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Metastability in Chemotaxis Models∗
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We consider pattern formation in a chemotaxis model with a vanishing che-
motaxis coefficient at high population densities. This model was developed
in Hillen and Painter (2001, Adv. Appli. Math. 26(4), 280–301.) to model
volume effects. The solutions show spatio-temporal patterns which allow
for ultra-long transients and merging or coarsening. We study the underly-
ing bifurcation structure and show that the existence time for the pseudo-
structures exponentially grows with the size of the system. We give
approximations for one-step steady state solutions. We show that patterns
with two or more steps are metastable and we approximate the two-step
interaction using asymptotic expansions. This covers the basic effects of
coarsening/merging and dissolving of local maxima. These effects are simi-
lar to pattern dynamics in other chemotaxis models, in spinodal decomposi-
tion of Cahn–Hilliard models, or to metastable patterns in microwave heating
models.
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1. INTRODUCTION

Chemotaxis is an important mechanism that controls the movement of
many organisms. For example, slime molds are able to detect a chemical
gradient and move toward high concentrations of a chemoattractant. The
most prominent model for this process is the Patlak–Keller–Segel model
(PKS) [10,11,13]
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ut = div(D1(u, S)∇u−χ(u, S)u∇S) ,

τSt = D2�S +k(u, S), (1)

u = u(x, t), S =S(x, t), x ∈�⊂Rn,

∂nu|� = ∂nS|� =0,

where u(x, t) denotes the particle distribution function and S(x, t) is the
concentration of a chemical signal. The motility D1(u, S) and the chemo-
tactic sensitivity χ(u, S) depend on the particle density and on the signal
concentration. The term k(u, S) describes production and decay or con-
sumption of the signal and D2 is the diffusion constant for S. The param-
eter τ indicates that movement of the species and dynamics of the signal
have different characteristic time scales.

The qualitative properties of the PKS model (1) strongly depend on
the actual form of the coefficients, and on the dimension of the problem.
For example for D1 = constant, χ = constant and k =αu−βS it is known
that solutions of (1) in two or three dimensions can blow-up in finite time.
For details see the reviews of Horstmann [7,8].

Hillen and Painter [6,12] included volume effects. As soon as a max-
imal cell density is reached, no more cells can be added to that location.
The modeling of this volume filling effect leads, in a special case, to the
following parameters:

D1(u, S) = const.,

χ(u, S) = χ · (1−u), (2)

k(u, S) = αu−βS.

So the equations take the form:

ut = D1uxx −χ (u(1−u)Sx)x ,

τSt = D2Sxx +αu−βS, (3)

0<x <L,

ux |x=0,L = Sx |x=0,L =0, (4)

u(x,0)=uI (x), S(x,0)=SI (x).

This model has been studied in [6]. There global existence of the solution
has been proven and an interesting effect has been observed in numeri-
cal calculations. Let us take the initial data as a perturbation of the spa-
tially homogeneous background. After a rather short transition period a
structure with a number of “steps” arises. It stays almost unchanged for
a rather long period, then comparatively quickly some steps “annihilate”,
and a transition to a smaller number of steps occurs. The new structure
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Figure 1. Example of pseudostructures in model (3), τ =D2 =α=χ =β =1, D1 =0.1, L=20,
M =0.5, the value of t is shown at every panel. The solid line is u, the dashed line is S. We
observe a transition of a five-step pattern at t = 233.0 to a one-step pattern at t = 106. Note
that the two-step pattern exists from t =6.5×103 to t =106, i.e. during about 106 time units.

can stand unchanged even longer, then a new merger occurs and so on.
The most unusual thing is the duration of such transitions—up to 108

time units and more, depending on the parameters of the model. Figure 1
shows an example of the described process. First we observe a transitional
period where some frequencies are damped and others are enhanced until
at t = 233.0 a five-step pattern appears. The right step vanishes at about
t =1065.0 and a four-step pattern develops. This four-step pattern becomes
a two-step solution at about t = 6515.0 and finally a one-step solution
appears (t =106). Varying system parameters it is possible to increase this
time, e.g. in [6] authors observed a transient period of duration about 109.
In practice such metastable patterns may be indistinguishable from true
stable solutions.

Figure 2 shows the rate of change of u and S over time. The transfor-
mations of the structure are clearly visible as the peaks of ut and St . We
call such formations ‘pseudostructures’ or ‘metastable solutions’. In spite
of their transitional nature they may strongly influence the dynamics of the
processes if the transition time is comparable to the lifetime of the system.
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Figure 2. (a) Rate of change for u and S from Fig. 1 over time in a doubly-logarithmic
plot, lg (max {|ut |, |St |}). The long plateaus between lg t ≈ 2.5, 4, and 6 correspond to pseudo-
structures with 5, 4 and 2 steps, respectively (note the logarithmic scale in t). The peaks cor-
respond to merging or coarsening events. (b) Same as above on a shorter interval, L = 10.
Decrease of L from 20 to 10 considerably shortens the transition times and the duration of
pseudostructure existence.

We present a detailed study of this effect in the chemotaxis model, and
show that it can arise in other models as well. From the dynamical sys-
tems point of view pseudostructures correspond to saddle points with very
weak instability. On short time scales such saddles may be almost indistin-
guishable from true attractors.

We also note that very long transients have been observed in other
models before, e.g. in Cahn–Hilliard equations [1,16], in coupled map lat-
tices [2], in microwave heating [9], or in other chemotaxis models.

The paper is organized as follows. In Section 1.1 we reduce the num-
ber of relevant model parameters and we formulate the problem under
investigation (5)–(7). In Section 2 we present a result on linear stability of
the homogeneous steady state. In Section 3 we consider an elliptic prob-
lem which characterizes the non-homogeneous steady states and we study
the underlying bifurcations. It turns out that all stationary solutions with
more than one transition layer (“step”) are saddle points with ultra small
unstable eigenvalues (“metastability”). In Section 4 we give a constructive
approximation of the transition layers. Moreover, we analyze the inter-
action of transition layers using perturbation methods. A possible expla-
nation of coarsening and merging is given. In addition, we consider the
approach to metastability which was used by Ward [9] for the microwave
heating equations. The method seems formally applicable, although addi-
tional work is required to justify the approximations. In Section 5 we pres-
ent alternative models which produce very similar pseudo-structures.

1.1. Reducing the Number of Parameters

Equation (3) includes seven-parameters. For convenience we reduce
this set to four essential parameters. First we rescale D2, α and β to make
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τ = 1. Second, we are interested in the case when χ �= 0, otherwise the
dynamics become trivial. Also we shall assume D1 �= 0. Then it is conve-
nient to make the following change:

Ŝ = χS

D1
, η= αχ

D1
.

Omitting the hat, we come to the following system which is the focus of
our studies in this paper:

ut = D1 (ux −u(1−u)Sx)x , (5)

St = D2Sxx +ηu−βS, (6)

ux |x=0,L = Sx |x=0,L =0, (7)

u(x,0)=u0(x), S(x,0)=S0(x).

It is also possible to set two of the three parameters D1, D2, and L equal
to 1, but we shall not do so to make the comparison with previous results
easier.

Note that this system has one conserved quantity,

M = 1
L

∫ L

0
u(x, t)dx = 1

L

∫ L

0
u(x,0)dx.

Therefore, the problem has an implicit parameter, M. According to the
results of Hillen and Painter [6], Eq. (3) have an invariant region 	 ={0�
u�1,0�S �η/β}. We consider only values of M with 0�M �1.

System (5), (6) is symmetric with respect to u=0.5.

