain a problem for w:

wt = ��w + eatz (10)

Let T�(t) denote the solution semigroup on M of

wt = ��w (11)

With a scaling of time �= �t, Equation (11) is equivalent to

w�=�w (12)

Hence with Lemma 2.1 we �nd that for 0¡�61

T1(�) : Lp → W�;p with norm C1�−�=2

which means that for 0¡t61=�

T�(t) : Lp → W�;p with norm C1�−�=2t−�=2 (13)
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We write the solution of (10) as

w(t)=T�(t)w(0) +
∫ t

0
T�(t − s)easz(s)ds

and we use the above property (13) to estimate as follows:

‖w(t)‖�;p6‖w(0)‖�;p + C1�−�=2t1−�=2eat sup
t

‖z(t)‖∞

This gives for v= e−atw

‖v(t)‖�;p6e−at‖v(0)‖�;p + C1�−�=2t1−�=2 sup
t

‖z(t)‖∞ (14)

Step 2. With v from (14) we study the equation for u:

ut =�u− �∇u∇v− �u�v; u(0)= u0 (15)

which has the formal solution

u(t)=T1(t)u0 −
∫ t

0
T1(t − s)�∇u∇v ds−

∫ t

0
T1(t − s)�u�v ds (16)

We study the integral terms in (16) separately. The �rst integral term involves ∇v which is
in W�−1;p. We use the Sobolev embedding

W�−1;p ,→ C0; for p¿
n

� − 1
We aim to use (16) to �nd an estimate for u in L∞. If u ∈ L∞ then it is in Lq for 16q6∞.
Then ∇u ∈ W−1;q and we use Lemma 2.1 in the form

T1(t) : W−1;q → W 1=2;q with norm C2t−3=4 (17)

where we choose q large enough so as to ensure W 1=2;q ,→ C0.
Using (17) and the Sobolev embedding we �nd

∥∥∥∥
∫ t

0
T1(t − s)�∇u∇v ds

∥∥∥∥
∞
6 � sup

t
‖∇v‖∞

∥∥∥∥
∫ t

0
T1(t − s)∇u ds

∥∥∥∥
∞

6 �C2t1=4 sup
t

‖v‖1;∞ sup
t

‖u‖∞

6 �Ct1=4 sup
t

‖v‖�;p sup
t

‖u‖∞ (18)

In the last estimate we used the fact that W�;p ,→ C1 for p¿n=(� − 1).
In the second integral in (16) we encounter the term �v ∈ W�−2;p. We use Lemma 2.1

T1(t) : W�−2;p → W�−1;p ,→ C0; with norm C3t−1=2 (19)

Then we get ∥∥∥∥
∫ t

0
T1(t − s)�u�v ds

∥∥∥∥
∞
6�C3t1=2 sup

t
‖v‖�;p sup

t
‖u‖∞ (20)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1783–1801
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Putting (18) and (20) together we �nd from (16) that

‖u(t)‖∞6‖u0‖∞ + �C(t1=4 + t1=2) sup
t

‖v‖�;p sup
t

‖u‖∞ (21)

Together with the estimate for v, (16), we get

‖u(t)‖∞ 6 ‖u0‖∞ + �C(t1=4 + t1=2) sup
t

‖u‖∞

·
(
e−at‖v0‖�;p + C1�−�=2t1−�=2 sup

t
‖z(t)‖∞

)
(22)

We solve this for ‖u‖L∞(�T ) for some T¿0 to �nd

‖u‖L∞(�T )6
‖u0‖∞

1− �C(T 1=4 + T 1=2)(e−aT‖v0‖�;p + C1�−�=2T 1−�=2‖z(t)‖L∞(�T ))
(23)

Step 3. We de�ne a map H : L∞(�T ) → L∞(�T ) by Hz= u. Let m¿‖u‖∞, then for T
small enough

H : Bm(0)→ Bm(0)

where

Bm(0) : = {’ ∈ L∞(�T ) : ‖’‖L∞(�T )¡m; ’(0)= u0}
Step 4. We show that, when T is small enough, the mapping H is a contraction on

Bm(0). We consider two functions z; Z ∈ Bm(0) and we denote the images by u=Hz;U =HZ ,
respectively. The corresponding solutions of the v-equation (9) are denoted by v and V .
Since the v equation (9) is linear we can directly apply the estimate (14) and we obtain

‖v(t)− V (t)‖�;p6C1�−�=2t1−�=2 sup
t

‖z(t)− Z(t)‖∞ (24)

