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Abstract. In this paper we study finite time blow-up of solutions of a hyperbolic model for
chemotaxis. Using appropriate scaling this hyperbolic model leads to a parabolic model as
studied by Othmer and Stevens (1997) and Levine and Sleeman (1997). In the latter paper,
explicit solutions which blow-up in finite time were constructed. Here, we adapt their method to
construct a corresponding blow-up solution of the hyperbolic model. This construction enables
us to compare the blow-up times of the corresponding models. We find that the hyperbolic
blow-up is always later than the parabolic blow-up. Moreover, we show that solutions of the
hyperbolic problem become negative near blow-up. We calculate the “zero-turning-rate” time
explicitly and we show that this time can be either larger or smaller than the parabolic blow-up
time.

The blow-up models as discussed here and elsewhere are limiting cases of more realistic
models for chemotaxis. At the end of the paper we discuss the relevance to biology and exhibit
numerical solutions of more realistic models.
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1. Introduction

In this paper we investigate the qualitative behavior of solutions of the following
hyperbolic model for chemotaxis in 1-D:

u+
t + γu+

x = −µ+(S, Sx)u+ + µ−(S, Sx)u−

u−t − γu−x = µ+(S, Sx)u+ − µ−(S, Sx)u− (1)
St = R(S, u+ + u−),

Here u±(t, x) denote the particle densities of right (+)/left(− ) moving parti-
cles, γ denotes the mean particle speed, and µ±(S, Sx) are turning rates (rates
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of change of direction from + to − and vice versa). The turning rates depend
not only on the concentration S(t, x) of the chemical signal, but also on its spa-
tial gradient, Sx(t, x) . In many examples of chemotactic behavior, such as for
the slime mold Dictyostelium discoideum (Dd), the bacteria Eschirichia coli or
Salmonella typhimurium, the external chemical signal S is produced or consumed
by the cell species itself. This is modeled by the precise form of the reaction term
R(S, u+ + u−) .

We consider the system (1) on an interval I = [0, l] with homogeneous Neu-
mann boundary conditions

u+(t, 0) = u−(t, 0), u−(t, l) = u+(t, l). (2)

We study three different forms of turning rates, all of which appear in the literature

µ±a (S, Sx) :=
γ

2D
(γ ∓ χ(S)Sx) (3)

µ±b (S, Sx) :=
γ

2D
(γ ∓ χ(S)Sx)+ (4)

µ±c (S, Sx) :=
γ2

2D
exp

(
∓χ(S)

γ
Sx

)
(5)

From experimental observations (see e.g. Rivero et al. [24] or Ford et al. [5])
the exponential dependence in µc is the most realistic model assumption. The
form of µa is appropriate for shallow chemical gradients, or for small chemotactic
sensitivities χ , or for large speed γ . However, in such cases, the turning rates µa

can become negative. Hence we additionally impose a restriction as for µb . We
call system (1) with (3) the unrestricted problem, system (1) with (4) the restricted
problem, and system (1) with (5) the exponential problem.

We are interested in solutions which may blow up in finite time. As shown
in Hillen and Stevens [10] for a similar model, finite time blow-up implies that
‖S(t, .)‖W 1,∞ diverges to +∞ in finite time. Hence µa , as approximation to µc

is certainly not justified. On the other hand, in the scaling limit of γ, µ large the
unrestricted system ((1) with (3)) converges to the original diffusion based model
(6) below, discussed in Levine and Sleeman [17]. Hence the unrestricted problem
appears as a generalization of (6).

We construct an exact solution for the unrestricted problem (when χ(S) =
1/S ) and thus obtain an explicit blow up time. We show that this blow up time
is larger than the blow up time for the corresponding parabolic model. However,
the turning rates vanish at points arbitrarily close to the blow up point before the
solution blows up in finite time. We call the first time for which one of the turning
rates vanish, the zero-turning-rate time and we find an explicit formula for it. As it
should be, this time is always smaller than the blow up time. The positivity of the
densities u± is no longer guaranteed. Indeed, we prove that these densities become
negative close to the blow-up time. Negative densities are certainly uninteresting
from a biological point of view. This means that the hyperbolic model becomes
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invalid just before blow-up occurs. On the other hand, the cell densities remain
positive at least until the turning rates become negative for the first time. We
are able to show that under certain circumstances, the zero-turning rate time is
larger than the blow-up time for the comparable diffusion based model. Thus the
solution of the hyperbolic model remains positive and bounded for a short time
after the blow-up of the solution of the parabolic model. This sheds new light on
the meaning of ”blow-up”. Blow-up indicates that a particular model is no longer
suitable to describe the biological phenomenon, it does not imply that blow-up
should be observed in nature. The often used interpretation of fruiting bodies to
correspond to blow-up solutions can not be true.

Negative turning rates can be interpreted as “alignment” terms. If there are
many particles moving to the right, then they force left moving particles change
direction and move to the right as well. This effect becomes so strong near blow
up, that it leads to negative density for u± . The random walk system (1) can be
transformed into an equivalent system for the total particle density, u = u+ +u− ,
and the particle flux, v = u+ − u− . The resulting system for (u, v) , (13) and
(47), is known as Cattaneo system and it consists of a conservation law and a flux
law (for Cattaneo systems for chemotaxis see [3]). Although u± become negative
somewhere we show that the total particle density u remains positive everywhere.

F. Lutscher in [18] develops and studies one dimensional models for alignment,
where positivity of the densities u± is preserved. Unfortunately, the model consid-
ered here, in case of negative turning rates, does not fall into the general framework
of Lutscher.

Using a comparison argument we show in section 3.2 that solutions of the
restricted problem exist as least as long as solutions for the unrestricted problem
and that near blow-up the exponential problem grows faster. Finally we discuss
the relation of the blow up result to more realistic scenarios and we show numerical
simulations.

The remainder of this introduction is devoted to an explanation of the above
model and to the choice of µ± in both from a biological and from a theoretical
point of view.

1.1. Diffusion based models for chemotaxis

Chemotaxis is the active orientation of moving organisms along chemical gradients.
It is observed in many natural systems and has been studied in great detail for slime
molds such as Dd [21] and bacteria, such as Salmonella typhimurium [26]. Chemo-
taxis plays a major role in tumor growth and angiogenesis. See [1, 2, 14, 16, 15, 13]
and the references cited therein.
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The phenomenon of chemotaxis and aggregation was studied mathematically
beginning with the early papers of Patlak 1953 [23] and Keller and Segel 1970
[12]. The first result on finite time blow-up was obtained by Jäger and Luckhaus
in 1992 [11]. Since then the mathematical literature on finite time blow-up for the
Patlak-Keller-Segel model has grown rapidly. For a review of the recent literature,
see Hillen [7]. Among all these results it is necessary to recall the results of [17] in
some detail since the results presented here are directly related to some of those
obtained there.