Lemma 1.1. If (u, S) is a solution of system (5), (6) with (u(x, t),
S(x, t))∈	, for M =M1, 0 �M1 � 1, then (1 −u, η/β − S) is a solution of
the same system for M2 =1−M1.

Proof. This is a straightforward calculation.

Below we shall study both stationary and nonstationary solutions. To
distinguish between them we shall explicitly show their arguments where
necessary, e.g., u(x, t) for a nonstationary solution and u(x) for a station-
ary one.

2. SPATIALLY HOMOGENEOUS SOLUTIONS AND THEIR
STABILITY

Equations (5) and (6) have the spatially homogeneous solution u=M,
S =ηM/β. It is a natural first step to study its stability.
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Theorem 2.1. Let D1, D2, η, β, M be positive, and assume there
exists k ∈N such that the inequalities

0<

(
πk

L

)2

<µ∗ (8)

hold, where

µ∗ = ηM(1−M)−β

D2
. (9)

Then

1. The spatially homogeneous solution of (5), (6), (7) is linearly unsta-
ble.

2. The number of unstable Fourier modes ku equals the greatest k sat-
isfying (8), that is ku ≈L

√
µ∗/π ;

3. the most unstable mode is of the form k = [
L

√
µU/π

]
or k =[

L
√

µU/π
]+1, where [·] denotes the integer part and µU satisfies

µU >

√
D1D2(√

D1 +√
D2
)2 µ∗. (10)

That is the wavenumber of the most unstable mode k increases with µ∗ and
hence with η.

Proof. Let us set u = M + ũ, S = ηM/β + S̃, and linearize the equa-
tions. This gives

ũt = D1(ũxx −M(1−M)S̃xx), (11)

S̃t = D2S̃xx +ηũ−βS̃, (12)

ũx = S̃x =0, x =0,L. (13)

The kth Fourier mode cos((πkx)/L), k ∈ N, grows as exp(νt), where ν is
the largest eigenvalue of the matrix

A(µ)=
(−D1µ M(1−M)D1µ

η −D2µ−β

)
, µ=

(
πk

L

)2

.

In spite of the fact that µ takes only discrete values, it is convenient
to consider it as a continuous variable. For the eigenvalue ν we have the
equation

ν2 − trAν +det A=0, (14)
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where trA=− (D1 +D2)µ−β <0 and

det A=D1µ(D2µ+β −ηM(1−M))=−D1D2µ(µ∗ −µ) .

The discriminant of (14) is

d = (trA)2 −4 det A= (D1 −D2)
2 µ2 +β2 +2β (D1 +D2)µ+4D1D2µ∗µ

� (D1 −D2)
2 µ2 +β2 −2β (D1 −D2)µ�0,

since µ∗ >−β/D2. Hence the roots of (14) are always real, and the largest
root

ν = (trA+
√

d)/2 (15)

is positive only if det A < 0, that is 0 < µ < µ∗. This means that on a
bounded domain [0,L] with Neumann boundary conditions we find a
finite set of unstable modes k ∈N

0<k <
L

π

√
µ∗. (16)

This proves statements 1 and 2.
To prove statement 3 let us consider ν as a continuous function of

µ. A typical dependence ν(µ) is plotted in Fig. 3. Let us denote the
position of the maximum of ν(µ) by µU . To find the value of µU we
have to solve the equation dν/dµ = 0. Direct differentiation of (15) gives
intractable results, so we introduce a new function φ(µ) = 2ν−trA. Since
trA is a linear function of µ, the condition dν/dµ = 0 is equivalent to
dφ/dµ=−dtrA/dµ=D1 +D2. From (15) it follows that φ2 = (trA)2 −
4 det A. Differentiating this expression by µ we obtain

2φφµ =2trA(trA)µ −4 (det A)µ .

Then taking the square of both sides and substituting the expressions
for φ2 and dφ/dµ we come to

4(((D1 +D2)µ+β)2 +4D1D2µ(µ∗ −µ)) (D1 +D2)
2

= [2 ((D1 +D2)µ+β) (D1 +D2)+4D1D2 (µ∗ −2µ)]2 .

It is convenient to introduce

a = D1 +D2

D1D2
, D1 +D2 =aD1D2.

Then after simplification we obtain

(D1D2a
2 −4)µ2 +2 (2µ∗ +aβ)µ−µ∗ (µ∗ +aβ)=0
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and the only positive root is

µU = µ∗ (µ∗ +aβ)

2µ∗ +aβ +a
√

β2 +D1D2µ∗ (µ∗ +aβ)
.

The numerator is a quadratic function of µ∗, while the denominator for
large µ∗ behaves like a linear function. Therefore, as µ∗ increases, the
wavenumber of the most unstable mode increases too. Let us find a lower
bound for the growth rate of µU(µ∗).

Differentiating the quotient µU/µ∗ by µ∗ one can see that the deriva-
tive is negative, therefore µU/µ∗ is a monotonically decreasing function of
µ∗ (we omit the details because they are straightforward but lead to quite
long formulas). Therefore

µU

µ∗
> lim

µ∗→∞

(
µU

µ∗

)
= 1

2+a
√

D1D2
=

√
D1D2(√

D1 +√
D2
)2 .

Hence we come to (10).

It follows from the theorem that for a large interval length L we
should expect that initial instability will develop into a structure having
more than one step. For the parameters in Fig. 1 we have µ∗ =1.5, µU =
0.57, there are seven unstable Fourier modes, and the most unstable is
the 5th one. Therefore linear analysis explains why the structure developed
from the perturbed homogeneous background with five steps.

Note 1. We see from (9) that for M → 0 or M → 1 the value of µ∗
goes to 0 or may even become negative. Hence spatially uniform solu-
tions with M close enough to 0 or 1 are always stable. Below we shall
see that this feature is important for the formation of step-like structures:

Figure 3. Sketch of the dependence of the unstable eigenvalues ν(µ) on µ.
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when the spatially homogeneous solution becomes unstable, chemotaxis
“pumps” the particles to sub-domains with the stable level of u close to
1 and outside of them there is also a stable level close to 0. The sizes of
these sub-domains are balanced to keep the average value the same.

Note 2. From linear analysis and numerics we can see, that typically
a first appearance of steps is comparatively fast. The first pattern splits the
interval [0,L] into subintervals of characteristic length close to π/

√
µU .

Each of these subintervals contains one step. In these steps chemotac-
tic forces are balanced by diffusion, and the subsequent evolution slows
down.

Now let us consider two other problems: why the multi-step structure
decays and why the transitions are extremely slow. To answer the questions
we need to study stationary solutions and their stability.

3. STATIONARY SOLUTIONS

3.1. Equation for Stationary Solutions

Setting ut =0 in (5) we obtain

ux −u(1−u)Sx =C = const.

Due to the boundary conditions (4), C =0. Assuming that 0<u<1 [6], we
have

ux

u(1−u)
=Sx, ln

u

1−u
=S −S0, u= 1

1+ eS0−S
≡ϕ(S, S0). (17)

The integration constant S0 is determined from the conservation law

1
L

∫ L

0

dx

1+ eS0−S
=M. (18)

Note that Eq. (18) is a condition on S0. Hence S0 depends nonlocally on
S, which we denote by S0[S]. Substituting (17) into (6) we come to an
elliptic problem

D2Sxx + η

1+ eS0[S]−S
−βS =0, Sx(0)=Sx(L)=0. (19)

Integrating this equation from 0 to L and taking into account boundary
conditions and the conservation law (18), we obtain an additional integral
relation for stationary profiles of S(x)

ηM =β
1
L

∫ L

0
Sdx. (20)
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For the spatially uniform solution u = M, S = ηM/β, S0 can be
obtained explicitly

1
1+ eS0−ηM/β

=M, S0 = ηM

β
+ ln

(
1−M

M

)
. (21)

In other cases S0[S] is obtained numerically.