The functions u;U are solutions of the u-equation (15) with v; V , respectively. We �nd for
the di�erence

u(t)−U (t) =−
∫ t

0
T1(t − s)((∇u− ∇U )∇v+∇U (∇v− ∇V )) ds

−
∫ t

0
T1(t − s)((u−U )�v+U (�v−�V )) ds

For the integral terms we use the same estimates as before in (18) and (20). Then we obtain

‖u(t)−U (t)‖∞ 6 �(t1=4 + t1=2)

·
(
sup
t

‖u−U‖∞ sup
t

‖v‖�;p + sup
t

‖U‖∞ sup
t

‖v− V‖�;p
)

(25)
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1790 T. HILLEN AND A. POTAPOV

From (14) we �nd a constant Ĉ such that

sup
t

‖v‖�;p6Ĉ

Then it follows from (25) that

sup
t

‖u(t)−U (t)‖∞6
�(T 1=2 + T 1=2)

1− �(T 1=4 + T 1=2)Ĉ supt ‖u‖∞ sup
t

‖v− V‖�;p

Together with (24) we �nd that H is a contraction on Bm(0) when T is small enough.
Step 5. We apply Banach’s �xed point theorem and obtain a unique �xed point of H . This

corresponds to a unique weak solution (u; v) ∈ X.

4. PROOF OF GLOBAL EXISTENCE

In this section we prove Theorem 2.4. The �rst equation of (1) is a conservation equation
which also preserves positivity. Hence if we denote

M : =
∫ l

0
u0(x) dx

then we conclude that ∫ l

0
u(t; x) dx=M

as long as the solution exists.
Let (�;p; r; P;Q) be an admissible set of parameters. First we use the L1-bound to �nd a

global Sobolev estimate for v:

Lemma 4.1
For each 0¡t61=� we �nd

‖v(t)‖�;r6e−at‖v0‖�;r + C4�−�4 t1−�4M (26)

The parameters C4¿0; 0¡�4¡1 are de�ned below. Moreover, for each T¿0 there is a con-
stant K1(T ) which depends on a; ‖v0‖�;r ; C4; �−�4 ; M such that

sup
06t6T

‖v(t)‖�;r6K1(T )

Proof
The formal solution of (10) where z is replaced by u is

w(t)=T�(t)w0 +
∫ t

0
T�(t − s)easu(s) ds (27)

We like to have T�u ∈ W�;r . Using Lemma 2.1 we �nd that for 0¡t61=�

T�(t) : L1 → W�;r with norm C4(�t)−�4 (28)

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:1783–1801
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with

−�4 = − �
2
+
1
2r

− 1
2

We �nd that 0¿−�4¿−1, since r belongs to an admissible tupel and it satis�es r¡1=(�−1).
We cannot choose r=p here since we would then have −�4¡ − 1 and this would lead to
a singularity in the following estimate. In case of n=2 we would have to choose r¡2=�,
which would lead to contradictions in the de�nition of admissible. With the correct choice of
r we �nd using (28)

‖w(t)‖�;r6 ‖w0‖�;r + C4t1−�4 sup
t

‖u(t)‖L1eat

= ‖w0‖�;r + C4t1−�4�−�4eatM

With v= e−atw the �rst estimate in Lemma 4.1 is proven. To obtain the global a priori bound
we repeat this estimate many times. If T¿0 is given then we choose some �xed increment
�6T=� and apply the above estimate, (26), N : = [T=�] + 1 times, where we choose the last
iterate as the initial condition for the next iterate. The time increment is �xed and the constant
K1(T ) grows at most as K1(�)N .

Now we look at the solution of the u equation of (1) and prove a global Lp estimate.

Lemma 4.2
For each T¿0 there is a constant K2(T ), which depends on the admissible parameters
(�;p; r; P;Q), on a; ‖u0‖; M , and K1(T ) such that

sup
06t6T

‖u(t)‖p6K2(T )

Proof
We use the formal solution for the u equation as given in (16). We aim to estimate u(t) in
Lp. For the �rst integral in (16) we use Young’s inequality in the form

ab6
1
P
aP +

1
Q
bQ; with

1
P
+
1
Q
=1

where P;Q are part of an admissible tupel, as de�ned above. We �nd∥∥∥∥
∫ t

0
T1(t − s)�uxvx ds

∥∥∥∥
p
6
∥∥∥∥
∫ t

0
T1(t − s) �Pu

P
x ds

∥∥∥∥
p
+
∥∥∥∥
∫ t

0
T1(t − s) �Qv

Q
x ds

∥∥∥∥
p

(29)

