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Abstract This chapter provides an introduction on how anisotropic diffusion mod-
els can be derived from position-jump and velocity-jump random walks. We show
how the availability of measurement data can guide the choice of the appropriate
model. We further present two new applications, respectively to cell movement on
micro-fabricated surfaces and magnetic compass orientation by sea turtle hatchlings.

1 Introduction

Getting from point A to point B is a daily challenge, although for the most part
our movement patterns are routine – staggering from bedroom to bathroom, from
home to work, from office to coffee pot – and we switch into autopilot, following
the course hard-wired into our conscious. Sometimes we may find ourselves in an
unusual place attempting to reach an unfamiliar goal, yet even then navigation is
straightforward when armed with a smartphone and network connection.

Cells and animals do not have the technological aids at our disposal yet
frequently need to migrate through their environment, sometimes independently,
sometimes collectively: the solo navigations of recently fledged albatrosses across
thousands of kilometres of southern oceans, or the collective movements of cells
as they move into developing tissues and organs offer particularly astonishing
examples. Given the myriad of potential factors – chemicals, electric, magnetic
and gravitational fields, topography and physical structure of the environment,
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etc. – a key question, whether posed by ecologists, cell biologists, microbiologists
or oncologists, is exactly what cues signal to the cells or organisms along their paths.

Mathematical and computational modelling offer the means to address such
questions, via encapsulating a biological process into its essentials. Yet choosing an
approach and setting up a model to begin with is far from a trivial task. Inevitably
this will come down to the knowledge and data we have and the nature of the
problem we are trying to address. One major determinant in the modelling choice
will be the biological scale of the problem. Consider a population-scale problem
such as predicting the spatial spread of a cancer to aid diagnosis and treatment.
While we may have some understanding of the underlying biological processes at a
cellular level (e.g. enhanced proliferation and invasion of cells into healthy tissue),
the primary scale of interest is typically a macroscopic one at the time of treatment:
the scale of the cancer (centimetres) is significantly greater than the microscopic
cells from which it is formed. In such instances, an efficient and oft-used solution is
to blur the population into a convenient density distribution and propose a suitable
evolution equation (such as a partial differential equation) for its change over space
and time [36, 37, 48].

Macroscopic approaches such as these have formed a bedrock for mathematical
modelling over many years, providing insight into a wide variety of fundamental
processes. When the only data we have is similarly macroscopic, such as an
MRI (magnetic resonance imaging) scan indicating the spatial extent of a cancer’s
growth, a macroscopic model makes sense: fitting the model to approximated
densities determined from the scan offers a method of validation and parameter
estimation [56]. But what if the available data is at the level of the individual?
Can we relate a model posed at a macroscopic level to an individual’s movement?
These questions are clearly crucial when we consider technological advances in
our capacity to track molecules, cells or organisms: individual molecules can
be tagged and followed via single particle tracking (SPT) as they skate across
the cell membrane [52]; labelled cells can be followed via sophisticated imaging
while migrating through a complicated tissue environment [59]; attaching a global
positioning system (GPS) to an animal can allow it to be followed even if it travels
across oceans and continents [7]. Clearly, the data provided by such methods can
shed significant light on the fundamental mechanisms of movement. For modellers,
a significant challenge is raised: how can we best exploit all forms of available data
to obtain better models, both at the level of individuals and populations?

To motivate the rest of this chapter, we consider two very different applications,
respectively, in cell movement and turtle hatchling navigation. Both applications
have a similar fundamental question (what are the guidance cues that determine
navigation?), but offer distinct examples for the type of data that may be at
hand for model parametrisation/formulation. In the case of cell movement we
have a tabulated summary of population-averaged behaviour. For turtles we have
individual-level data, an orientation for each tested hatchling in a sample. The
analytical models we proceed to describe can be fitted to each of the datasets, in
each case shedding light on the problem.
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1.1 Dataset A: Cell Movement on Microfabricated Substrates

The development, maintenance and repair of our bodies requires that various
cells migrate through complex tissue environments; in tumour invasion, these
same mechanisms can facilitate the rapid dispersal and spread of malignant cells
into neighbouring healthy tissue [19]. Various extracellular factors contribute to
cell guidance, ranging from extracellular molecules (e.g. chemoattractants and
repellents), direct signals from other cells (e.g. contact inhibition of locomotion) and
the oriented movement of cells along aligned structures [20, 42]. This latter form of
oriented movement is generally termed contact guidance [14] and, while principally
described in the context of movement along the long bundles of collagen fibres
characteristic of connective tissue, can also occur during the movement of cells
along axonal tracts of the central nervous system or crawling along blood capillaries
[17]. Contact guidance has been identified in various cell populations, including
fibroblasts [13], immune cells [59] and various cancerous populations [16, 49].