3.2. Spatially Inhomogeneous Solutions: Phase Plane Analysis

To analyze the properties of spatially inhomogeneous solutions it is
convenient to denote Sx =w, moreover, we treat S0[S] to be a given con-
stant. Then Eq. (19) is equivalent to the dynamical system

Sx = w, (22)

D2wx = β (S −f (S)) , f (S)= η

β

1
1+ eS0−S

, (23)

with x playing the role of time. For constant S0 this is a Hamiltonian sys-
tem with the Hamiltonian

H(w,S)= 1
2
w2 + η

D2
ln(1+ eS−S0)− β

2D2
S2,

therefore it can have fixed points of only two types, saddles and centers.
The properties of the system depend on the values of η/β and S0. Its

fixed points are located at w̄=0 and S̄ =f (S̄). The function f (S) is a sig-
moid curve with f (0) = η/β(1 + eS0)−1 > 0 and asymptote f (+∞) = η/β.
Typically the equation S̄ =f (S̄) has one or three roots S̄k, see Fig. 4. Usu-
ally S̄k can be found only numerically, but for the special case of S0 =η/2β

one of the roots is S̄ =S0. Comparing this value with (21) one can see that
it can occur in the original system only if M =1/2.

The eigenvalues ν1,2 for the fixed point
(
S̄k,0

)
are determined by

D2ν
2 =β(1−f ′(S̄k)). (24)

Therefore for f ′(S̄k)<1 we have a saddle, while for f ′(S̄k)>1—a center.

(a) (b)

Figure 4. The equation f (S)=S typically has one root (a), or three roots (b).
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In case of one root we have always f ′(S̄k) < 1, a saddle (Fig. 4a),
this occurs either when maxS f ′(S) = f ′(S0) < 1, that is η < 4β, or when
S0 deviates too strongly from η/2β. In case of three roots S̄1 < S̄2 < S̄3
(Fig. 4b) we have saddles at S̄1 and S̄3, and one center at S̄2. The corre-
sponding phase plane portraits are shown in Fig. 5.

Now let us return to the solutions of the boundary value problem
(19). Fixed points correspond to a spatially homogeneous solution, if there
are more than one fixed point then only one of them satisfies (18) and
hence represents a solution of (19). For this solution we have S̄k =ηM/β,
and S0 is given by (21).

To get a spatially inhomogeneous solution we need a part of the tra-
jectory of (22), (23) that (i) begins and ends at the line w=0 to satisfy the
boundary conditions and (ii) has transition “duration” between the two
points equal to L. It is easy to see that only some of the periodic trajec-
tories circling around the center can satisfy these two conditions (Fig. 5).

We parameterize the possible candidates for nonhomogeneous steady
states by the point (0, Ŝ) with S̄2 � Ŝ � S̄3, where the trajectory hits the
S-axis. Let L̂(Ŝ) denote the length of a half circle which ends at (0, Ŝ).
As Ŝ approaches S̄3 the corresponding orbit approaches a homoclinic, or
a heteroclinic orbit (see Fig. 5), hence

lim
Ŝ→S̄3

L̂(Ŝ)=+∞.

If Ŝ approaches S̄2, then the linearization around the center S̄2 gives the
length of the corresponding half circle

lim
Ŝ→S̄2

L̂(Ŝ)=L∗ := π√
β
D2

(f ′(S̄2)−1)

.

In general, for interval length L > L∗ we have at least one, but maybe
more, inhomogeneous steady states.

S1

S1 S2 S3 S1 S2 S3

(a) (b) (c)

Figure 5. Typical phase plane portraits for the Hamiltonian system (22), (23). (a) one root
of S =f (S); (b) three roots, general S0 choice; (c) three roots, special choice of S0 =η/2β.
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3.3. Bifurcations from the Spatially Uniform Solution

Bifurcations off the stationary spatially uniform solution of the
Keller–Segel model have been analyzed in [14]. However, the results do not
apply here due to the additional volume filling term.

From the above phase plane analysis it immediately follows that bifur-
cation points correspond to the cases when a new unstable mode is born,
that is when (L/π)

√
µ∗ takes integer values. If we use η as a bifurcation

parameter, then the bifurcation points are

ηk = D2
(

πk
L

)2 +β

M(1−M)
,

see also [14].
According to linear stability analysis in the previous section, all

bifurcating solutions with k > 1 are born unstable since all perturbations
an cos((πnx)/L), n<k, have νn >0. Therefore, stable solutions can appear
only after the first bifurcation, at η = η1. In this case stability of the
appearing solution depends on the type of the bifurcation: for supercritical
bifurcation it is stable, for subcritical—unstable (see corresponding results
in [14]).

To analyze the bifurcation type we use expansion of the following
type:

η=η1 +γ1 ε +γ2 ε2 +γ3 ε3 +γ4 ε4 +γ5 ε5,

S −S0 =σ =− ln
(

1−M

M

)
+σ1 ε +σ2 ε2 +σ3 ε3 +σ4 ε4 +σ5 ε5,

S0 = η1M

β
+ ln

(
1−M

M

)
+S01 ε +S02 ε2 +S03 ε3 +S04 ε4 +S05 ε5

with

σn =
n∑

k=1

Ank cos
(

πkx

L

)
.

Substituting these expressions into (19) we obtain γ1 = 0, and hence the
type of bifurcation depends on the sign of γ2,

γ2 = η1A
2
11

6µD2
((22µ1D2 +4β)M(1−M)− (4µ1D2 +β)) .
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The parameter γ2 becomes zero if

M(1−M)= 4µ1D2 +β

22µ1D2 +4β

or

Mc1,2 = 1
2

± 1
2

√
3µ1D2

11µ1D2 +2β
.

Therefore for Mc1 > M > Mc2 we have supercritical bifurcation, while
for M > Mc1 or M < Mc2—subcritical bifurcation. Numerical experiments
confirm that the solutions after the supercritical bifurcation are stable,
whereas they are unstable after a subcritical bifurcation. In the latter case
on the bifurcation branch there is a turning point, after which stable non-
uniform solutions appear. We observed this turning point numerically.

Figures 6 and 7 show the numerical examples of bifurcations: the
dependence of maximal and minimal values of spatially nonuniform solu-
tions S(x) on η (Fig. 6), and the corresponding S0 (Fig. 7). Note that S0
depends on the steady state by (18). We show the dependence of S0 on η

in Fig. 7 since we need a good approximation for S0 later.
Summing up we may note the following. There are stationary solu-

tions with a different number of “steps”, arising from Fourier modes
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Figure 6. Bifurcation diagram of Smax,min as a function of η. The mean density is M = 0.3
in (a,b), 0.5 in (c) and 0.7 (d). Other parameters: D2 =β =1, L=10. (b) is an enlargement of
the first bifurcation point from (a). Thick lines correspond to stable branches, thin to unsta-
ble branches. The dashed lines shows S =η/β. Solid straight lines corresponds to the spatially
homogeneous solution, which loses its stability at the first bifurcation point, where the 1-step
solution arises. This bifurcation can be both supercritical (c) and subcritical (a,d).
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Figure 7. The values of S0 corresponding to the bifurcation diagrams in Figure 6 with M =
0.3 (a) and M = 0.7 (b). In the case of M = 0.5 we have S0 =η/2β. The different lines in (a)
and (b) correspond to the different bifurcation branches as seen in Fig. 6. Panel (c) shows
the deviation S0 −η/2β for 1-step solutions (lower curve), 2-step solutions (middle) to 3-step
solutions (upper) for the case in panel (b). Plot (c) shows that S0 for 1-step structures is
always very close η/2β. We use this fact later when we construct approximations for 1-step
solutions.

cos (πkx/L). One-step solutions either are stable right from η1 (supercrit-
ical bifurcation) or from a slightly smaller η after secondary saddle-node
bifurcation. In all our numerical experiments it remained stable. Multistep
solutions are always born unstable, and we did not observe bifurcations
which could make them stable for other η. This explains why multistep
solutions do not persist.
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But the ultra-long duration of transients is still unexplained. This may
be related to very weak instability of developed multistep solutions. We
study their stability with the help of approximate and numerical tech-
niques.