Since u ∈ L1 we have uPx ∈ W−1;1=P. We use Lemma 2.1 in the form that for each 0¡t61

T1(t) : W−1;1=P → Lp with norm C5t−�5 (30)

with

−�5 = − 1
2
+
1
2

(
1
p

− P
)
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1792 T. HILLEN AND A. POTAPOV

We �nd that 0¿ − �5¿ − 1 since we assumed 1 + 1=p¿P for admissible parameters. This
estimate is not valid in higher dimensions n¿2. There we always �nd that −�5¡− 1 which
would, as mentioned earlier, lead to a singularity in the estimates. Here lies a signi�cant
di�erence to the higher dimensional case. With use of (30) we �nd that for 0¡t61∥∥∥∥

∫ t

0
T1(t − s) �Pu

P
x ds

∥∥∥∥
p
6C5t1−�5

�
P
MP6C5

�
P
MP (31)

For the second term in (29) we use the fact that v ∈ W�;r which implies that vQx ∈ W�−1;r=Q ⊂
Lr=Q. We use Lemma 2.1 in the form that for each 0¡t61

T1(t) : Lr=Q → Lp with norm C6t−�6 (32)

with

−�6 = 12
(
1
p

− Q
r

)

We �nd that 0¿− �6¿− 1 since 1=p¡Q=r¡2+1=p, as required for admissible parameters.
Hence we get that for 0¡t61∥∥∥∥

∫ t

0
T1(t − s) �Qv

Q
x ds

∥∥∥∥
p
6C6t1−�6 sup

t
‖v‖Q�;r6C6KQ1 (1) (33)

where we used the a priori estimate of the previous Lemma 4.1.
We also use Young’s inequality for the second integral term of (16).∥∥∥∥

∫ t

0
T1(t − s)�uvxx ds

∥∥∥∥
p
6
∥∥∥∥
∫ t

0
T1(t − s)�u

2

2
ds
∥∥∥∥
p
+
∥∥∥∥
∫ t

0
T1(t − s)�v

2
xx

2
ds
∥∥∥∥
p

(34)

Since u ∈ L1 we have u2 ∈ L1=2 and we use Lemma 2.1 in the form that for each 0¡t61

T1(t) : L1=2 → Lp with norm C7t−�7 (35)

with

−�7 = − 1 + 1
2p

Here we see that the choice of p=∞ will not work directly, because then −�7 = − 1. For
admissible p¡∞ we �nd that for 0¡t61∥∥∥∥

∫ t

0
T1(t − s)�u

2

2
ds
∥∥∥∥
p
6C7�t1=(2p)M 26C7M 2 (36)

For the second integral in (34) we observe v2xx ∈ W�−2;r=2, hence we use Lemma 2.1 in the
form that for each 0¡t61

T1(t) : W�−2;r=2 → Lp with norm C8t−�8 (37)
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with

−�8 = � − 2
2

+
1
2

(
1
p

− 2
r

)

Since the parameters are admissible we have −1¡− �8¡0. Then for 0¡t61 we get

∥∥∥∥
∫ t

0
T1(t − s)�v

2
xx

2
ds
∥∥∥∥
p
6C8�t1−�8 sup

t
‖v‖2�;r

6C8�K1(1) (38)

We consider the general solution (16) and collect all of the above estimates (29), (31), (33),
(34), (36), and (38) and �nd that for all 0¡t61:

‖u(t)‖p6‖u0‖p + �
(
C5
MP

P
+ C6K

Q
1 (1) + C7M

2 + C8K1(1)2
)

(39)

The right-hand side of this estimate only depends on powers of M and on powers of K1(1).
We can iterate this estimate (as we did before in the proof of Lemma 4.1) and �nd the global
estimate as stated in Lemma 4.2.

In Lemma 4.2 we were able to generate a global Lp estimate for u from the particle
conservation property. Notice that the case of p=2 is included, since p=2 belongs to an
admissible set of parameters. Hence the estimate of Childress and Percus [9] is included here.
We use the Lp estimate to �nd a global W�;p bound for v:

Lemma 4.3
For each T¿0 there is a constant K3(T ), which depends on the admissible parameters
(�;p; r; P;Q), on a; ‖v0‖�;p;M , and K2(T ) such that

sup
06t6T

‖v(t)‖�;p6K3(T ) (40)

Proof
Again we use Equation (27) for w and we use Lemma 2.1, that for 0¡t61

T�(t) : Lp → W�;p with norm C9(�t)−�=2 (41)

Then with use of the previous Lemma 4.2 we �nd for 0¡t61 that

sup
06s6t

‖w(s)‖�;p6‖w0‖�;p + C9t1−�=2�−�=2K2(t) (42)

Again we iterate this estimate (as done above) and obtain (40).