The capacity of environmental anisotropy to influence cell orientation/movement
can be studied by tracing cell paths when plated on micro-fabricated structures. To
illustrate the data available from such experiments we analyse those in Jeon et al.
[25], where a two-dimensional substratum is formed with a rectangular array of
orthogonal micro-ridges, see Figure 1 (left). Inter-ridge lengths in the x- and y-
directions are, respectively, denoted W and L, with the former set at 12, 24 or 48
µm and the latter set to generate W : L ratios of 1 : 2, 1 : 4 or 1 : ∞ (the last case
corresponding to an absence of ridges in the x−direction). Ridge heights were set at
3 µm, with further tests conducted at 10 µm and a control case without any ridges.
NIH373 fibroblast cells were plated on these substrates: a population characterised
by its mesenchymal movement with cells extending long protrusions to probe
the environment. Cells clearly align to the micro-ridges, generating anisotropic
movement (see Figure 1, top right and bottom row) under anisotropic arrangements.
Data from individual tracking was summarised at a macroscopic level (averaged
over the population) in terms of mean speeds and directional bias, reproduced in
Table 1. In Section 4.1 we will use this data to parametrise an anisotropic diffusion
model that describes cell spread for different anisotropies in the substratum.

1.2 Dataset B: Magnetic Navigation in Loggerhead Hatchlings

Maritime navigation is undeniably hazardous. The frequent lack of visible landmass,
turbulent currents and dramatic meteorological conditions resulted in frequent posi-
tional misreckoning (and shipwrecking) during the early ages of maritime traffic,
stimulating governments of the time to propose prizes for a method of accurately
establishing longitudinal coordinates. John Harrison’s marine chronometer marked
a pivotal moment in the transition towards (relatively) safe navigation [53]. Marine
animals, of course, do not rely on such aids but many species routinely undertake
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Fig. 1 Top Left: schematic of the micro-ridge substrate. Top Right: typical observation of cell
movement on an anisotropic substrate, where the micro-ridges are in different aspect ratios.
Bottom: cell tracks observed for different environmental anisotropies. Horizontal and vertical axes
represent microns. Figures reprinted from Biomaterials, volume 31, Jeon, H., Hidai, H., Hwang,
D.J., Healy, K.E. and Grigoropoulos, C.P., “The effect of micronscale anisotropic cross patterns on
fibroblast migration”, pp. 4286–4295 (2010), with permission from Elsevier.

Table 1 Reproduction of the movement data from Jeon et al. [25] for fibroblast cells migrating on
a micro-ridged substratum.

Case Ridge height x-velocity vx±error y-velocity vy± error Speed ± error

(µm×μm) (µm) (µm/min) (µm/min) (µm/min)

12 x 24 3 0.38±0.015 0.58±0.025 0.78±0.027

12 x 48 3 0.28±0.014 0.9±0.045 1.01±0.045

12 x ∞ 3 0.08±0.005 0.56±0.029 0.59±0.029

16 x 32 3 0.48±0.021 0.65±0.026 0.9±0.03

16 x 64 3 0.31±0.015 0.87±0.038 1.0±0.039

16 x ∞ 3 0.12±0.007 0.8±0.036 0.84±0.036

24 x 48 3 0.26±0.015 0.42±0.024 0.55±0.027

24 x 96 3 0.2±0.012 0.49±0.02 0.58±0.022

24 x ∞ 3 0.12±0.007 0.48±0.027 0.52±0.028

12 x 24 10 0.33±0.016 0.46±0.024 0.65±0.026

12 x 48 10 0.18±0.013 0.76±0.044 0.83±0.046

12 x ∞ 10 0.04±0.003 0.60±0.032 0.61±0.032

Control 0 0.38±0.019 0.41±0.033 0.63±0.025
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long marine journeys [29], with one of the most phenomenal belonging to the
loggerhead turtle (Caretta caretta). North Atlantic loggerhead hatchlings dash to
the ocean from eggs laid at various nesting beaches and undergo a period of
“frantic” swimming that transports them from the dangerous coastal waters to ocean
circulatory currents such as the Gulf Stream. They subsequently embark on a years
to decades long period of open ocean migration, remaining within the warmer waters
of the Sargasso Sea and the North Atlantic Subtropical Gyre, the circular current
system that surrounds it (Figure 2). As adults, they continue to navigate between
feeding grounds or back to nesting beaches.