3.4. Stability of Stationary Solutions—Numerical Results

Since we can obtain stationary solutions u(x), S(x) numerically, we
can linearize the original equations in their vicinity and study the dynam-
ics of small perturbations. To enhance accuracy we change the variables in
the system. As it can be seen from Fig. 8, u(x, t) has much steeper tran-
sitions than S(x, t) and hence on the same grid it diminishes the accuracy
of numerical approximations. For this purpose we introduce a new variable
z(x, t) such that

u(x, t)= 1
1+ e−z(x,t)

, (25)

then for stationary structures z(x) = S(x) − S0. The derivatives ux =
u(1−u)zx , ut =u(1−u)zt , and the Eqs. (5) and (6) become

zt = D1 (zxx −Sxx)−D1 tanh
z

2
zx (zx −Sx) , (26)

St = D2Sxx + η

2

(
1+ tanh

z

2

)
−βS. (27)

Here we use

1−2u = −1− e−z

1+ e−z
=− tanh

z

2
,

1
1+ e−z

= ez/2

ez/2 + e−z/2

= sinh(z/2)+ cosh(z/2)

2 cosh(z/2)
= 1

2

(
1+ tanh

z

2

)
.

Substituting z(x, t)= z(x)+ δz(x, t), S(x, t)= S(x)+ δS(x, t) and line-
arizing equations we obtain

δzt = D1 (δzxx − δSxx)−D1 tanh
z

2
zx (δzx − δSx) , (28)

δSt = D2δSxx + η

4
(
cosh z

2

)2 δz−βδS. (29)

Here we use zx −Sx =0, and hence the variation of tanh(z/2)zx vanishes.
These equations do not contain derivatives of u and we can expect better
accuracy of numerical results.
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Figure 8. Examples of stationary profiles u(x) (left) and S(x) (right), with one-step (solid),
two-step (long dash), and three-step (short dash) for varying parameters, (a)–(e) with fixed
D2 = β = 1. There are two kinds of two-step (and all other even-step) solutions: with max-
ima or minima at the boundaries. Only solutions with maxima at the boundaries are shown.
When M �=1/2, these two kinds of solutions usually have different instabilities (see below).
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Substituting δz(x, t) = δz(x)eνt , δS(x, t) = δS(x)eνt we obtain the
eigenvalue problem

νδz = D1 (δzxx − δSxx)−D1 tanh
z

2
zx (δzx − δSx) , (30)

νδS = D2δSxx + η

4 (cosh(z/2))2
δz−βδS (31)

with the boundary conditions δzx(0) = δzx(L) = δSx(0) = δSx(L) = 0. We
solve it numerically for a number of stationary profiles S(x).

Figure 9 shows the profiles of the solutions and the first five eigen-
functions for three stationary solutions. Figure 14 shows the dependence
of positive eigenvalues on L: they exponentially approach zero. Numeri-
cal results for (28), (29) are in good agreement with the conjecture that
the number of positive eigenvalues remains the same along the bifurcation
branch.

Figure 9 also shows that the eigenvectors δS1(x) for one-step and
two-step solutions are very close to the derivative of the stationary solu-
tion Sx . Therefore, the evolution of small perturbations of a stationary
two-step profile S(x) should proceed as a synchronous motion of both
steps since

S(x, t)≈S(x)+ eν1t δS1(x)≈S(x)+ ceν1t Sx(x)≈S(x + ceν1t ),

c�1.

4. APPROXIMATE STUDY OF LONG TRANSIENTS

4.1. Approximation of Stationary Profiles

To study the long transient solutions we need to understand the depen-
dence of their maximal and minimal values on L. Rigorous estimates could be
obtained from the equations of motion, but they contain an unknown param-
eter S0. For our purposes it is enough to get an approximate estimate. To get
such an estimate we shall use the method of matched asymptotics. We shall
build an approximation for a one-step structure only. Multi-step solutions can
be approximated by repeating the argument.

To build an approximate solution we follow four steps and use the
observations obtained earlier.

Step 1: For a single-step solution far from the bifurcation point η1,
the value of S0 is very close to η/2β regardless of the value of M (see
Fig. 7). So we shall set S0 =η/2β.

Step 2: The one-step solution looks like a transient between two
almost homogeneous solutions, one of which is close to η/β, the other
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Figure 9. Examples of stationary profiles S(x) and corresponding eigenfunctions δzk , δSk

for five largest eigenvalues νk . It is interesting that δS1(x) for 1-step and 2-step solutions are
very close to Sx(x). For the 1-step solution this means that changing M shifts the step left
or right. The instability of a 2-step solution results in synchronous motion of both steps in
the same direction, that corresponds to a redistribution of u and S under preservation of the
shape of the steps.

is close to 0. We denote these two S-levels as S1 and S2, respectively. A
necessary condition for existence of spatially inhomogeneous solutions is
η/2β >2. We are interested in values of η which are large enough to allow
for multistep patterns, hence we assume e−η/2β �1.

Since S1 and S2 are close to spatially uniform profiles, they should
satisfy

η

1+ eη/2β−Si
−βSi =0.
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There is no analytical solution to this equation, so we use a 0th order
approximation

S1 = η

β
, S2 =0

or the first-order approximation

S1 = η

β

1
1+ e−η/2β

≈ η

β
(1− e−η/2β), (32)

S2 = η

β

1
1+ eη/2β

≈ η

β
e−η/2β. (33)

Step 3: Let us consider a nonuniform solution S(x). Near S1 or S2
its behavior can be approximately described by a linearized equation (19).
Let S =Si + si , then

D2sixx −β

(
1− ηeS0−Si

β(1+ eS0−Si )2

)
si =0. (34)

For both S1, S2

1− ηeS0−Si

β(1+ eS0−Si )2
≈1− η

β
e−η/2β ≈1,

therefore both s1 and s2 satisfy the same equation

D2sixx −βsi =0.

For definiteness, let S(x)≈S1 near the left boundary (x =0) and S(x)≈S2
at the right boundary (x =L). Then the solutions satisfying the zero flux
condition at the corresponding boundary are

s1 =A cosh ωx, s2 =B cosh ω (L−x) , ω=
√

β

D2
. (35)

Step 4: Now to get an approximate description of the whole one-step
solution let us match together S1 + s1 and S2 + s2 (see Fig. 10)

SA(x)=
{

S1 + s1(x), 0<x <x1,

S2 + s2(x), x1 <x <L
(36)

with the matching conditions at x =x1

S1 + s1(x1)=S2 + s2(x1), s1x(x1)= s2x(x2) (37)
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Figure 10. Scheme of approximation to a 1-step structure.

and the integral condition (20)

1
L

∫ L

0
SA(x)dx = ηM

β
. (38)

These three conditions give the values of A and B and the matching point
x1.

Substituting (35) we obtain from (36) to (38)

S1 +A cosh ωx1 = S2 +B cosh ω(L−x1),

ωA sinh ωx1 = −ωB sinh ω(L−x1),

A=− (S1 −S2)
sinh ω(L−x1)

sinh ωL
, B = (S1 −S2)

sinh ωx1

sinh ωL
.