In [17] P (t, x) and W (t, x) denoted particle density and the chemical signal,
respectively. The model in [17] reads

Pt = D(Px − Pχ(W )Wx)x

Wt = R(W,P ), (6)

where D is the diffusion constant and χ(W ) is the chemotactic sensitivity. The
production-consumption function R(W,P ) is the same as for (1). Model (6) was
based on modeling considerations discussed in [22]. There it was suggested that
the above system might show finite time blow-up for the choice of χ(W ) = 1

W
and R(W,P ) = WP . This was supported by numerical simulations in [22]. In
[17] an explicit solution was found which indeed blows up in finite time. On the
interval I = [0, π] the initial conditions for this explicit solution are:

P (x, 0) =
1 + 2ε(1−Nc̄LS) cos(Nx) + (1−Nc̄LS)ε2

1 + 2ε cos(Nx) + ε2
(7)

≈ 1− 2εNc̄LS cos(Nx),

W (x, 0) =
1

1 + 2ε cos(Nx) + ε2
, (8)

≈ 1− 2ε cos(Nx)

for 0 < ε < 1 , N ∈ IN , where c̄LS is the positive root of

q̄LS(c) = c2 + Nc− 1 = 0. (9)

The blow-up time is then

T (ε,N) =
− ln |ε|
Nc̄LS

. (10)

Let ` be a nonnegative integer. For 1 > ε > 0, single point blow up occurs at
points x` = (2` + 1)/N in [0, π] . When 0 > ε > −1 , the blow up points are
x` = 2`/N in [0, π]. Thus, if N = 2 , the blow up point will occur at x = π/2 if
and only if 1 > ε > 0 . A calculation shows that 1 > Nc̄LS > 2/(1 +

√
5) .

The solution has the form

W (x, t) = exp(Ψ(x, t)) and P (x, t) = Ψt(x, t),
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where the auxiliary function Ψ(x, t) is given by

Ψ(x, t) = t− ln[1 + 2εeNc̄LSt cos(Nx) + ε2e2Nc̄LSt]. (11)

Remark 1.1. The meaning of the solution is the following: The vector [P0(x, t) ,
W0(x, t)]t ≡ [1, et]t is a spatially homogeneous solution of (6) with [1, 1] as
initial data. Given any mode number N , there is a direction [PN ,WN ]t ≡
[Nc̄LS, 1]t cos(Nx) in the closed subspace of L2(0, π)× L2(0, π) consisting of the
closure of functions which satisfy P [log(P/W )]x = 0 at x = 0, π , and a curve
given by

−→
R (ε) ≡ [P (·, 0, ε),W (·, 0, ε)]t in L2(0, π)×L2(0, π) of initial data pass-

ing through [1, 1] with the property that any solution initially emanating from
this curve will blow up in a finite time.

(This interpretation was not spelled out in [17].) The result tells us that in ev-
ery neighborhood of the initial data for the spatially homogeneous solution [1, et]t ,
there are solutions of arbitrarily high mode number which begin in this neighbor-
hood and blow up in finite time. The numerical evidence suggests, but does not
prove, that every arbitrarily small non constant perturbation of the initial data for
[1, et]t (which must have a non trivial projection onto at least one of the directions
[Nc̄LS, 1]t cos(Nx) for some N ) must blow up in finite time.

1.2. Hyperbolic models for chemotaxis

There are several reasons to study hyperbolic models for chemotaxis as extensions
of diffusion based models. For example, as one sees from the representation formula
for the solution of the initial value problem for the heat equation, u(·, t) = G ∗
u0(t) , solutions for which the initial function u0 has compact support become
everywhere positive for arbitrarily small t > 0 , i.e., the propagation speed for
such classical diffusion based models is infinite. Einstein [4] criticized such diffusion
based models in 1906 as being physically unrealistic for small times.

The underlying model assumptions and parameters which lead to hyperbolic
models on the one hand and to parabolic models on the other hand are very dif-
ferent. The parameters for diffusion based models, such as diffusion rate D or
drift coefficients, e.g. χ(S) , are related to population spread. They are measured
in experiments by mean squared displacements or mean drifts of the population
as a whole. Hyperbolic models, in contrast, are based on the individual move-
ment properties of the species at hand, such as the speed γ and turning rates
µ± . These are measured by following individual particles and evaluating its path.
From this point of view, one can view hyperbolic models as based on the move-
ments of individuals while parabolic models are based on the ensemble average
movement of populations as a whole.

Segel, in [25], first used the hyperbolic model (1) to analyze a very specific
scenario. Later Rivero et al [24] and Ford et al [6, 5] used it to describe experi-
mental data. Hillen and Stevens [10] and Hillen, Rohde, Lutscher [9] studied the
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hyperbolic chemotaxis model in 1-D from a more theoretical perspective. In these
works, the issues of local and global in time existence of solutions were considered
theoretically and numerically. The present work is in fact a continuation of the
two previous papers [9, ?]. In more than one space dimension Hillen and Othmer
[8, 20] considered transport models while in [3], the authors studied Cattaneo-type
models. An extensive review can be found in [7].

Diffusion based models can be considered to be the parabolic limit of hyperbolic
models. This limit appears either for large speed and large turning rate or for
appropriately scaled time and space variables. In the latter case the diffusion
based models are the outer expansions of a singular perturbation expansion of the
hyperbolic model [8, 20].

In case of large speeds and turning rates the quotient γ2

µ++µ− plays the role of
an effective diffusion coefficient. For each of the turning rates µa, µb and µc as
defined above (3)-(5), we can define a corresponding effective diffusion coefficient

Dj(γ) :=
γ2

µ+
j + µ−j

, for j ∈ {a, b, c}.

We see that in each case Dj(γ) → D as γ →∞ .

2. The unrestricted problem

Here the hyperbolic chemotaxis model (1) with Neumann boundary conditions (2)
with the choice of µ± as in (3), χ(S) = a

S and R(S, u+ + u−) = S(u+ + u−) is
investigated.

By a local solution of (1) with Neumann boundary conditions (2) we mean a
classical solution on some space-time cylinder [0, π]× [0, Texist) . A local solution
is said to be global if Texist = +∞.

The following theorem is established:

Theorem 2.1. For the above choices of χ,R , in every neighborhood of the initial
data for the spatially homogeneous solution (U+, U−, S) = (1/2, 1/2, et) , there is
a solution with data in this neighborhood which blows up in finite time.

Proof. To prove this, we construct a solution with data in a uniform neighborhood
of (1/2, 1/2, 1) which blows up in finite time. Following the methods developed
in [17], the above system is reduced to a single higher order equation for a single
function Ψ . Then a series solution ansatz is used to find an explicit solution which
blows up in finite time.

In the case studied here we have

µ±a (S, Sx) =
γ

2D
(γ ∓ χ(S)Sx). (12)
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We rewrite system (1) as a system for u = u+ + u− and v = u+ − u− :

ut + γvx = 0,

vt + γux =
aγ

D

uSx

S
− γ2

D
v, (13)

St = Su.

Now define
Ψ(t, x) := ln (S(t, x)) ,

a definition that is meaningful in view of the physical interpretation of S as a
concentration.† It follows that

Ψt =
St

S
= u and Ψx =

Sx

S
.

The first equation in (13) can be written as

Ψtt + γvx = 0, (14)

while the second equation of (13) reads

vt + γΨtx =
γ

D
(−γv + aΨtΨx) . (15)

Differentiating both sides of (14) with respect to t , both sides of (15) with respect
to x and eliminating vtx between the resulting equations leads to

DΨtxx − D

γ2
Ψttt = Ψtt + a (ΨtΨx)x . (16)

As in [17] set
Ψ = t + h.