Considering the small size of hatchlings and juveniles, sustained swimming is
energetically demanding and there is clear benefit to simply drifting within the
convenient conveyor belt of the North Atlantic Gyre. Yet, such simplistic behaviour
could come with a risk if the stream branches, such as in the North Atlantic where it
splits into separate streams heading south (towards the warmer waters of the Azores)
or north (into the colder waters of Ireland and the North Atlantic), Figure 2; drifting
into the latter could transport turtles into perilously cold waters. Consequently, it is
likely that some degree of positional awareness and navigation is employed and an
increasing volume of evidence has emerged on the potential for turtles to follow a
magnetic compass [28], exploiting the information provided by the Earth’s magnetic
field. Such a capacity would clearly be advantageous: despite its diurnal and secular
variation, magnetic field information is always available (unlike, say, celestial cues).

To investigate this hypothesis, Lohmann and colleagues (see [28] for a review)
devised a laboratory experiment that monitors how hatchling orientation changes
when exposed to distinct magnetic fields. Briefly, a turtle is placed in a large
water-tank while harnessed and tethered to an electronic monitor that computes its
swimming direction. The tank is surrounded by a coil system capable of replicating
specific geomagnetic fields, such as those found at distinct points along a turtle’s
typical migratory route. Following an acclimatisation period, the mean swimming
direction over a 5-min period is recorded for each turtle, generating orientation data
at an individual level. In Figure 2 we reproduce the data summarised in [28] (itself
summarising the collection of studies found in [15, 27, 50]). Specifically, magnetic
fields were reproduced for different points along the North Atlantic Gyre and, for
each location, the (mean) orientation of each tested turtle is binned into a circular
histogram. The key inference from these studies is that hatchlings indeed show
subtle changes to their preferred swimming direction, consistent with an orientation
that optimises remaining within the Gyre. In Section 4.2 we will use this data to
parametrise stochastic and continuous models, assessing the capacity for oriented
swimming to maintain successful circulation of hatchlings.

1.3 Outline

In the next section (Section 2) we introduce advection-diffusion equations and
the fully anistotropic advection-diffusion framework. We introduce position-jump
and velocity-jump random walks as two alternative stochastic models for oriented
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Fig. 2 The North Atlantic Gyre (Black arrows) is a circular system of currents, formed by the
Gulf Stream, the North Atlantic Current, the Canary Current and the North Equatorial Current.
For North Atlantic loggerhead turtles, such as those hatching along Florida beaches, remaining
inside the region enclosed by the Gyre is optimal for access to suitable feeding grounds (e.g. the
Sargasso Sea, the Azores) and to avoid straying into perilously cold waters (e.g. far North Atlantic)
or unfamiliar geographic regions (far from traditional nesting/feeding sites). Two potentially
hazardous points are indicated by the North Easterly point (3) and the South Westerly point (7):
here, currents split into northerly/southerly streams for (3) and northerly/westerly streams for (7).
Circular histograms reproduce the hatchling orientation data from [28], where (1–8) correspond
to the locations where the magnetic field was reproduced in an experimental arena. When this
data is fitted to the von Mises distribution, equation (11), a clear bias emerges, with the dominant
direction and concentration strength reflected by the arrow direction and length (concentration
parameters κ range from 0.67 for dataset 5 to 0.91 for dataset 1). Clearly, the unimodal von
Mises distribution may not always be an “optimal” distribution: for example, datasets 2 and 8
may be more convincingly fitted by a multimodal form, such as linear combinations of von Mises
distributions. Given the present study aims and the limited sample sizes, we restrict our fitting to
the unimodal von Mises distribution.

movement, and show how these models can be parametrised by translating between
individual-level and population-level measurements via circular statistics. In
Section 3 we give detailed derivations of the fully anistotropic advection-diffusion
model, starting from either a position-jump or velocity-jump process. In Section 4
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we return to the two applications/datasets described above. While each dataset
offers a rather distinct set of summary statistics, we show how they can both be
incorporated within our framework to parametrise models.