Now

1
L

∫ L

0
SA(x)dx = 1

L

∫ x1

0
(S1 +A cosh ωx)dx+ 1

L

∫ L

x1

(S2+B cosh ω(L−x))dx

= x1S1 + (L−x1)S2

L
+ 1

ωL
(A sinh ωx1 +B sinh ω(L−x1))

= x1S1 + (L−x1)S2

L
=S2 + x1

L
(S1 −S2)

= ηM

β
.

Substituting the expressions for S1 and S2 we obtain

e−η/(2β) + x1

L

(
1−2e−η/(2β)

)
=M, x1 =ϑL, ϑ = M − e−η/(2β)

1−2e−η/(2β)
≈M.
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Finally

A=− η

β
(1−2e−η/(2β))

sinh ω(1−ϑ)L

sinh ωL
, B = η

β
(1−2e−η/(2β))

sinh ωϑL

sinh ωL
.

(39)

If we use the first-order approximations as given in (32), (33) we find the
following explicit form of the one-step approximation:

SA(x)=



η
β

1
1+e−η/2β − η

β

(
1−2e−η/(2β)

) sinh(ω(1−ϑ)L)
sinh(ωL)

cosh(ωx), 0<x <x1,

η
β

1
1+eη/2β + η

β

(
1−2e−η/(2β)

) sinh(ωϑL)
sinh(ωL)

cosh(ω(L−x)), x1 <x <L.
(40)

Figure 11 compares approximate solutions with numerical steady states.
Experiments show that the agreement is good when L is essentially greater
than the size of the transition layer, and M is not too close to 0 or 1. Fig-
ure 12 compares the dependence on L for A, B, and their estimates from
the numerically obtained profiles:

Ã= S(x)−S(0)

cosh (ωx)−1
, x ≈0, B̃ = S(x)−S(L)

cosh (ω (L−x))−1
, x ≈L.

It is essential that the approximations capture the exponential depen-
dence on L.

Note. The constructed approximate solution has only C1 smoothness.
It is possible to suggest a C2 approximation by matching three linearized
solutions, S1 + s1, ηM/β + sm, and S2 + s2, where sm is a linearization
about the unstable spatially uniform solution. However, this approxima-
tion leads to analytically intractable formulas.

4.2. Two-Step Structure: the Mechanism of Slow Decay

Let us consider the following situation. From initial data quick tran-
sient processes have prepared a two-step pattern with the maxima at the
boundaries and one minimum in the middle. This pattern can be consid-
ered as consisting of two one-step structures with the lengths L1 and L2,
such that both of them have the same mean M as the initial data. For defi-
niteness, let L1 <L2. For each of the step structures the deviation from the
trivial solution is given by A or B in formula (39). The dependence on L

is given through the ratio

sinh(ω(1−ϑ)L)

sinh(ωL)
≈ e−ϑL

for L large enough. Hence it is decreasing in L, which means that steps
with unequal lengths L1 < L2 cannot be matched perfectly. Upward or



314 Potapov and Hillen

0.0 5.0 10.0
0.0

2.0

4.0

6.0

8.0

10.0

0.0 5.0 10.0
0.0

2.0

4.0

6.0

8.0

10.0

0.0 5.0 10.0
0.0

2.0

4.0

6.0

8.0

10.0

(a)

(b)

(c)

Figure 11. Examples of approximations (dashed line) and steady state (solid line) for the
1-step stationary solutions for M =0.3 (a), 0.5 (b) and 0.7 (c), D2 =β =1, η=10, L=10.

downward connections are shown in Fig. 13. Due to this mismatch a
small gradient emerges and the corresponding flow drives particles from
the short structure to the long one. As a result the short structure becomes
shorter and eventually collapses while the long one becomes longer until it
occupies the whole domain L=L1 +L2.

Let us construct approximate quantitative estimates from this sce-
nario. We shall use the following additional assumptions.

(A1) The shape of both structures is almost stationary at all times,
and hence their properties are entirely defined by their lengths Li

via (40).
(A2) The relaxation of the concentration of attractant S is faster than the

relaxation of the particles u, so we assume that pointwise S ≈ηu/β.
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Figure 12. Dependence on L of the coefficients |A| (thick dash), |B| (thin dash) for approx-
imations (39) and their estimates |Ã|, |B̃| from numerically obtained S(x) (solid lines). M =
0.3 (a), 0.5 (b) and 0.7 (c), D2 =β =1, η=10. Exponential dependence is clearly visible, and
it is captured by the approximations.

4.2.1. B-Pattern

Now we study two-step solutions which are joined at the bottom
(B-type). In the well between the steps, S is small and u is even smaller:
S ∼ S2 ∼ (η/β)e−η/2β , u ∼ 1/(1 + eS0) ≈ e−S0 = e−η/2β . Therefore the diffu-
sion flow of the particles −D1ux can be compensated by the chemotactic
flow D1u(1−u)Sx only if |ux |≈u|Sx |� |Sx |. If the gradients of both par-
ticles and attractant are of the same order of magnitude, diffusion beats
chemotaxis and the latter is negligible.
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Figure 13. Approximations of two-step patterns, where the steps have unequal lengths. The
arrows indicate the direction of diffusional flow along the interface due to arising gradient
(dashed line). We call (a) A-type and (b) B-type. The dotted line indicates a small gradient
between the steps, which we use to approximate the particle flux.

For the estimates of the mismatch between the individual steps we can
use the approximate relations (39): the lower end of the stationary struc-
ture corresponds to the value

Smin(L)=S2 +B ≈ η

β
e−η/2β + η

β

sinh ωϑL

sinh ωL
≈ η

β
e−η/2β + η

β
e−ω(1−M)L,

therefore the mismatch is

MS =Smin(L1)−Smin(L2)≈ η

β
(e−ω(1−M)L1 − e−ω(1−M)L2).

For stationary structures we have the relation (17), hence the correspond-
ing mismatch in u is

Mu =ϕ (Smin(L1))−ϕ (Smin(L2))≈ϕ′ (Smin
)
MS ≈uMS.

This mismatch leads to a small gradient of u over the well bottom. The
size of the transition layer corresponds to (1−M)(L1 +L2) hence we find
a flux of the order of magnitude

w=D1|ux |∼ D1Mu

(1−M)(L1 +L2)
≈D1

η

β

e−η/2β

(1−M)L
(e−ω(1−M)L1 − e−ω(1−M)L2).

During a small time interval dt this flow transfers the amount of
particles from left to right du ∼ wdt . Since we assume that the shape
of the steps remain stationary, this transfer causes the shift of both
steps to the left, so both L1 and L2 change. Since the content of par-
ticles in each structure is LM, du = MdL. Then we come to the equa-
tions dL1/dt =−(w/M), dL2/dt =w/M. Let us introduce the new variable
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ζ =L2 −L1, then 2L2 =L+ ζ , 2L1 =L− ζ . An equation for ζ is derived

dζ

dt
= 2w

M
= 2D1η

βM

e−η/2β

(1−M)L
e−ω(1−M)(L/2)(eω(1−M)

ζ
2 − e−ω(1−M)

ζ
2 )

= 2γB

ω(1−M)
sinh

ω(1−M)ζ

2
.

This equation has one unstable fixed point at zero, and its eigenvalue γB

gives the estimate of the principal eigenvalue for the two-step stationary
structure,

γB = 2ωD1η

βML
e
−ω(1−M) L

2 − η
2β , ω=

√
β

D2
. (41)

We shall call this pattern a B-type pattern because of the mismatch at the
bottom level described by the coefficient B.