Now we reach the level of regularity as required by the local existence result. We �nally
need to estimate ‖u‖∞.
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Lemma 4.4
For each T¿0 there is a constant K4(T ), which depends on the admissible parameters
(�;p; r; P;Q), on a; ‖u0‖∞; M , and K2(T ); K3(T ) such that

sup
06t6T

‖u(t)‖∞6K4(T )

Proof
We use the formal solution as given in (16) and estimate

‖u(t)‖∞6‖u0‖∞ +
∥∥∥∥
∫ t

0
T1(t − s)�uxvx ds

∥∥∥∥
∞
+
∥∥∥∥
∫ t

0
T1(t − s)�uvxx ds

∥∥∥∥
∞

(43)

For the �rst integral term on the right-hand side we use the fact that vx ∈ W�−1;p ,→ C0. And
we use Lemma 2.1. For 0¡t61 we have

T1(t) : W−1;p → W�−1;p with norm C10t−�=2 (44)

Then we get for 0¡t61 that∥∥∥∥
∫ t

0
T1(t − s)�uxvx ds

∥∥∥∥
∞
6C10�t1−�=2 sup

t
‖u‖p sup

t
‖v‖�;p (45)

For the second integral term on the right-hand side of (43) we use again Young’s inequality
to obtain∥∥∥∥

∫ t

0
T1(t − s)�uvxx ds

∥∥∥∥
∞
6
∥∥∥∥
∫ t

0
T1(t − s)�u

2

2
ds
∥∥∥∥

∞
+
∥∥∥∥
∫ t

0
T1(t − s)�v

2
xx

2
ds
∥∥∥∥

∞
(46)

For the �rst integral term in (46) we now use the fact that u2 ∈ Lp=2 and that
T1(t) : Lp=2 → W�−1;p ,→ C0 with norm C11t−�11 (47)

with

−�11 = − � − 1
2

− 1
2p

Note that 0¿− �11¿− 1, since �¿1; p¿1 as required for admissible parameters. We obtain
for 0¡t61 that ∥∥∥∥

∫ t

0
T1(t − s)�u

2

2
ds
∥∥∥∥

∞
6C11�t1−�11 sup

t
‖u‖2p (48)

Finally, for the last term in (46) we �nd that for 0¡t61

T1(t) : W�−2;p=2 → W�−1;p ,→ C0 with norm C12t−�12 (49)

with

−�12 = − 1
2

− 1
2p
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which is larger than −1 for p¿1. We obtain for 0¡t61∥∥∥∥
∫ t

0
T1(t − s)�v

2
xx

2
ds
∥∥∥∥

∞
6C12�t1=2−1=(2p) sup

t
‖v‖2�;p (50)

To complete the proof of Lemma 4.4 we combine all estimates (45), (46), (48), (50) with
the estimate for u, (43), and we use the previous Lemmas 4.2, and 4.3 to obtain the global
bound for u in L∞.

Theorem 2.4 is a direct application of the a priori estimates of Lemmas 4.3 and 4.4 to the
solution found in Theorem 2.2.

5. NUMERICAL RESULTS AND ASYMPTOTIC PROFILE

Numerical solutions of system (1) were considered by many authors (see e.g. References
[9,19]). For small values of �¿0 numerical methods suggest that the solution might blow up
in �nite time. In the previous section we have proven that the solution stays bounded and
exists globally for all �¿0. In this section we use scaling arguments and numerical simulations
to investigate the growth characteristics of the solutions.
Numerical experiments show that the time evolution of this system can be split into three

stages: (i) a transient stage, with slow growth of local maxima, (ii) a blow-up stage, where
the solution grows very fast to a single peak distribution and (iii) a saturation stage, where
the solution converges to a peak solution. We use perturbation analysis and numerical methods
to �nd the asymptotical pro�le for

�u
(x
�

)
Let us �rst examine some simulations. We choose the domain length l=1. Then the system
(1) has a constant solution u0 =M , v0 =M=a, and it is linearly unstable to perturbations of
the form A cos(�kx) provided