Then for a = 1 (which corresponds to a = −1 in [17]),

Dhtxx − D

γ2
httt = htt + hxx + (hxht)x. (17)

To compare this equation with the corresponding equation considered in [17],
which did not include the term httt , let D = 1 and keep γ as a free parameter.
Later we will see how γ modifies the blow-up time. We write (17) in the following
form:

htt + hxx − htxx = − 1
γ2

httt − (hxht)x (18)

† The meaning of −ψ as the negative logarithm of concentration is the same as that of pH
for aqueous solutions, i. e., the negative (base 10) logarithm of the hydrogen ion concentration.
The equation −ψt = u is just the statement that the cell density increases linearly with the
rate of change of pS.
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In the parabolic limit for γ → ∞ the httt term vanishes and equation (3.2a) of
[17] results. As in [17], choose l = π and assume a solution of series-form

h(t, x) =
∞∑

n=1

aneNnct cos(Nnx). (19)

This function corresponds to the ansatz chosen in [17], where N ∈ IN specifies
the number of inner local maxima. The case N = 2 leads to solutions which have
a single maximum or minimum in the center of the domain. For the above choice
of h(t, x) in (19)

htt =
∞∑

n=1

N2c2n2aneNnct cos(Nnx)

hxx =
∞∑

n=1

−N2n2aneNnct cos(Nnx)

htxx =
∞∑

n=1

−N3n3caneNnct cos(Nnx)

httt =
∞∑

n=1

N3n3c3aneNnct cos(Nnx)

and as shown in [17], using the addition formulas for sin and cos :

(hxht)x = −1
2
N3c

∞∑
n=1

n

(
n∑

k=1

k(n− k)akan−k

)
eNnct cos(Nnx).

Then the left hand side of (18) becomes

htt + hxx − htxx =
∞∑

n=1

N2n2(c2 − 1 + Nnc)aneNnct cos(Nnx)

while the right hand side of (18) may be written as

− 1
γ2

httt − (hxht)x

=
∞∑

n=1

(
−N3n3c3

γ2
an +

1
2
N3nc

n∑
k=1

k(n− k)akan−keNnct cos(Nnx)

)
. (20)

Comparing coefficients, it follows that for each n ≥ 1 :(
N2n2(c2 − 1) + N3n3c +

N3n3c3

γ2

)
an =

1
2
N3nc

n∑
k=1

k(n− k)akan−k.

In particular for n = 1(
N2(c2 − 1) + N3c +

N3c3

γ2

)
a1 = 0.
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For the cubic

q(c) =
N

γ2
c3 + c2 + Nc− 1, (21)

notice that q(0) = −1 , q(1/2) = N
8γ2 + N

2 − 3
4 > 0 , for N ≥ 2 , and q′(c) =

3N
γ2 c2 + 2c + N which is positive for c > 0. Thus this cubic has a unique positive

root, c̄ say, which must satisfy c̄ ∈ (0, 1/2). † For c = c̄ one can choose a1

arbitrarily.
For n > 1 we get from (20)(

Nn

γ2
c̄3 + c̄2 − 1 + Nnc̄

)
nan =

1
2
Nc̄

n−1∑
k=1

kak(n− k)an−k

which may be simplified by defining bn ≡ nan to obtain(
Nn

γ2
c̄3 + c̄2 − 1 + Nnc̄

)
bn =

1
2
Nc̄

n−1∑
k=1

bkbn−k. (22)

If c̄ is any root of q(c) = 0 with q given in (21), then N
γ2 c̄3 + Nc̄ = 1 − c̄2.

Notice also that q(−1) = − N
γ2 −N 6= 0 , so that no root of q(c) is a root of unity.

This simplifies the left hand side of (22) so that(
Nn

γ2
c̄3 + c̄2 − 1 + Nnc̄

)
= (n− 1)(1− c̄2).

From (22) it follows that

bn =
Nc̄

2(n− 1)(1− c̄2)

n−1∑
k=1

bkbn−k. (23)

Equation (23) simplifies further if one takes bn in the form

bn =
2(1− c̄2)

Nc̄
εn

where εn will be chosen later. For this choice of bn , from (23) we obtain

2(1− c̄2)
Nc̄

εn =
1

n− 1
Nc̄

2(1− c̄2)

n−1∑
k=1

(
2(1− c̄2)

Nc̄

)2

εkεn−k

† This cubic has no negative roots if the discriminant of the quadratic q′(c) is negative, i. e.
in case of N=2, if γ2 < 12. If this inequality fails it will have zero, one or two roots according
as q(c−) < 0 , q(c−) = 0 or q(c−) > 0 where c− is the smaller of the two (necessarily
negative) roots of q′(c) = 0. The corresponding solutions will not be seen in computations
made based on finite difference or finite element calculations as they will be dominated by the
components of the numerical solution in the direction of the solution corresponding to the
positive root.
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Thus

εn =
1

n− 1

n−1∑
k=1

εkεn−k. (24)

Finally, if ε1 = ε , it follows from equation (24) that ε2 = ε2 . By an induction
argument, εn = εn .
Therefore

an =
1
n

bn =
2(1− c̄2)

Nc̄

εn

n
.

Hence a candidate for a solution of (18) is

h(t, x) =
2(1− c̄2)

Nc̄

∞∑
n=1

εn

n
eNnc̄t cos(Nnx) (25)

By the ratio test, the sum in (25) converges absolutely and uniformly if and only
if

|ε|eNc̄t = lim
n→∞

∣∣∣∣ εn+1

n + 1
eN(n+1)c̄t n

εn
e−Nnc̄t

∣∣∣∣ < 1. (26)

If c̄ < 0 , this is true for any ε ∈ (−1, 1) Thus, whenever q(c) has negative roots,
the solutions given by (25) with ε ∈ (−1, 1) are stable, and in fact, converge
uniformly to zero, i.e., Ψ converges uniformly to Ψ = t.

Next suppose c̄ > 0 and ε ∈ (−1, 1). The first time such that (26) is violated
occurs when

t = Th =
− ln |ε|

Nc̄
. (27)

This Th is the blow-up time of the solution of our hyperbolic model given in (25).
For N = 2 and ε > 0, the single blow up point is (π

2 , Th).

Just as in [17], by writing cos θ = (exp(iθ) + exp(−iθ))/2 one can sum the
resulting geometric series in (25) to find that (after replacing ε by −ε to set the
blow up point in the center of the interval for positive ε ):

Ψ(x, t) = t− ln(1 + 2εeNc̄t cos(Nx) + ε2e2Nc̄t). (28)

Then
S(x, t) = exp(Ψ(x, t)), u(x, t) = Ψt(x, t).

The function v(x, t) is found from the second equation of (13) to be

v(x, t) = v(x, 0)e−γ2t +
∫ t

0

[aΨx(x, s)− γΨs(x, s)]eγ2(s−t) ds. (29)

The function v(x, 0) is the initial difference between the densities of the right and
left moving particles. Without loss, one may assume at the outset that v(x, 0) = 0.
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The initial conditions for this particular solution are

u(x, 0) =
1 + 2ε(1−Nc̄) cos(Nx) + (1− 2Nc̄)ε2

1 + 2ε cos(2x) + ε2
, (30)

Ψ(x, 0) = − ln(1 + 2ε cos(Nx) + ε2).