2 Basic Tools

Here we outline the basic set of tools that we employ to model and analyse popula-
tion spread in an anisotropic/oriented environment: advection-diffusion equations,
scaling limits for random walks, position-jump and velocity-jump random walks
and directional statistics. We note that the derivations of the following sections
require a copious notation, spanning scalar, vector and tensor/matrix quantities.
To help the reader keep track, we use normal face fonts for scalar quantities (e.g.
t, p, u . . .), bold faces for vectors (e.g. a, n, v . . .) and double struck (D,V . . .) for
tensors and matrices. Much of the material here is of an elementary textbook nature,
and we limit references as follows: for more information on the use of advection-
diffusion equations in biology, see, for example, [35, 37]; for more information and
perspectives on random walks and their continuous approximations in biological
systems, see, for example, [9, 22, 38, 39, 41, 46, 47]; for more information on the
theory and use of directional statistics in biology, see [2, 31].

2.1 Advection-Diffusion Equations

Advection-diffusion equations (AD equations) occupy a prominent position in
biological movement modelling [35, 37]. Firstly, AD equations have a relatively
straightforward and intuitive form and their long history has generated numerous
methods for their analysis. Secondly, AD equations can arise as a limiting form from
more realistic/detailed models: they can be derived from discrete and continuous
random walks [38], from stochastic differential equations [18] and from individual
based models [12]. Thirdly, they have shown to be powerful models capable of
describing a wide range of applications in areas as diverse as microbiology [11],
ecology [30, 34], physiology [26] and medicine [45]. In short, AD equations
describe the basic elements of a movement process.

In the simplest case we restrict to a one-dimensional line and consider a constant
drift velocity a and constant diffusion coefficient d > 0. The AD equation for some
population density u(x, t), where x denotes position along the line and t describes
time, is given by

ut + aux = duxx (1)

where the index notation denotes partial derivatives.
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Fig. 3 Typical solutions of the basic diffusion-advection equation (1). Initial conditions are
u(x, 0) = e−x2

and solutions shown for (left to right): pure advection; pure diffusion; diffusion-
advection.

In the absence of diffusion (d = 0), we have ut + aux = 0 and solutions are
of the form u(x − at), describing movement with constant speed a. If a > 0 this
movement is to the right and if a < 0 to the left (see Figure 3 left). In the absence
of advection (a = 0) we obtain a pure heat (or diffusion) equation ut = duxx :
solutions disperse (Figure 3 middle) and (for x ∈ R) the fundamental solution is

u(x, t) = 1√
4πdt

e−x2/4dt .

Taking both terms together (a �= 0, d > 0) the population is transported with
velocity a while simultaneously spreading due to diffusion (Figure 3 right).

While the basic elements of directed movement (via a) and spatial spread (via d)
are already contained in (1), questions arise concerning their specific choices related
to biological observations/properties: How does the direction and thickness of nano-
grooves translate to advection/diffusion terms? How can we link datasets on turtle
headings to these parameters? To answer questions like these we need to generalise
the above AD equations (1) in a number of ways:

• advection and diffusion coefficients will more generally depend on space and
time;

• we need to explore AD equations in higher space dimensions, in particular two
dimensions for the examples studied here;

• as we shall see, any underlying anisotropy or oriented information in the
environment can affect both advection and diffusion, necessitating usage of an
anisotropic formulation with n × n diffusion tensor D(x, t).

Instead of (1) we will therefore consider the fully anisotropic advection-diffusion
equation (FAAD equation):

ut + ∇ · (a(x, t)u) = ∇∇ : (D(x, t)u) . (2)
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Note that because the advective velocity a(x, t) now depends on space, it appears
inside the divergence such that ut +∇·(a(x, t)u) = 0 is a conservation law. The new
anisotropic diffusion term in (2) demands special attention. The colon notation (:)
used here denotes the contraction of two tensors, and generates a summation across
the full suite (i.e. including mixed) of second order derivatives:

∇∇ : (D(x, t)u) =
n∑

i,j=1

∂

∂xi

∂

∂xj

(Dij (x, t)u(x, t)) . (3)

Note moreover that this term can be expanded into

∇∇ : (Du) = ∇ · (D∇u) + ∇ · ((∇ · D)u) ,

which reveals a standard (Fickian-type) anisotropic diffusion term along with an
advection term with velocity ∇ · D. As we will show below, the term (3) arises
naturally from a detailed random walk description for moving biological agents.
We also note that this term can confer some advantages over the standard Fickian
anisotropic diffusion form (∇ · (D∇u)): in particular, (3) can allow local maxima
and minima to form in the population density steady state distribution, consistent
with certain biological observations. Before we move on to this we first show how
explicit expressions can be obtained for drift and diffusion terms, correlating to the
inputs into an individual-level random walk, and introduce scaling methods in the
process.