0¡k2¡
M� − a
��2

We choose M =4, �=1, a=1, then the homogeneous solution loses stability for �60:3. Here
we use various values for �60:1. In Figure 1 we show a typical time evolution from two-,
(a), or one-peak, (b), initial data with small amplitude.
Several modes are unstable and a pattern with several peaks starts to appear. Such patterns

are unstable and eventually only a single peak remains, typically at the boundary. For this
reason we study the growth of such a peak in more detail and we choose the initial condition

u=M + 0:1 cos(�x)

which has one maximum at x=0. From a sequence of calculations for various � we �nd that
the �nal peak height is approximally proportional to 1=�, and the �nal width is proportional to
�. This motivates a scaling of the form �u(x=�). In Figure 2 we show these rescaled pro�les
for various values of �. As � decreases, the rescaled pro�les approximate a limiting curve
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Figure 1. Typical time evolution for initial data with two peaks (a) and one peak (b) with small
amplitude relative to a homogeneous solution. Note that u is shown on a logarithmic scale.
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Figure 2. (a) The rescaled pro�les of U (y)= �u(x=�) for �=0:1; 0:033; 0:01; 0:0033; 0:001,
the dashed line corresponds to the asymptotic stationary pro�le U0(y) (59); and (b) the
pro�les of

√
a�V (z) for the same values of � compared to the asymptotic pro�le vs(z)

as given in (62) (dashed line), where z=
√ a

� x.

U0(y) which is given explicitely in (59). Moreover, we also �nd an approximate pro�le for
V (y) in (62).
To investigate the growth of these peaks over time we show in Figure 3 the time evolution

of the maximum of the solution for di�erent values of �. For small � we observe an initial
transient phase, a steep growth phase and a saturation phase. Solutions grow to the height of
�−1 with a growth rate of �−2= ln(1=�). In Figure 4 we show a plot of the time derivative,
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Figure 3. (a) Height of the peak u as a function of time for �=0:1; 0:033; 0:01; 0:0033; 0:001,
(bottom to top on graph, respectively). The following features can be seen: (1) there are three
stages of growth—slow, explosive (note the logarithmic scale), and then slowing and conver-
gence to a stationary state; (2) the height of the peak scales as ∼ 1=�; and (b) Trajectories

of the maximum of v for the same � values as in a).
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Figure 4. Trajectories of the peak growth for �=0:1; 0:033; 0:01; 0:0033; 0:001, lighter shadow of grey
corresponds to smaller �. The long dashed line shows exponential growth ut ∼ u, short-dashed line
shows blow up growth ut ∼ u2. After short transient period u �rst grows exponentially, then it accel-
erates and corresponds to ut ∼ u2. After reaching the height �−1 the growth slows down and stops.

The smaller �, the greater is the largest growth rate.

ln(ut�2 ln(1=�)) as a function of ln((umax −M)=�). The short-dashed line corresponds to expo-
nential growth ut ∼ u and the long-dashed line corresponds to quadratic growth ut ∼ u2. We
clearly observe quadratic growth during the time evolution.
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5.1. Asymptotic pro�le for u

To obtain the shape of the asymptotic pro�le we change coordinates to local space variables,
y= x=� and fast time scale �= t=�. We introduce new functions

u=
U (y; �)
�

; v=V (y; �)

Then @=@t= �−1@=@�, and @=@x= �−1@=@y, and Equations (1) take the form

�U� =Uyy − �(UVy)y (51)
V� = Vyy +U − �aV (52)

0¡y¡L= �−1

with the boundary conditions Uy=Vy=0 for x=0 and x=L= �−1. The �rst equation of (1)
is a conservation law ∫ 1

0
u(x; t)dx=

∫ L

0
U (y; �)dy=M (53)

We assume that there is a universal stationary pro�le Û (y), which describes the shape of the
stationary peak. If we set Û �=V�=0, then

Û yy − �(ÛVy)y =0 (54)

Vyy + Û − a�V =0 (55)

We study the formal expansions

Û (y)=U0(y) + �U1(y) + �2U2(y); V (y)=V0(y) + �V1(y) + �2V2(y) (56)

Substituting (56) into (54), (55) we get the leading order:

U0yy − � (U0V0y)y =0 (57)

V0yy +U0 = 0 (58)

From the �rst equation it follows that U0y − �U0V0y=C1, where C1 = 0 according to the
boundary conditions. After second integration we obtain

U0 =Ae�V0

where A¿0 is a constant. We assume that all the mass is contained in the leading-order term,
hence

A
∫ ∞

0
e�V0(y)dy=M

Substituting U0 into equation (58) we get

V0yy + Ae�V0 = 0
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Integrating once we �nd