The total mass of the exact solution is given by

U0(ε) =
∫ 2π

0

u(x, 0) dx.

Then u±(x, 0) = (1/2)u(x, 0). It is easy to check that as ε → 0 ,

(u+(x, 0), u−(x, 0), S(x, 0)) → (1/2, 1/2, 1)

uniformly in x which is the initial data for the spatially homogeneous solution
(U+, U−, S) = (1/2, 1/2, et) as was claimed.

Next, notice that

Ψx(x, 0) =
2Nε sin(Nx)

1 + 2ε cos(Nx) + ε2

so that for small enough ε , the turning rates are initially positive. Therefore the
solution is local in the above sense.

At the blow up time for x 6= π/2 ,

µ± =
γ

2
[γ ∓Ψx] = γ

[
γ

2
∓ tan

(
Nx

2

)]
.

Thus the turning rates for this solution must change sign at some time earlier than
the blow up time.

Remark 2.2. The geometric interpretation of the resulting solution is precisely
the same as that discussed in Remark 1.1.

The turning rates change sign near the center of the interval where u is blowing
up. Notice that µ+ vanishes at a point to the left of π/2 while the same is true
for µ− to the right of π/2 . In other words, to the left of the center point, particles
that are moving to the left are being converted to particles that are moving to the
right while to the right of the center point, the reverse is true.

In Hillen and Stevens [10] it was shown that if the turning rates are positive and
the initial populations are positive, then the solutions stay positive for all times
in the existence interval. We will show later that in the case studied here the
negative turning rates will ultimately lead to densities u± which become negative
near the blow-up point. First we study the zero-turning-rate time.
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2.1. The zero-turning-rate time

By the choice of the turning rates (3) we find that one of the turning rates becomes
zero as soon as the eikonal equation

|Ψx(x, T (x))| = γ (31)

is satisfied for some x ∈ [0, π]. We denote with Ttr the first time such that (31)
is satisfied for some x ∈ [0, π] . For N = 2 we give an explicit formula for Ttr in
(32).

Since Ttr(x) is to be a minimum at some point x = x1 in (0, π) † and since
Ψx is analytic except at the blow up point, it must be the case that T ′tr(x1) = 0.
By the implicit function theorem, in the case Ψx > 0 ,

Ψx(x1, Ttr(x1)) = γ

and

0 = Ψxx(x1, Ttr(x1)) + Ψxt(x1, Ttr(x1))T ′tr(x1) = Ψxx(x1, Ttr(x1)).

Setting Z = ε exp[2c̄Ttr(x1)] , these equations yield:

γ =
4Z sin(2x1)

1 + 2Z cos(2x1) + Z2
,

8Z cos(2x1) =
−(4Z sin(2x1))2

1 + 2Z cos(2x1) + Z2
.

From these, tan(2x1) = −2/γ , an equation which has one root in (π/4, π/2)
and one in (3π/4, π). Since the preceding equations tell us that the sine must be
positive and the cosine negative, we have

cos(2x1) =
−γ√
4 + γ2

, sin(2x1) =
2√

4 + γ2

and x ∈ (π/4, π/2). This leads to the quadratic

0 = γ(1 + Z2)− 2
√

4 + γ2Z.

Solving the quadratic and taking the smaller root (the only root in (0, 1) ) one
finds that the turning rate first changes sign at time

Ttr = − ln ε

2c̄
+

lnZ(γ)
2c̄

(32)

where

Z(γ) =
γ/2√

1 + (γ/2)2 + 1.
(33)

The corresponding blow up time for the unrestricted hyperbolic problem is

Th =
− ln ε

2c̄
.

† If γ > 0 , x1 cannot be an end point.
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As remarked above, the turning rates vanish before the solution of the unrestricted
hyperbolic problem blows up (if it does at all) and indeed 0 < Ttr < Th. Notice
that Ttr/Th − 1 → 0 as γ → +∞.

Notice also that if ε > Z(γ), the solution fails to be local in the sense of the
definition if it is started at time zero. If the solution is started at a time t̄ < Ttr ,
then the solution will be local on [t̄, Ttr]. As γ → 0 , t̄ → −∞.

2.2. Negative densities u± near blow up

Since the turning rates become negative near blow-up, we can no longer guarantee
that the densities u± stay non-negative. Indeed, for N = 2 and ε > 0 we prove
that if γ is small enough and t close to Th , then in a neighborhood of the blow-
up point x = π/2 there is an interval to the right of π/2 where u+(x, t) < 0 ,
and another interval to the left of π/2 where u−(x, t) < 0 . Close to π/2 we find
always u±(x, t) > 0 and in the whole neighborhood we have always u(x, t) > 0 .

Theorem 2.3. Let α ∈ (Ttr/Th, 1) . There exist γ∗(α) > 0 such that for each
γ < γ∗ there exists t∗(γ) and δ, ρ, κ > 0 with δ > ρ > κ such that for all t with
Ttr ≤ t∗ ≤ t ≤ αTh

(i) u+(x, t) < 0, for x ∈
(π

2
+ ρ,

π

2
+ δ

)
(ii) u−(x, t) < 0, for x ∈

(π

2
− δ,

π

2
− ρ

)
(iii) u+(x, t) > 0, for x ∈

(π

2
− δ,

π

2
+ κ

)
(iv) u−(x, t) > 0, for x ∈

(π

2
− κ,

π

2
+ δ

)

Moreover we have for all t with Ttr ≤ t ≤ αTh that

(v) u(x, t) > 0, for x ∈
(π

2
− δ,

π

2
+ δ

)
.

Proof. We use asymptotic arguments near the blow up point to prove this result.
In (29) we see that v(x, t) can be expressed in terms of derivatives of Ψ(x, t) ,
which is given in (28). For N = 2 and ε > 0 we summarize:
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δ(α)BI II III IV V

π/2

(     ,T  )π/2 hTh

α Th

t*

Ttr

π/2+κπ/2−κ
π/2−ρ π/2+ρ

π/2+δπ/2−δ

Dδ

t

x

Figure 1. Schematic of the proof of Theorem 2.3. Inside the cone Dδ we find a cylinder Bδ(α)
which for t∗ < t ≤ αTh is divided into five subregions. We show that u− < 0 on I , u− > 0
on III ∪ IV ∪ V , u+ < 0 on V , u+ > 0 on I ∪ II ∪ III , and u = u+ + u− > 0 on
I ∪ II ∪ III ∪ IV ∪ V .

Lemma 2.4.

Ψ(x, t) = t− ln
(
1 + 2εe2c̄t cos(2x) + ε2e4c̄t

)
,

Ψt(x, t) = 1− 4εc̄e2c̄t
(
cos(2x) + εe2c̄t

)
1 + 2εe2c̄t cos(2x) + ε2e4c̄t

,

Ψx(x, t) =
4εe2c̄t sin(2x)

1 + 2εe2c̄t cos(2x) + ε2e4c̄t
,

Ψtx(x, t) =
8εc̄e2c̄t sin(2x)

(
1− ε2e4c̄t

)
(1 + 2εe2c̄t cos(2x) + ε2e4c̄t)2

.