4.2.2. A-Patterns

Similarly it is possible to consider the A-type pattern (Fig. 13) with
a maximum in the middle and two minima at the boundaries. The mis-
match will depend on the parameter A and the corresponding estimate for
the eigenvalue is

γA = 2ωD1η

β(1−M)L
e−ωM(L/2)−(η/2β). (42)

So, we have γA �= γB if M �= 1
2 . Note that the formulas for γA and γB are

equivalent if we replace M by 1−M (see Lemma 1.1).

4.2.3. A- and B-Patterns: Merging and Dissolving

The difference in decay rates of two configurations shown in Fig. 13
arises because they correspond to two different processes. It is natural to
interpret a maximum of the particle concentration as a particle aggre-
gate—a “swarm”. The zero flux conditions at the boundary can be inter-
preted such that the profiles of u and S are symmetrically extended beyond
the boundary. If we reflect the profiles about the point x = 0, we can see
that an A-pattern corresponds to two equal swarms moving towards each
other and merging. The B-pattern corresponds to a small swarm between
two large ones, the large swarms are slowly pumping the particles out of
the small one until it dissolves completely. Therefore it is not surprising
that the two different processes have different characteristic speeds.

On the other hand, we have seen in Lemma 1.1 that the original sys-
tem is symmetric w.r.t. M = 1/2. Indeed, if we replace (1 − M) by M in
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Figure 14. Examples of dependence of positive eigenvalues ν on L for 2-step solutions (a,b).
D1 = 0.1, D2 = β = 1, η = 10, M = 0.5 (a), 0.3 (b). The dashed lines correspond to γA (short
dash) and γB (long dash), where γA and γB are the unstable eigenvalues of the approxima-
tions as given by formula (41) and (42) for A- and B-pattern, respectively. The values ν1A and
ν1B are the numerically calculated leading eigenvalues of the eigenvalue problem (30, 31) for
A- or B-pattern, respectively.

either of the formulas (41) or (50) then we obtain the corresponding for-
mulas for the B-pattern, (42), (52), respectively.

The evolution of the chemotactic structures typically is a sequence of
such mergings and dissolvings. For instance, the evolution of the five-step
structure in Fig. 1 proceeds as follows: first the swarm at the right bound-
ary dissolves, then two swarms merge in the middle, and finally the result-
ing single swarm merges with its counterpart beyond the right boundary.
Therefore both merging and dissolving is important for the evolution.

Note that (41) and (42) involve exponential dependence on L, which
qualitatively agrees with the numerical data, Fig. 14. This explains the
observed substantial slowing down of the decay processes. As we can see
in Fig. 1 or Fig. 1 in [6], a complex structure can be considered as a num-
ber of two-step patterns of A or B type, and usually one of the combi-
nations evolves faster than other. As the number of steps decreases, the
lengths of the two-step combinations increase, which may cause significant
decrease in the evolution speed.

4.2.4. Stability of Two-Step Steady States

Here we study the stability of two-step steady states. For large L we
find an exponentially small unstable leading eigenvalue. The approxima-
tion used here is based on ideas which were developed in context of micro-
wave heating in [9].

We consider the eigenvalue problem (30), (31) for both types of two-
step structures and approximate the leading eigenvalue ν1. The unknown
functions δz and δS are the perturbations of the steady state.
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We use a number of simplifying assumptions, which are supported by
numerical data.

1. We approximate a two-step stationary solution by two approxi-
mate one-step solutions SA(x) on the domain L/2.

2. We assume that for the slowly evolving perturbed stationary pro-
file approximately u(x) + δu(x, t) ≈ ϕ(S(x) + δS(x, t)), where ϕ is
defined in (17), that is δz1(x, t) ≈ δS1(x, t). Let us denote the
difference by δw = δz1 − δS1, then we assume that |δw|� |δS1|.

3. In the following analysis we will work with u and z simulta-
neously, they are related by (25). For stationary profiles u(x),
z(x), and S(x) we have the relations

α(x)≡ 1

4 (cosh(z(x)/2))2
=u(1−u),

ux =u(1−u)Sx.

Then Eqs. (30) and (31) can be written as

νδw +νδS = D1

u(1−u)
(u(1−u)δwx)x , (43)

νδS =D2δSxx +ηα(x)δz−βδS. (44)

4. The domain length L is assumed to be large enough. Below we
shall specify this assumption in more detail.

5. We observe numerically in Fig. 9 that the profile of the leading
eigenfunction δS1(x) is very close to Sx except near the bound-
aries, since δSx |x=0,L = 0 and Sxx |x=0,L �= 0 (Fig. 9). We describe
this with a boundary layer approximation

δS1(x)≈Sx(x)+SL(x)+SR(x), (45)

where SL and SR describe the boundary layers at the left and
right boundary respectively. We assume that SL is O(1) only near
the left boundary x = 0, where Sx ≈ 0, and outside this domain
SL ≈0. The same is true about SR near x =L. In other words, we
assume

SL(L)=0, SR(0)=0, SxSL ≈SxSR ≈0.

Near the boundaries S(x) is close to one of the levels S1 or S2
(32), (33), and in both cases ηα(x)=ηu(1−u)�1. Hence

D2SLxx −βSL =0, D2SRxx −βSR =0,
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with the boundary conditions

Sxx(0)+SLx(0)=0, Sxx(L)+SRx(L)=0.

This gives

SL(x)= 1
ω

Sxx(0)e−ωx, SR(x)=− 1
ω

Sxx(L)e−ω(L−x), ω2 = β

D2
.

6. Note that the stationary two-step solutions are symmetric, hence
S(L)=S(0), Sxx(L)=Sxx(0).

Below we omit the index 1 for δS1, ν1, δz1.
We can neglect the term νδw in (43), then we obtain the equation for

δw

(u(1−u)δwx)x = ν

D1
u(1−u)δS = ν

D1
u(1−u) (Sx +SL +SR)

≈ ν

D1
u(1−u)Sx = ν

D1
ux.

Here we use the fact that in the domain where the boundary layer func-
tions SL, SR are essentially nonzero the term u(1 −u)≈ 0 and vice versa.
The boundary conditions for δw are the same as for δz and δS, δwx(0)=
δwx(L)=0. Now

u(1−u)δwx = ν

D1
(u(x)−u(0)) . (46)

Equation (44) gives

νδS =D2δSxx +ηα(x)δS +ηα(x)δw −βδS.

Since δw ∼ν, let us move the term ηα(x)δw to the left-hand side,

νδS −ηα(x)δw =D2δSxx +ηα(x)δS −βδS ≡AδS,

multiply it by Sx and integrate from 0 to L. This gives

v

∫ L

0
Sx (Sx +SL +SR)dx +η

∫ L

0
Sxu(1−u)δw dx =

∫ L

0
Sx (AδS)dx.

(47)

Simplifying and integrating by parts we obtain

η

∫ L

0
Sxu(1−u)δw dx = η

∫ L

0
uxδw dx=ηuδw|L0 −η

∫ L

0
uδwx

=ηu(0) (δw(L)− δw(0))−η

∫ L

0

ν

(1−u)D1
(u−u(0))dx.
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From (46) it follows that

δw(L)− δw(0)= ν

D1

∫ L

0

u−u(0)

u(1−u)
dx,

hence

η

∫ L

0
Sxu(1−u)δw dx =− ην

D1

∫ L

0

(u−u(0))2

u(1−u)
dx.

The term Sx (SL(x)+SR(x)) ≈ 0, at the boundary Sx = 0, far from the
boundary SL,R ≈0, hence

ν

∫ L

0
Sx (Sx +SL +SR)dx ≈ν

∫ L

0
S2

x dx.