(V0y)2

2
+ Ae�V0 =E

We integrate this separable equation directly and �nd the relation√
E
A
e−�V0=2 = cosh

(
�

√
E
2
(y − y0)

)

This gives

U0 =Ae�V0 =
E

(cosh(q(y − y0)))2 with q= �

√
E
2

Now let us assume that the centre of the peak is at y=0, then y0 = 0. Using (53) we have

M =
∫ ∞

0

E dy
(cosh(qy))2

=
E
q

∫ ∞

0

dz
(cosh z)2

=
1
�

√
2E

for large values of L. Therefore,

E=
�2M 2

2
; q=

�2M
2

and we come to the asymptotic peak shape

Û (y) ≈ U0(y)= qM
(cosh(qy))2

(59)

Figure 2 shows that the asymptotic form of the peak is described by U0(y) quite well.
In the perturbation analysis, as used here, we cannot obtain V0 uniquely. The leading-order

term V0 is given by V0 = �−1 lnU0 − ln A, hence it depends upon the constant A. In our
perturbation analysis (58) we lose the decay term for v. Hence there is no unique solution
for V0.

5.2. Asymptotic pro�le for v

To �nd an asymptotic pro�le for v we use the fact that the time evolution ends up at a
stationary state. Hence we can �nd the �nal stationary pro�le of vs from the asymptotic
pro�le of u (59) by the equation

�vsxx − avs= − Û (x=�)=� (60)

Unfortunately, we cannot solve this equation. Nonetheless, it is possible to �nd an approximate
solution for small �.
The solution of �vxx − av=0 behaves like e−kx, k=

√
a=�, that is we can expect that the

peak of v has a width proportional to ∼ √
�. On the other hand, the width of the u peak is ∼ �.

Therefore, for small values of � we can assume that, from the viewpoint of the v-component,
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all mass is already concentrated at x=0 and u(x) ≈ 2M�0(x). The factor 2 appears because
the domain x¿0 contains only half of the �-peak, the whole �-peak carries mass 2M , where

M =
∫ L

0
u(x; t)dx

Then (60) becomes

�vsxx − avs= − 2M�0(x) (61)

For � → 0 we can use the solution for the in�nite domain

vs(x) ∼= M√
a�
exp

(
−
√
a
�
|x|
)

(62)

Note that this vs does not satisfy condition vx(0)=0. To investigate v close to 0 we would
have to use Equation (60).
We compare this function vs(x) with the pro�les of v(x) from our numerical simulations in

Figure 2(b). The dashed line is
√
a�vs(z)=Me−|z|, z=

√
a=�x, and there is a good agreement

with numerically obtained rescaled pro�les of
√
a�v(z) as � → 0.

The fact that approximation (62) works well gives a simple heuristic explanation of why the
blow up stops. When the width of the u pro�le is of the order �, the pro�le of v practically
ceases to change. It will not grow further even if u becomes a �-function. As v does not
change, u adjusts itself to the v pro�le and does not grow any more either.
This argument does not work in higher dimensions. For n¿2 the above equation (61) can

be formally solved using the corresponding Greens function. The solution shows a term of
the form ∼ G(x; y) ∗ �0(y), which → +∞ for ‖x‖ → 0. Hence in higher dimensions u and v
will grow simultaneously. This leads to a blow up as already shown earlier.

APPENDIX A: ADMISSIBLE PARAMETERS

Other admissible parameters with integer p; r, and Q are (1:3; 4; 3; 1:2; 6), or (1:1; 16; 9; 1:058;
18), for example. We estimated numerically that the set of all admissible tupels is contained
in

{1¡�¡2; 1¡p¡∞; 2=3¡r¡∞; 1¡P¡2; 2¡Q¡∞}:
We are grateful to Guangjun Cao [20] who �gured out the following procedure to �nd ad-
missible parameters:
Step 1: Choose � with 1¡�¡2,
Step 2: choose p with 1

�−1¡p¡
1

2(�−1)
(
3− �+

√
4 + (� − 1)2

)
,

Step 3: choose r with p2+p
1+2p¡r¡

1
�−1 ,

Step 4: choose P with r(1+2p)
r(1+2p)−p¡P¡1 +

1
p ,

Step 5: de�ne Q by Q= P
P−1 .

It requires quite a number of elementary calculations to show that the above conditions are not
self contradictory and to show that parameters found by this procedure are indeed admissible
in the sense of De�nition 2.3. We checked it carefully.
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