Moreover
ΨtΨx −Ψxt = (1− 2c̄)Ψx. (34)

Notice that

Ψ(x, t) = t− 2 ln
(
1− εe2c̄t

)− 2 ln
(
1 + (cos(2x) + 1)/(εe2c̄t − 1)2

)
= t− 2 ln

(
1− εe2c̄t

)− 2 ln
(
1 + (cos(2x) + 1)/(e2c̄(Th−t) − 1)2

)
.(35)

We illustrate the construction of the proof in Figure 1. Let 0 < δ < (1 − α)c̄Th
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be fixed and let Dδ be a backward cone of points through (π/2, Th) defined as

Dδ :=
{

(x, t) :
∣∣∣x− π

2

∣∣∣ ≤ δ
Th − t

Th − αTh
, Ttr ≤ t ≤ Th

}

For each α ∈ (Ttr/Th, 1) we consider a cylinder of width δ and height αTh which
is contained in Dδ :

Bδ(α) =
{

(x, t) :
∣∣∣x− π

2

∣∣∣ ≤ δ, Ttr ≤ t ≤ αTh

}
Notice that the logarithmic term in the second equation of (35) can be expanded

in a power series in the variable z ≡ (x − π
2 )/(c̄(Th − t)) . The convergence will

be absolute and uniform as long as |z| ≤ δ/((1− α)c̄Th) < 1.
We have the following Lemma:

Lemma 2.5. The expansions

Ψ(x, t) = t− 2 ln
(
1− εe2c̄t

)
+O

((
x− π

2

)2
)

u(x, t) = Ψt(x, t) = 1 +
4εc̄e2c̄t

1− εe2c̄t
+O

((
x− π

2

)2
)

Sx(x, t)
S(x, t)

= Ψx(x, t) =
−8εe2c̄t

(1− εe2c̄t)2
(
x− π

2

)
+O

((
x− π

2

)2
)

ux(x, t) = Ψtx(x, t) =
−16εc̄e2c̄t

(
1 + εe2c̄t

)
(1− εe2c̄t)3

(
x− π

2

)
+O

((
x− π

2

)2
)

are valid on the set Dδ . On the set Bδ(α) (where Th − t ≥ (1 − α)Th so that
|x − π/2| ≤ δ ≤ δ(Th − t)/((1 − α)Th) ), each order constant is proportional to
some positive power of δ .

These expansions near x = π/2 reveal the nature of singularity which triggers
the blow-up of these specific terms. For brevity, we write, to first order in x−π/2,

Ψ ≈ Θ1(t), Ψt ≈ Θ2(t), Ψx ≈
(π

2
− x

)
Θ3(t), Ψxt ≈

(π

2
− x

)
Θ4(t),

with non-negative functions Θ1(t), . . . ,Θ4(t) , which can be easily identified from
the above Lemma. With use of formula (34) we find that

ΨtΨx −Ψxt =
(π

2
− x

)
(1− 2c̄)Θ3(t) +O

((
x− π

2

)2
)

.

With use of (29) we can then write v(x, t) near π/2 as

v(x, t) = γ

∫ t

0

eγ2(s−t)(1− 2c̄)
8εe2c̄s

(1− εe2c̄s)2
ds

(π

2
− x

)
+O

((
x− π

2

)2
)

.
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Now suppose x > π/2 and t ≤ αTh. Then we can choose δ small enough to
ensure that the second order term can be neglected for |x−π/2| ≤ δ . Notice that
δ does not depend on γ . Then there is an interval

I1 :=
(π

2
+ ρ,

π

2
+ δ

)
such that v(x, t) < 0 on that interval as long as t ≤ αTh .

Using the inequalities 1 > eγ2(s−t) > e−γ2t we estimate v from above and
below:

0 > 4γ
ε(1− 2c̄)
c̄(1− ε)

(π

2
− x

)
e−γ2t (e

2c̄t − 1)
1− εe2c̄t

≥ v(x, t) ≥ 4γ
ε(1− 2c̄)
c̄(1− ε)

(π

2
− x

) e2c̄t − 1
1− εe2c̄t

.

(36)
Now consider u+ = (u + v)/2 on this interval I1 . Since v(x, t) < 0 on I1 we

use estimate (36) to find that

u+(x, t) ≤ 1 +
[
4c̄ +

(π

2
− x

)
2γ

1− 2c̄

c̄
e−γ2t

]
εe2c̄t

1− εe2c̄t
. (37)

(Here we are assuming that αTh > t > ln 2/(2c̄) so that e2c̄t − 1 ≥ e2c̄t/2 .) We
have also used 1− ε ≈ 1. )

We multiply the expression in the brackets by c̄/4 and study the sign of

c̄2 +
γ

2

(π

2
− x

)
(1− 2c̄)e−γ2t.

We claim that c̄(γ) → 0 as γ → 0 . We must choose γ small enough such that
the second term dominates c̄2 on I1 . On I1 , π/2−x ≤ −ρ . Hence it is sufficient
to show that

c̄2 − γ

2
ρ(1− 2c̄)e−γ2t < 0 (38)

for appropriate γ > 0 . Since c̄ satisfies q(c̄) = 0 , where q is given in (21), we
have

1− 2c̄ = c̄2

(
2c̄

γ2
+ 1

)
Then (38) holds if

−ϑ := c̄2

(
1− ρe−γ2t

(
2c̄

γ
+ γ

))
< 0,

i.e., if

ρe−γ2t

(
2c̄

γ
+ γ

)
> 1. (39)

We have the following lemma:

Lemma 2.6. The function γ 7→ c̄(γ)/γ is monotonically decreasing for γ small
enough. Moreover,

lim
γ→0

c̄(γ)3

γ2
=

1
2
, and lim

γ→0

c̄(γ)
γ

= +∞.
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Proof. Notice that the Lemma tells us that we need only show that the first term
in (39) will be uniformly large when γ is small. Recall q(c̄) = 0 . If we multiply
both sides of (21) by γ2 and note that c̄ ∈ (0, 1/2) , it follows that

lim
γ→0

c̄(γ) = 0.

From q(c̄) = 0 it follows that

lim
γ→0

(
2c̄3

γ2
+ c̄2 + 2c̄− 1

)
= 0

and the first claim of the lemma follows. Since

c̄

γ
=

(
c̄3

γ2

) 1
3 1

γ
1
3

the second limit follows as well. Using q(c̄) = 0 we find that

d

dγ

c̄(γ)
γ

= 4
c̄3

γ4

(
6c̄2

γ2
+ 2c̄ + 2

)−1

− c̄

γ2

Since c̄/γ → +∞ as γ → 0+ , it follows from this last that near γ = 0 , the
right hand side of this last equation is nearly −c̄/(3γ2) and hence near γ = 0 ,
d
dγ

c̄(γ)
γ < 0 .

If we can show that e−γ2t is bounded away from zero for γ small enough, then
we can satisfy (39). We know that Ttr ≤ t ≤ αTh . We denote the dependence on
γ by Ttr(γ) and Th(γ) . Using (32) we find

γ2Ttr(γ) = −γ2 ln ε

2c̄(γ)
+

γ2 lnZ(γ)
2c̄(γ)

=
− ln ε + lnZ(γ)

2

(
γ2

c̄3

) 1
3

γ
4
3 −→ 0 for γ → 0

and

γ2Th(γ) = −γ2 ln ε

2c̄(γ)
−→ 0 for γ → 0.