2.2 Scaling Limits for a Simple Random Walk

Consider an unfortunate hare confined to a life of consecutive and equispaced
hops left or right along an infinite one-dimensional road. This animal’s convenient
movement path can be characterised by a probability density function p(x, t),
denoting the probability of the hare being at position x at time t . We set δ to be
the hop length, q and 1 − q as the probabilities of a jump to the right or left and
introduce τ as the (assumed constant) time between consecutive hops. To determine
an equation for p(x, t + τ) we need to calculate the probability of finding the
individual at x at time = t + τ . Clearly this will only be possible if the individual
has jumped right from position x − δ, or left from x + δ, at time t . As a result, we
have the discrete Master equation

p(x, t + τ) = qp(x − δ, t) + (1 − q)p(x + δ, t) . (4)

How can we determine a continuous limit for this discrete equation? The first step
is to reinterpret p as a continuous probability distribution and then expand the
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left-hand side about (x, t) as a function of t in powers of τ , and the right-hand
side terms as functions of x in powers of δ. After removing the arguments (x, t) for
clarity, we find

p + τpt + τ 2

2
ptt + . . . = q

(
p − δpx + δ2

2
pxx − . . .

)

+ (1 − q)

(
p + δpx + δ2

2
pxx + . . .

)
,

where the subscripts denote partial derivatives. Simplifying, we obtain

pt (x, t) = δ

τ
(1 − 2q)px(x, t) + δ2

2τ
pxx(x, t) + O(τ,

δ3

2τ
) . (5)

Glancing at Equation (5) hints at the continuous model, where we see that the
leading terms form an advection-diffusion equation,

pt (x, t) = −apx(x, t) + dpxx(x, t) (6)

with

a = δ

τ
(2q − 1) and d = δ2

2τ
.

However, to do this more formally we must think carefully about different scalings,
corresponding to distinct limiting scenarios as δ, τ → 0 and q → 1/2. We will
present three choices: others certainly exist, yet the majority do not lead to a useful
limit equation. In other words, if δ, τ and q do not scale as indicated below, then
the above does not provide an appropriate method for deriving a useful continuous
model. Note that for each of these scalings, all of the hidden lower order terms of
equation (5) limit to zero and are henceforth excluded from consideration.

(a) Suppose δ, τ → 0 such that δ
τ

→ α = constant. This describes a hyperbolic

scaling. Hence, δ2

τ
→ 0, and the diffusive term vanishes. Thus, we are left with

a simple transport equation

pt + apx = 0 ,

where the advective velocity is a = α(2q − 1). We can see from this that the
advective speed reaches a maximum of α when q = 0 or 1, which corresponds
to always choosing left or always choosing right: i.e., there will be no doubling
back.

(b) Suppose δ, τ → 0 such that δ2

τ
→ 2d = constant. This describes a parabolic

scaling. Here we can consider two cases:

(b.1) If q = 1
2 . Here we have a = 0 and we hence obtain a pure diffusion

equation

pt = dpxx.
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(b.2) If q → 1
2 in such a way that δ

τ
(2q − 1) → a, and δ2

2τ
→ d, then the

scaling results in the advection-diffusion equation

pt + apx = dpxx . (7)

Summarising:

• When δ and τ scale in the same way, then we obtain a pure transport equation.
This case is called drift dominated.

• When δ2 ∼ τ , we have the diffusion dominated case.
• Only if q − 1

2 ∼ δ do we get both terms, an advection and a diffusion term (mixed
case). In this case we exactly derive our simple one-dimensional AD equation (1),
but now we have a connection from the macroscopic parameters a and d to the
statistical inputs of the underlying random walk process (q, δ, τ ).