Finally, integrating by part the right hand side of (47) one has∫ L

0
Sx (AδS)dx = D2SxδSx |L0 − D2SxxδS|L0 +

∫ L

0
δS (ASx)dx =− D2SxxδS|L0 .

Since S(x) is the stationary profile, differentiating (19) we have ASx = 0,
therefore

∫ L

0 δS (ASx)dx =0. Taking into account the relations for SL and
SR and symmetry of the S(x) profile, we have

−D2SxxδS|L0 = D2Sxx(0)SL(0)−D2Sxx(L)SR(L)

= D2

ω
(Sxx(0))2 + D2

ω
(Sxx(L))2 = 2D2

ω
(Sxx(0))2 .

Combining it all we obtain the relation for estimating the leading
eigenvalue ν:

ν

(∫ L

0
S2

x dx + η

D1

∫ L

0

(u−u(0))2

u(1−u)
dx

)
= 2D2

ω
(Sxx(0))2 .

Due to symmetry of two-step solutions, S(x)=S(L−x) it is sufficient
to integrate from 0 to L/2,

ν

(∫ L/2

0
S2

x dx + η

D1

∫ L/2

0

(u−u(0))2

u(1−u)
dx

)
= D2

ω
(Sxx(0))2 . (48)

Half of the two-step structure can be replaced by approximate one-step
solution on the domain L/2. Again there are two types of two-step struc-
tures.

A-pattern: Minimum at the boundary, maximum at the center.

S(x)≈
{
S2 +B cosh ωx, x <xM,

S1 +A cosh ω
(

L
2 −x

)
, x >xM,

xM ≈ (1−M)
L

2
(49)
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A≈−S1
sinh MωL

2

sinh ωL
2

≈−S1 exp
(

− (1−M)ω
L

2

)
,

B ≈S1
sinh (1−M)ωL

2

sinh ωL
2

≈S1 exp
(

−Mω
L

2

)
.

For this solution we need to find good approximations for the terms in
(48). Here we use the fact that L is large and we study asymptotic expan-
sions. The details are given in Appendix A. We denote the approximative
leading eigenvalue for an A-pattern by γ1A. We find (see Appendix A)

γ1A ≈ 2D1η

ML
exp

(
−ωML− η

2β

)
, (50)

which is exponentially small for large L.
B-pattern: Minimum at the center, maximum at the boundary.

S(x)≈
{
S1 +A cosh ωx, x <xM,

S2 +B cosh ω
(

L
2 −x

)
, x >xM,

xM ≈M
L

2
(51)

with the same A and B as above.
Again, the asymptotic expansions are shown in Appendix A. We find

an approximative eigenvalue for a B-pattern

γ1B ≈ 2D1η

(1−M)L
exp

(
−ω(1−M)L− η

2β

)
. (52)

In Fig. 15 we compare the approximative eigenvalues γ1A, γ1B with
the numerically obtained eigenvalues. We see that the approximations (50)
and (52) show the correct slope as functions of L, in contrast to the
approximation done earlier in (41) and (42), and shown in Fig. 14. If we
compare the formulas for the approximate eigenvalues for A-patterns (50)
and (41) and for B-patterns (52) and (42) we find a very similar depen-
dence in the exponent. In the first case the exponent has a factor L/2,
which is L in the second case. In all cases the factor in front of the expo-
nential of the eigenvalue is proportional to D1 and η and inversely pro-
portional to L.
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Figure 15. Examples of dependence of positive eigenvalues ν on L for 2-step solutions (a,b).
D1 = 0.1, D2 = β = 1, η = 10, M = 0.5 (a), 0.3 (b). The dashed lines correspond to mod-
ified estimates of γA (short dash) and γB (long dash), where γA and γB are the unstable
eigenvalues of the approximations as given by formula (50) and (52) for A- and B-pattern,
respectively. The values ν1A and ν1B are the numerically calculated leading eigenvalues of the
eigenvalue problem (30, 31) for A- or B-pattern, respectively.

5. OTHER MODELS WITH PSEUDOSTRUCTURES

Note that the qualitative explanation of the ultra-long transients in
the previous section does not essentially use the specific dependence of the
chemotactic coefficient on u and S in (2). The same explanation involv-
ing small gradients due to the mismatch of the individual one-steps may
be valid for other types of χ(u, S). The most important is the nature of
the interaction between simple structures combined with particle conserva-
tion—increase of the particle content in one structure implies decrease of
particle content in the other structure. Therefore we looked for the effect
of pseudostructures in other models and indeed found them.

Similar metastable structures were observed in models for microwave
heating [9], Cahn–Hilliard structures [5] and many other examples.

To obtain other models with pseudostructures we take system (26),
(27) and neglect the term containing tanh(z/2)zx . We introduce w=z−S,
S = z−w, then we get

zt = D1wxx, (53)

zt −wt = D2zxx −D2wxx + η

2

(
1+ tanh

z

2

)
−βz+βw. (54)

We differentiate the second equation twice by x, multiply it by D1 and
substitute D1wxx = zt from the first equation. This gives

D1zxxt − zt =D1D2zxxxx −D2zxxt +D1
η

2

(
tanh

z

2

)
xx

−D1βzxx +βzt
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or

(1+β)zt =
(

−D1D2zxx − 1
2
D1η

(
tanh

z

2

)
+D1βz+D2zt

)
xx

. (55)

This is the so-called viscous Cahn–Hilliard equation. Here the conserved
quantity is z, its stationary solutions are almost the same as for the che-
motaxis model (they differ by a constant) and as in the chemotaxis model
there are rigorous results, that only monotonous spatially inhomogeneous
stationary solution can be stable [5]. We observed the effect of pseudo-
structures in this equation as well, though the transition times were less
and the eigenvalues for stationary solutions were larger.

The above Cahn–Hilliard equation, without the viscuous damping
term ztxx , appears as a gradient flow in H−1 of the energy functional

J (z)=
∫ (

D1D2

2
|zx |2 −ηD1 ln(cosh(z/2))+ D1β

2
z2
)

dx

which is a double-well potential when η/β is large enough.
Metastability for the viscous Cahn–Hilliard equation was studied by

Sun and Ward [16]. For multistep structures the individual transition lay-
ers were parameterized by their locations xi(t) and a system of ordinary
differential equations for the xi(t) coupled to an algebraic equation (mass
conservation) was derived which describes the movement of the transition
layers. Indeed, this approach appears to be the next step in the analysis
of multi-peak dynamics of the chemotaxis models studied here. In fact,
recently Dolak and Schmeiser [4] have carried this out for the above che-
motaxis model for small diffusion D1 and an elliptic equation for S.

Another example of a model with pseudostructures is the classical
Keller–Segel model in one spatial dimension, where χ does not depend on
u at all.

ut = D1uxx −χ (uSx)x ,

St = D2Sxx +αu−βS,

0<x <L,

ux |x=0,L = Sx |x=0,L =0.

u(x,0)=uI (x), S(x,0)=SI (x).

By varying model parameters it is possible to obtain very long transients.
In Fig. 16 we show a typical example.
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Figure 16. Metastable behavior in the standard Keller–Segel model in one dimension for
D1 =D2 =χ =α=β =1, L=50, M =4. The initial data are a small perturbation of the homo-
geneous solution. The picture shows the interaction of peaks of the density u on a logarith-
mic time scale. The density u is shown black if u>2 and white if u<2. After 106 time units
all particles aggregate to 2 narrow peaks, at x =0 and x ≈33.