Hence we have shown the following:

Lemma 2.7. There exists a γ∗(α) > 0 such that for all 0 < γ < γ∗ the inequality
(39) is satisfied for all t with Ttr ≤ t ≤ αTh .

From this Lemma and (37) we find that for all x ∈ I1

u+(x, t) ≤ 1−
(

4
c̄
ϑ

εe2c̄t

1− εe2c̄t

)
.

We find
εe2c̄t

1− εe2c̄t
−→ ε1−α

1− ε1−α
, as t → αTh.
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Note that ε1−α

1−ε1−α is a number independent of γ and c̄ . Since ϑ and 1/c̄ become
large as γ → 0 , there is a t∗ > Ttr , t∗ < αTh such that

u+(x, t) < 0 for all x ∈ I1, t∗ ≤ t ≤ αTh,

which proves part (i) of the Theorem 2.3. Part (ii) follows by the same argument
applied to u− .

Moreover, for all t ≤ αTh and for all |x − π/2| < κ small enough and hence
for all x ∈ (π/2− δ, π/2 + κ) we get

1 +
(

4c̄ +
(π

2
− x

)
4γ

1− 2c̄

c̄
e−γ2t

)
εe2c̄t

1− εe2c̄t
> 0,

which proves (iii) of the above Theorem 2.3. Again claim (iv) follows with a
symmetrically used argument.

Finally, from the expansion of u(x, t) as in Lemma 2.5 we see that

u(x, t) > 0, for all x ∈ (π/2− δ, π/2 + δ),

which completes the proof of Theorem 2.3

3. Comparison results

In this section we first compare the blow-up results for the hyperbolic to the
parabolic problem. Then we compare the three different choices of the turning
rate µ± as given in (3), (4) and (5). The last part of this section compares the
third order operator which appears during the analysis of the hyperbolic system
to the corresponding operator of the parabolic system. Indeed it turns out that
the hodograph analysis, as done in [17] carries over without modification.

3.1. Comparison with the blow-up results in [17]

To compare the blow-up times of the unrestricted hyperbolic model (1) (3) with
those of its parabolic limit (6), one must examine the characteristic equations
which define the critical value c̄ . Here c̄ is given as the smallest positive root of
q(c) , where

q(c) =
2
γ2

c3 + c2 + 2c− 1.

For γ →∞ the corresponding characteristic function for (6), is

qLS(c) = c2 + 2c− 1.

Its roots are
√

2− 1 and −√2− 1 . Hence for (6), c̄LS =
√

2− 1 ≈ 0.41421 .
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Thus,

q(c̄LS) =
2
γ2

(
√

2− 1)3 > 0

and for c > c̄LS , one has qLS(c) > 0 . Consequently, q(c) > 0 for all c > c̄LS

and 0 < c̄ = c̄(γ) < c̄LS where c̄(γ) is the positive root of q(c). Since 0 =
2(c̄)3 + γ2[(c̄)2 + 2c̄ − 1] and since c̄(γ) ∈ (0, 1) is a bounded function of γ it
follows that

lim
γ→+∞ c̄(γ) = c̄LS (40)

and, as we saw above,
lim

γ→+0
c̄(γ) = 0. (41)

Thus, in the limit of infinite mean particle speed, the blow up time approaches the
parabolic blow up time while for zero particle speed, there is no blow up at all.
That is, as the mean particle speed decreases to zero, the blow up time recedes
to +∞. In order to compare the blow-up times properly, we take the same ini-
tial data for the diffusion case as for the unrestricted hyperbolic case. The initial
conditions for the diffusion based problem (6), are given in (7) and (8) whereas
the initial conditions for the hyperbolic model are given by (30) with v(x, 0) = 0 .
Observe that the initial data are different for c̄ 6= c̄LS . For small ε , however, the
difference is of order ε. We study N = 2 only.

For the moment, let ε and c̄LS refer to the diffusion based model of (6) and
ε̄ and c̄ refer to the unrestricted hyperbolic model. The initial conditions for the
signal W and S read

W (x, 0) =
1

1 + 2ε cos(2x) + ε2
and S(x, 0) =

1
1 + 2ε̄ cos(2x) + ε̄2

(42)

respectively. For ε and ε̄ small enough, W (x, 0) ≈ 1 and S(x, 0) ≈ 1 .

For the cell populations P and u , respectively,

P (x, 0) ≈ 1− 4εc̄LS cos(2x) and u(x, 0) ≈ 1− 4ε̄c̄ cos(2x). (43)

If
ε̄ := ε

c̄LS

c̄
(44)

so that ε̄ > ε , then |W (x, 0) − S(x, 0)| < c1ε and |P (x, 0) − u(x, 0)| < c2ε for
some constants c1, c2 independent of ε . Hence the data set for each problem
converges uniformly to

[S, u](t = 0) = [P,W ](t = 0) = [1, 1]

as ε → 0 . The corresponding blow up time for the parabolic and unrestricted
hyperbolic problems are given by:

Tp =
− ln ε

2c̄LS

and Th =
− ln ε̄

2c̄
.
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respectively. A calculation gives

Th

Tp
=

c̄LS

c̄

[
1− 1

ln ε
ln

c̄LS

c̄

]
. (45)

Since c̄LS > c̄ > 0 and 0 < ε < 1 it follows that Th > Tp . Both Th → +∞ and
Tp → +∞ as ε → 0+ , as does their difference. However, we have:

Theorem 3.1. Assume (P,W ) and (u, S) are solutions of (6) and (1) respec-
tively with initial values given in (42) and (43) with ε, ε̄ related by (44). Then
Th > Tp and

Th

Tp
→ c̄LS

c̄

from below as ε → 0+. Furthermore, this ratio approaches unity as γ → +∞ ,
and +∞ as γ → 0+ independent of ε.

Proof. This follows from (45), (40) and (41) since the latter two limits do not
depend upon ε.

Thus, although the data sets for each problem can be made arbitrarily close in
the uniform norm, the blow up times will be arbitrarily far apart.

Now we compare the zero-turning-rate time Ttr of the hyperbolic problem to
the parabolic blow-up time Tp .

Theorem 3.2. Assume (P,W ) and (u, S) are solutions of (6) and (1) respec-
tively with initial values given in (42) and (43) with ε, ε̄ related by (44). Then

Ttr

Tp
<

c̄LS

c̄
.

Moreover we have
Tp < Ttr as ε → 0+

and
Tp > Ttr as ε → 1−.

Proof. The proof of this follows from the observation that

Ttr =
c̄LS

c̄
Tp − 1

2c̄
log

[
c̄LS

c̄Z(γ)

]
. (46)

From the definition of Z(γ) in (33) and the fact that c̄LS > c̄ > 0 , the argument
of the logarithm is larger than unity. We use the explicit form of Tp to write the
difference as

Ttr − Tp =
( c̄LS

c̄
− 1

) ln (1/ε)
2c̄LS

− 1
2c̄

log
[

c̄LS

c̄Z(γ)

]
.
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As ε → 0 the first term on the right hand side dominates and is positive. As
ε → 1 the first term converges to zero and the negative second term dominates.
Thus it is possible for the hyperbolic problem to develop vanishing turning rates
before or after the parabolic problem blows up.