The question of which scaling to apply will typically come down to the appropriate
relationship between the macroscopic and the individual spatial and temporal scales:
i.e. between the scales of the individual movement process and the scale of the
problem. For example, for the hops of a hare their frequency may take place
on a timescale of seconds, over a distance of several centimetres. For modelling
purposes, we may be interested in the dynamics of the system over observational
scales ranging from minutes and metres to years and kilometres. The comparison
between these scales provides the key to the appropriate scaling.

It is important to note that we have, in fact, only derived a continuous limiting
equation for the probability distribution of finding an individual at position x at time
t . Can we directly relate p to a density function u that describes the distribution of
a population? Formally, this would require that the jumpers are stochastically inde-
pendent, i.e. that any interactions between population members can be (reasonably)
ignored. This would, quite obviously, be a strong assumption if applied generally
and its validity demands careful assessment [46, 54]. Accounting for population
interactions will significantly complicate the proceedings (often to the point of
intractability) and we shall therefore restrict to stochastically independent jumpers
in the context of this chapter: effectively, we directly interchange the probability
distribution p with the population density distribution u.

2.3 Classes of Biological Random Walks

In the above example we considered an uncorrelated position-jump random walk
on a discrete and regular one-dimensional lattice for our underlying movement
process: moves were uncorrelated, in that the decision of which direction to take
did not depend on the previous decision(s), movement occurred through positional
jumps in space that ignored explicit description of passage between successive
points, and were of fixed length, so that the path was localised to equally spaced
points along a one-dimensional line.
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Fig. 4 Schematic illustrating position-jump and velocity-jump random walks. (Left) In the
position-jump process, the particle makes instantaneous jumps through space at discrete times
t0, t1, t2, . . .. (Right) In the velocity-jump process, the particle makes instantaneous velocity-
changes at discrete times t0, t1, t2, . . . (red circles), but subsequently moves continuously through
space with a fixed velocity in the intervening times (white circles).

More generally, two popular random walk descriptions for biological movement
are the position-jump and velocity-jump random walk processes. These descriptions
have been introduced to biological modelling by Othmer, Dunbar and Alt [38] and
subsequently proven to be powerful and popular approaches. In the simpler position-
jump process, the random walker jumps discretely from point to point according
to certain jump probabilities (Figure 4 left); the one-dimensional random walk
discussed above provides a particularly simple example. The more sophisticated
velocity-jump process assumes piecewise continuous movement through space,
with random walkers changing their velocity (or heading) during turns (Figure 4
right). Choosing an appropriate random walk description involves a balancing of
their respective advantages: for example, while the velocity-jump approach benefits
from its more natural representation of biological movement, the subsequent
derivation of a continuous limiting equation is somewhat more complicated.

2.3.1 Position-Jump Processes

Moving beyond our simple random walk above, a more general position-jump
random walk assumes movement proceeds through a sequence of positional jumps
in space, interspersed according to some characteristic mean waiting time. Such
instantaneous transitions are clearly somewhat unrealistic in the context of biologi-
cal movement, yet given the discrete nature of many datasets (for example, satellite
tracking of an animal in which its path is recorded through its spatial coordinate
at discrete times) a position-jump model can often be justified as a reasonable
approximation [5, 57].

Position-jump random walks can be alternatively stated via a discrete or contin-
uous time master equation [38], and here we consider the former form. Specifically,
we consider a population of stochastically independent jumpers performing a dis-
crete time random walk, starting at t = 0 and making jumps at fixed times separated
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by time step τ . We introduce a redistribution kernel K(y, x, t), a probability density
function for a jump from position x to y at time t . Note that, as a probability, we
have K ≥ 0.

The difference in the population density at x between times t and t + τ will be
determined by summing all jumps into position x and subtracting all those away
from position x, i.e. by the equation

u(x, t + τ) − u(x, t) =
∫

Dx
K(x, y, t)u(y, t) − K(y, x, t)u(x, t)dμ(y) . (8)

In the above, (Dx, μ(y)) is a measure space. The above is general for random
walks including jumps of various step lengths, or cases where movement occurs in
continuous space or is restricted to discrete jumps between regularly or irregularly
arranged nodes. The set Dx determines the set of destination/incoming sites for
position x, i.e. the set of points y ∈ Dx from which jumps into or out of x can
be made, with μ(y) its associated measure. For example, if jumps can be made in
any direction and any distance up to length h, then Dx becomes the ball centred
on x of radius h and the associated measure is the standard Lebesgue measure. If
jumps can be made in any direction, but are restricted to a fixed length h, then
Dx will be the sphere of radius h centred on x and the associated measure is the
surface Lebesgue measure. When movements become restricted to a set of nodes,
Dx becomes a finite or infinite set of discrete positions with a corresponding discrete
measure.