In Sleeman et al. [15] the following chemotaxis model on a bounded
domain � has been studied:

ut = ∇
(
u∇

(
ln

u

Sp

))
,

St = ε2�S −S + uS

1+γ S
,

∂u

∂n
= ∂S

∂n
=0, x ∈ ∂�

with p>1 and γ >0. Typical solutions to this model develop sharp spikes,
in contrast to the plateau-like patterns of the model studied here. Simi-
lar to the model studied here, the corresponding steady states are unsta-
ble with exponentially small eigenvalue (metastable). Sleeman et al. [16]
show that a stable boundary spike will be located at points of the bound-
ary with maximal curvature, and that a stable interior spike has maximum
distance to the boundary.

6. CONCLUSIONS

We conclude that the main reason for the formation of pseudostruc-
tures is the tradeoff between localized “steps” which resemble station-
ary patterns in bistable systems and diffusion which does not allow the
sub-patterns to be completely independent. It turns out that the proper-
ties of the reaction-diffusion equation for S coupled to the equation for
a conserved quantity u behaves qualitatively similar to a single reaction
diffusion equation. This is probably due to the fact that the stationary
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solutions are described by a single equation for S, and hence evolution
attracts trajectories to the manifold where u=ϕ(S).

It is very interesting to study the various instability conditions of this
paper in terms of the parameters of the original model (3). From linear-
ization at the homogeneous steady state we found in formula (9) that all
unstable modes k satisfy

0<

(
πk

L

)2

<
αχM(1−M)−D1β

D1D2
,

where M is the mean u value. Pattern formation will not happen for M

close to 0 or close to 1. For instabilities to occur α and χ need to be large
and β must be small. In addition, strong diffusion would prevent pattern
formation.

The most unstable eigenmode is k =L
√

µU/π where µU satisfies (10)
which in original parameters reads

µU >
αM(1−M)−D1β√
D1D2(

√
D1 +√

D2)
2
.

Large values of α or χ support higher modes (solutions with more peaks),
while higher values for D1 and D2 support broader plateaus.

Next we look at the approximate transition times of an A or a B pat-
tern. If γ1B denotes the prinicpal eigenvalue of a B-pattern then TB =γ −1

1B

is the typical time that the solution spends near the corresponding meta-
stable steady state. From (52) we find that approximately

TB ≈ (1−M)L

2αχ
exp

(√
β

D2
(1−M)L+ αχ

2βD1

)
, (56)

TA ≈ ML

2αχ
exp

(√
β

D2
ML+ αχ

2βD1

)
. (57)

We see that the transition times strongly depend on diffusion. If D1 → 0
or D2 → 0 then TA,TB →∞ and no transitions would occur. A fact that
has been shown in the meantime by Dolak and Schmeiser [4].

If only D1 is small (and D2 is of order one), then the αχ/(2βD1)-term
dominates and the exponent is independent of the length L and the value
of M. If, on the other hand, D2 is small (and D1 of order one), then α

and χ have no influence on the exponent.
We can use TA and TB also to study multiple peak transitions. In

that case we need to choose appropriate sub-intervals such that in each
subinterval we have a single A or B pattern. See for example Fig. 1.
Between times t = 233 and t = 5769 we have a B-pattern transition in the
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subinterval [13,20]. Between t = 1065 and t = 6515 we obtain a B-pattern
transition in [4.5,13]. And finally for t > 6515 we observe an A-pattern
transition on the whole domain. To use formulas (57) and (56) the length
L has to be replaced by the length of the corresponding subinterval. This
explains nicely why patterns with many peaks interact much faster than
patterns with only a few peaks.

From viewpoint of applications the metastable patterns are the
patterns seen in experiments. In Dolak and Hillen [3] a Cattaneo-based
volume filling model has been applied to patterns of Dictyostelium discoid-
eum and to patterns of Salmonella typhimurium. For Dictyostelium, typi-
cal experiments run on time scales of one or two days. During that time
a first metastable pattern has formed and a number of transitions can be
seen (see experiments of the Firtel-Lab at the University of California, San
Diego). The very long transition times for large plateaus are not relevant
to the experiments. On the time scale of Dictyostelium the transition to a
limit formation would require about 20 years.
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APPENDIX A. ASYMPTOTICS

A.1. A-pattern

For the A-pattern given by (49) we find the following asymptotics:

Sxx(0)≈ω2B ≈ω2S1 exp
(

−Mω
L

2

)
,∫ L/2

0
S2

x dx ≈
∫ L/2

0
S2

Ax dx =ω2B2
∫ xM

0
sinh2 ωx dx

+ω2A2
∫ L/2

xM

sinh2 ω

(
L

2
−x

)
dx,∫ xM

0
sinh2 ωx dx = 1

2

∫ xM

0
(cosh 2ωx −1) dx = 1

4ω
sinh 2ωxM − 1

2
xM

≈ 1
8ω

e2ωxM − 1
2
xM = 1

8ω
e(1−M)ωL − (1−M)ωL

4
,∫ L/2

xM

sinh2 ω

(
L

2
−x

)
dx = 1

2

∫ L/2−xM

0
(cosh 2ωx −1) dx
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= 1
4ω

sinh (ωL−2ωxM)− 1
2

(
L

2
−xM

)

≈ 1
8ω

eωL−2ωxM −1
4

(L−2xM)= 1
8ω

eMωL−MωL

4
,∫ L/2

0
S2

x dx ≈ ω2S2
1

(
e−(1−M)ωL

(
1

8ω
e(1−M)ωL − (1−M)ωL

4

)

+ e−MωL

(
1

8ω
eMωL − MωL

4

))
≈ ω

4
S2

1 .

For the second integral in (48) we can take into account that u(0) ≈ 0,
that is ∫ L/2

0

(u−u(0))2

u(1−u)
dx ≈

∫ L/2

0

u

1−u
dx ≈

∫ L/2

xM

dx

1−u

here we use 0<x <xM u(x)≈0. For xM <x <L/2 approximately S ≈S1,

u= 1
1+ eS0−S

≈ 1
1+ e−η/(2β)

,
1

1−u
≈1+ eη/(2β).

Since eη/(2β) �1, we can omit 1, and then∫ L/2

xM

dx

1−u
≈ eη/(2β)

(
L

2
−xM

)
= ML

2
eη/(2β).

The above analysis leads for L large enough to

ν

(
ω

4
S2

1 + ηML

2D1
eη/(2β)

)
=ω4S2

1 exp (−ωML) .

We substitute S1 =η/β and get an estimate γ1A for the leading order eigen-
value

γ1A ≈ 4D1ω
4S2

1 exp (−MωL)

ωD1S
2
1 +2ηML exp (η/(2β))

≈ 2D1η

ML
exp

(
−ωML− η

2β

)
.

A.2. B-pattern

We consider S as given in (51).

Sxx(0)≈ω2A≈ω2S1 exp
(

−(1−M)ω
L

2

)
,

For the first integral we obtain the same estimate∫ L/2

0
S2

x dx ≈ ω

4
S2

1 ,
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For the second integral we can take into account that u(0)≈1, that is∫ L/2

0

(u−u(0))2

u(1−u)
dx ≈

∫ L/2

0

1−u

u
dx ≈

∫ L/2

xM

dx

u
,

here we take into account that for 0 <x <xM u(x)≈ 1. For xM <x <L/2
approximately S ≈S2 ≈0,

u= 1
1+ eS0−S

≈ 1
1+ eη/(2β)

,
1
u

≈1+ eη/(2β) ≈ eη/(2β)

then ∫ L/2

xM

dx

u
≈ eη/(2β)

(
L

2
−xM

)
= (1−M)L

2
eη/(2β).

This gives

γ1B≈ 4D1ω
4S2

1 exp (−(1−M)ωL)

ωD1S
2
1 +2η(1−M)L exp (η/(2β))

≈ 2D1η

(1−M)L
exp

(
−ω(1−M)L− η

2β

)
.
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