Example. In order to illustrate these blow-up times we choose the parameters
according to a realistic example. For E. coli-bacteria as studied by Ford [6, ?]
we have a speed of γ = 0.01 mm

s and a diffusion constant of D = 10−3 mm2

s .
To make this clear: We do not claim that E. coli chemotaxis shows blow-up we
just choose the above values get some numbers which we can compare explicitely.
A realistic model for E. coli has to include saturation effects as will be discussed
later.
In the foregoing analysis we nondimensionalized D = 1 , hence we select a length
scale of

√
10−3 mm. In that scale D = 1 and γ = 0.316 .

We know that c̄LS =
√

2 − 1 and with use of MAPLE we find c̄ = 0.26896 . We
check two values for ε .
In case of ε = 0.001 we find

Ttr ≈ 6.51 s, < Tp ≈ 8.34 s, < Th ≈ 12.04 s

and for ε = 10−6 we get

Tp ≈ 16.68 s, < Ttr ≈ 19.35 s, < Th ≈ 24.88 s.

Which shows that the blow-up time is about 50 % larger than in the comparable
diffusion based model. In the first case Ttr < Tp and in the latter case Ttr > Tp .

We saw in the previous example that the blow-up time depends sensitively on
the size of γ . As the particle speed is decreased, the blow up time increases. In
cases where Ttr > Tp we find that the hyperbolic model is still a valid model
(densities are positive) in a region where the diffusion based model already blows-
up.

3.2. A local comparison result

In this section we show a result that implies that solutions to the exponential
problem (system (1) with (5)) grow faster, and that solutions for the restricted
problem (system (1) with (4)) grow slower than the blow-up solution of the un-
restricted problem (system (1) with (3)). Before we do this we study system (1)
for general µ± first. As done above for the unrestricted problem, we transform
system (1) into total particle density u = u+ +u− and particle flux v = u+−u− :

ut + γvx = 0
vt + γux = (µ− − µ+)u− (µ+ + µ−)v

St = Su
(47)
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Figure 2. The right figure shows µ+ + µ− and the left figure shows µ− − µ+ as functions of
Sx for the three cases a), b), c), respectively.

The quantity µ− − µ+ is responsible for aggregation, whereas the term µ+ + µ−

in a sense, describes the adaptation/aggregation speed. We study these terms for
the three cases a), b), c) which are relevant here.

In case a), (3), we have

µ−a − µ+
a =

γ

D
χ(S)Sx, µ+

a + µ−a =
γ2

D
. (48)

For case b), (4), we find

µ−b − µ+
b =



− γ

2D (γ − χ(S)Sx), if Sx < − γ
χ(S)

γ
D χ(S)Sx, if − γ

χ(S) ≤ Sx ≤ γ
χ(S)

γ
2D (γ + χ(S)Sx), if γ

χ(S) < Sx

µ+
b + µ−b =




γ
2D (γ − χ(S)Sx), if Sx < − γ

χ(S)

γ2

D , if − γ
χ(S) ≤ Sx ≤ γ

χ(S)
γ

2D (γ + χ(S)Sx), if γ
χ(S) < Sx

(49)

In case c), (5), we have

µ−c − µ+
c =

γ2

D
sinh

(
χ(S)

γ
Sx

)
, µ+

c + µ−c =
γ2

D
cosh

(
χ(S)

γ
Sx

)
. (50)

For constant χ we sketch these six expressions in Figure 2.
We have

µ+
c + µ−c ≥ µ+

b + µ−b ≥ µ+
a + µ−a ≥ 0 (51)
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and for Sx < 0 that

µ−c − µ+
c ≤ µ−a − µ+

a ≤ µ−b − µ+
b ≤ 0. (52)

Now, to compare the unrestricted, the restricted and the exponential problem,
we assume an initial condition with a single peak just a moment before the turn-
ing rates of the unrestricted problem would become negative somewhere. I.e. if
(u(x, t), v(x, t), S(x, t)) denotes the solution of the unrestricted problem which we
constructed above for N = 2 and ε > 0 , then we choose initial conditions

(U0(x), V0(x), S0(x)) := (u(x, Ttr − ν), v(x, Ttr − ν), S(x, Ttr − ν)),

where Ttr is the zero turning rate time and ν > 0 is small.

Theorem 3.3. Let (ua, va, Sa), (ub, vb, Sb) , and (uc, vc, Sc) denote the solutions
of the unrestricted, restricted and exponential problem, respectively, with the same
initial values (U0, V0, S0) . Then there exist δ > 0 and a time τ > 0 such that

0 ≤ ub(x, t) ≤ ua(x, t) ≤ uc(x, t) (53)

for all x ∈ (π/2− δ, π/2 + δ) and 0 ≤ t < τ .

Proof. As in the previous section we expand the solution close to π/2 in terms of
(π/2− x) . We find that

u(x, t) ≈ α(t), v(x, t) ≈ (π/2− x) β(t), Sx(x, t) ≈ (π/2− x) ϕ(t), (54)

with appropriate non-negative functions α(t), β(t), ϕ(t) . If we use these expan-
sions in (47) we find

αt = β

βt = µ−−µ+

π/2−x α− (µ+ + µ−)β
ϕt = αβ.

(55)

We claim that for each of the cases a), b) and c) this system (with the correspond-
ing µ± ) describes the basic behavior near aggregation at x = π/2 . For x close
enough to π/2 the term which contains the difference µ− − µ+ dominates (as
long as it is not zero). Hence we study

αt = β

βt = µ−−µ+

π/2−x α

ϕt = αβ.

(56)

We solve the first equation of (56) to

α(t) =
∫ t

0

β(s)ds.

For now we consider x ≥ π/2 only. A symmetrically adapted argument applies
for x < π/2 . For x ≥ π/2 we have Sx ≤ 0 . Hence in any of the cases a), b),
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and c) we find that

0 ≤ µ−b − µ+
b

π/2− x
≤ µ−a − µ+

a

π/2− x
≤ µ−c − µ+

c

π/2− x

Hence, for the same chemical gradient ϕ(t) the slope of the particle flux β(t)
grows fastest for βc and slowest for βb . If now βa, βb , and βc is used in the
third equation of (56) then we see that also

ϕb(t) ≤ ϕa(t) ≤ ϕc(t).

Hence the difference in the β ’s is enhanced. Finally, if

βb(t) ≤ βa(t) ≤ βc(t),

then the same is true for α :

αb(t) ≤ αa(t) ≤ αc(t).

In (54) we restricted our attention to a small interval (π/2− δ, π/2 + δ) . The
higher order terms, which we neglected here, depend on time and they also grow
as t → Th . Hence the expansion might not be valid for all times.

3.3. Dissipative third-order operators and the pseudo-hodograph plane.

In [17] a pseudo hodograph-plane analysis for the second order operator Ψ 7→
Ψtt + a(ΨxΨt)x was used to identify hyperbolic, parabolic and elliptic regions in
a (Ψx,Ψt) - plane. The region in the (x, t) plane for which Ψ2

x − 4Ψt < 0 was
designated as the elliptic region while the region for which Ψ2

x − 4Ψt > 0 was
designated as the hyperbolic region.

The third order operator
QLSΨ = Ψtxx

which is strongly damping, was neglected for that argument in order to better
understand the hyperbolic character of the operator.
In the case studied here, the corresponding third order operator is (see (16))

QhΨ := Ψtxx − 1
γ2

Ψttt.