The choice of redistribution kernel K is a key modelling decision, and allows
various potential factors to be incorporated: for example, K could incorporate
an impact due to environmental anisotropy or navigating cues that bias jumps
into particular headings. The redistribution kernel is taken to be a probability
measure, i.e.

∫

Dx
K(y, x, t)dμ(y) = 1 .

The above excludes spatio-temporal variation in the rate that jumps are made.
However, it is noted that this is distinct from variation in staying at the same site,
since Dx could include x and remaining would correspond to K(x, x, t) > 0.

2.3.2 Velocity-Jump Processes

In velocity-jump random walks, movement consists of smooth runs with constant
velocity interspersed by (instantaneous) reorientations [38]. For stochastically inde-
pendent walkers, the individual-scale velocity-jump random walk can be formulated
as an individual-scale continuous transport equation. Transport models form a
powerful and relatively new tool in the modelling and analysis of animal and
cell movement [21, 37, 40, 47], although they have a long history in continuum
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mechanics (where they are usually referred to as kinetic equations) [3, 8]. As a
result, various tools and techniques have been developed and in particular the scaling
techniques that allow their approximation to a reduced (and hopefully simpler)
macroscopic model [22, 47]. Consequently, the transport equation can be thought
of as a bridge that connects the individual random walk to a fully continuous
macroscopic model.

The reapplication of transport equations to biological processes has grown from
seminal work of the 1980s (see [1, 38]) as an approach for modelling biological
movement, whether by cells or organisms. Transport equations typically refer to
mathematical models in which the particles of interest are structured by their
position in space, time and velocity. In words, the transport equation for animal/cell
movement takes the intuitively simple form:

Rate of change of population Change due to Change due to
moving with velocity v = movement through + turning into or out

at position x time t space of velocity v

Formally, if we define by p(v, x, t) to be the density of the population moving with
velocity v ∈ V at position x and time t , then

pt(v, x, t) + v · ∇p(v, x, t) = L p(v, x, t) , (9)

where L denotes a turning operator that describes the process of velocity switch-
ing1. For the velocity space V ⊂ R

n we take V = [s1, s2] × Sn−1, where
0 ≤ s1 ≤ s2 < ∞, s1 and s2 define the lower and upper bounds for organism
movement speed2 and Sn−1 defines the unit sphere.

The choice of L forms a key modelling decision, and an oft-used form is the
integral operator representation [38]:

L p(v, x, t) = −μp(v, x, t) + μ

∫

V

T (v, v′, x, t)p(v, x, t)dv′ , (10)

where the first term on the right-hand side gives the rate at which particles switch
away from velocity v and the second term denotes the switching into velocity v
from all other velocities. The parameter μ is the turning rate, with 1/μ the mean
run time between individual turns. The turning kernel T (v, v′, x, t) ≥ 0 denotes
the switching into velocity v for a turn made at position x and time t , given some
previous velocity v′. Mass conservation demands

1We note that this particular form assumes there is no net force on the particles, and thus no inertia
on them.
2It is worth noting that this is a key distinction from the kinetic theory of gas molecules, where
V = R

n permits (at least theoretically) individual molecules to acquire infinite momentum [8].
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∫

V

T (v, v′, x, t)dv = 1

and consequently T denotes a probability measure over V . As for the redistribution
kernel in the position-jump process, its choice is a major consideration: for example,
orientation signals from the environment at x and time t , or the inclusion of
persistence in the previous direction v′.

2.4 Directional Statistics

Each of the position-jump and velocity-jump processes above relies on various
biological inputs: mean waiting times, speeds, turning rates and redistribution
kernels. It is through these inputs that the random walk can be linked to biological
datasets, and not least significant are the kernels K and T , which, respectively,
describe probability distribution functions for either the redistribution kernel for a
positional jump from some position x to a position y or a change of velocity from
v′ to v. Fundamentally, each distribution encapsulates an orientating “choice” of the
animal or cell and we now turn to consider some suitable representations.