Using the Fourier-transform, one can see that Qh is also dissipative and strongly
damping. To see this, consider the equation

ϕtt = Qhϕ

and look for solutions of the form ϕ = exp (λt + ikx) . The dispersion relation for
QLS reads λLS(k) = −k2 for the modes k ∈ IN , which is strongly damping away
from k = 0 . The eigenvalue λ = 0 for k = 0 corresponds to the conservation of
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particle property of the underlying system (6).
In our case, λh = 0 or

λ±h (k) = −γ2

2
± γ2

2

√
1− 4k2

γ2
.

Thus λ±h (k) is either negative or has negative real part according as k
γ ≤ 1

2 or
k
γ > 1

2 . Hence Qh can be viewed as strongly damping.

The whole hodograph-analysis of [17] therefore carries over to this case when
the side requirement of the positivity of the turning rates is set aside. Then the
blow-up mechanism is the same in both equations, although the blow-up times
can be quite different.

In particular, for the exact solution of (6) given above, it was found that the
blow up point occurred on the parabolic boundary of these two regions precisely
at x = π/2 and that the initial data satisfied Ψ2

x(x, 0) − 4Ψt(x, 0) < 0 (as did
the initial data in [22]) when |ε| << 1 .

Similarly, in the situation here, the initial values satisfy the same ellipticity
condition in spite of the fact that the turning rates are initially positive. Further-
more, the example shows that the sign of the turning rates change when |Ψx| = γ
while the blow up of the solution occurs on the boundary of the region where
Ψ2

x > 4Ψt. This means that the turning rates become negative on the parabolic
boundary near the blow-up point and that the curve along which the turning rates
vanish is contained in that part of the hyperbolic region where Ψ2

x = γ2 > 4Ψt.

Notice, however, that along the line x = π/2 , both turning rates are positive,
indeed constant, until the moment of blow up. Thus a “shock” is forming in the
turning rates at the blow up time.

4. Relevance of the blow-up models to biology

Models such as those given in (1) or (6) with a rate law R(X,Y ) = XY and a
chemotactic sensitivity χ(X) = 1/X lead to solutions which blow up in finite time
and therefore cannot be biologically realistic. However, these choices are limiting
cases of more realistic forms of the rate law and the sensitivity. For example, a
more realistic choice for the rate law (where Y is thought of as the particle density
while X is the chemical concentration) is

R(X,Y ) =
KcatXY

Km + X
(57)
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which indicates that a type of Michealis-Menten enzyme kinetic hypothesis un-
derlies the chemistry involved in the particle response to the chemical. The con-
stants (Kcat,Km have their usual meaning. See Murray [19].) Clearly, our choice
R(X,Y ) = XY corresponds to the limiting case of very low chemical concentra-
tion X . Likewise, the choice χ(X) = 1/X corresponds to the statement that
the particles are ”infinitely” sensitive to X even at ”infinite dilution.” This too
is not biologically realistic and must be replaced by a more reasonable hypothesis.
For example, one might assume, following, [22] that the particles are relatively
insensitive to large concentrations of the chemical but are moderately sensitive to
very low concentrations of the chemical. This would lead to

χ(X) =
1

(a + X)(b + X)
, where 0 < a << 1 << b. (58)

The numerical observations of [22] for (6) with these choices and the correspond-
ing theoretical rationale for them given in [17] confirm that the choices of (57),
(58) preclude blow up in finite time. Roughly, the reason for this is as fol-
lows. Associated with the system (6) there is a quasi-linear second order operator
Lψ = ψtt + A(ψx, ψt)ψxt + B(ψx, ψt)ψxx which, for small values of the chemical
X = W , is elliptic. When the initial data is such that the evolution starts in the
elliptic region (as it does for small perturbations of a uniform particle distribu-
tion and small chemical concentration), the problem is ill posed and the solution
components of the vector (Y,X) = (P,W ) attempt to blow up in finite time.
As this occurs, the approximation to R(X,Y ) as the product XY and of χ(X)
to 1/X are no longer appropriate. In the regime in which we have saturation,
L becomes hyperbolic. This change in type together with any damping terms
present, is responsible for the solution to have a “change of heart”, abandon its
attempt to form singularities and collapse. However the collapse cannot be com-
plete since regions have formed in the (x, t) plane whose boundaries are caustics
that prohibit the transport of particles from the blow up region completely back
to a constant steady state. The aggregation of particles into a (nearly) piecewise
constant distribution then results.

The numerical simulations we give below for (1) with these more biologically
reasonable choices for R,χ , (57), (58), show precisely the same behavior. This can
be seen quite clearly in Figures 3, 4, and 5. As the initial chemical concentration
falls, the particle density tends to form a singularity (compare the vertical scales
in the first of Figure 3 and in Figure 5).

4.1. Numerical simulations

We present simulations for (1) on an interval I = [0, 1] with homogeneous Neu-
mann boundary conditions (2). The parameter functions are chosen according to
the simulations of Othmer and Stevens [22] and Levine and Sleeman [17] for the
related diffusion based model (6). This permits us to compare the results pre-
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Figure 3. Evolution of the cell density for different values of S0 . left: S0 = 1000 , right:
S0 = 100 . The other parameters are as shown in the text.
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Figure 4. Evolution of the cell density for different values of S0 . left: S0 = 1 , right:
S0 = 0.01 . The other parameters are as shown in the text.

sented here to the patterns found in [22] and [17].
In the following situations we used a chemotactic sensitivity of

χ(S) =
Dδ

(γ + S)(β + S)
with δ = 1000, γ = 1000, β = 0.01.

The turning rates µ± are given in the restricted form by (4), with particle speed
γ = 0.5 and “effective” diffusion constant D = 0.04 .
The production function for S is chosen as

R(S, u+ + u−) = −µS +
λS(u+ + u−)

1 + νS
,

with ν = 0.00001 and µ = 1 . Levine and Sleeman used a decay rate of µ =
10 but this rate appears to be too strong for the model presented here. In all



28 T. Hillen and H. A. Levine ZAMP

0 5 10 15 20 25 30
time 0

0.2
0.4

0.6
0.8

1

x
0

5

10

15

20

25

total population density

Figure 5. Evolution of the cell density for S0 = 0.001 . The other parameters are as shown in
the text.

simulations it led to collapse. The initial conditions are

u+(0, x) = 0.5− 0.15 cos(2πx),
u−(0, x) = 0.5− 0.15 cos(2πx),
S(0, x) = S0,

with a constant S0 to be specified later.
We use a conservative Godunov scheme, which preserves the total particle

density. We impose time step adaptation. If the local gradient becomes too steep
then the numerical solution can become negative. If this happens we reduce the
time step by a factor 0.5 and re-calculate the last iterate. The spatial discretization
is dx = 0.01 and the time step size is adjusted to the particle speed, γ , as to
meet the CFL-condition. We chose

dt = 0.1
dx

2γ
.

We carefully checked that the dynamic behavior, as presented below, does not
depend on the choice of time and space discretizations (as long as they are rea-
sonable).

The following series of simulations, Figures 3 - 5, illustrates the dynamic be-
havior with decreasing initial condition for S :
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