Typical datasets for cell movement and animal navigation problems relate to
orientations/headings in space and handling such data demands a review of some
concepts from directional statistics [31]. In two dimensions, directional (or circular)
statistics involves consideration of data on orientations that can be expressed with
respect to some angle α relative to a given x-direction. The problem of directly
transposing the definitions of regular (linear) statistics to circular statistics becomes
immediately apparent with even its simplest concepts: for a set of angles uniformly
distributed across the circle, what meaning would the (linear) mean angle of this
dataset have?

In general we consider the set of directions on the n-dimensional sphere, i.e.
the set of unit vectors n ∈ Sn−1. A directional distribution is then a probability
distribution q(n) defined over Sn−1, i.e. one satisfying

q(n) ≥ 0 and
∫

Sn−1
q(n)dn = 1 .

Of particular importance for our work are the first and second moments of q,
respectively the expectation Eq and variance–covariance matrix Vq (which we will
often refer to simply as the variance):

Eq =
∫

Sn−1
nq(n)dn,

Vq =
∫

Sn−1
(n − Eq)(n − Eq)T q(n)dn.
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Fig. 5 Left: The unimodal von Mises distribution as a function of n = (n1, n2)
T ∈ S1 with a peak

at ν = (1, 0)T . Right: The bimodal von Mises distribution qvM as a function of n ∈ S1 with peaks
at ν = ±(1, 0)T . In these plots we set κ = 10.

In two dimensions, distributions will be defined on the unit circle, i.e. n ∈ S1.
The simplest example is the uniform distribution, q(n) = 1

2π
, although this has

obviously limited usage in cases where data shows clear clustering/structure.
Given the enormous importance of the normal distribution in linear statistics, it is

clearly desirable to define a similar concept for circular statistics. While the wrapped
normal distribution offers the most direct analogue, the normal distribution’s
prominent position in circular statistics is filled instead by its sibling, the von Mises
distribution [2, 31], which benefits from its more analytically tractable form; the
subtle differences between the wrapped normal and von Mises distribution are
unlikely to be differentiated within the context of typical (noisy) biological datasets.
Suppose we have some dominant/preferred direction ν ∈ S1, then the von Mises
distribution is given by

qvM(n, ν, κ) = 1

2πI0(κ)
eκn·ν (11)

for n ∈ S1. Here κ denotes the concentration parameter and I0(κ) (Ij (κ)) denotes
the modified Bessel function of first kind of order 0 (order j ). The von Mises
distribution is illustrated in Figure 5 on the left.

It is, of course, equally possible to write down the von Mises distribution in terms
of polar angles. Denoting α to be the angle of n and φ to be the angle of ν (i.e. the
dominant angle), then we can write

qvM(α, φ, κ) = 1

2πI0(κ)
eκ cos(α−φ) .

The above form is more common, particularly in the biological literature [32], but
it is less useful for computations and can be notationally more cumbersome. Hence
we work with the coordinate free form (11) when possible.
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As for the normal distribution on the line, the von Mises distribution on the
circle is the workhorse of planar directional statistics [2, 31]. It can be derived from
random walks, diffusion equations and energy principles, and has applications in
earth sciences, physics, biology, medicine, and elsewhere. It is used for data fitting
and hypothesis testing of directional data, and we will use it here for our modelling
of biological movement. The first and second moments of (11) have been computed
in [23] (amongst elsewhere) and are given by

EqvM
= I1(κ)

I0(κ)
ν ; (12)

VqvM
= 1

2

(
1 − I2(κ)

I0(κ)

)
I2 +

(
I2(κ)

I0(κ)
−

(
I1(κ)

I0(κ)

)2
)

ννT . (13)

Note that I2 denotes the 2 × 2 identity matrix, and ννT denotes the dyadic product
of two vectors (in tensor notation ν ⊗ ν).

Many biological datasets possess multimodal structure and we note that the
von Mises distribution can be extended to describe such instances, for example
through simple linear combinations of (11); the moments correspondingly follow
from linear combinations of (12–13). A particularly useful case emerges for axially
symmetric directional information, such as the spreading of cells along nanogrooves
or animal movement along linear environment structures such as seismic lines [33].
In such cases we can define a bimodal von Mises distributions with equal sized local
maxima at ±ν. As shown in [23], we find that for given ν ∈ S1 the bimodal von
Mises distribution

qbvM(n, ν, κ) = 1

4πI0(κ)

(
eκn·ν + e−κn·ν) , (14)

has moments

EqbvM
= 0 , (15)

VqbvM
= 1

2

(
1 − I2(κ)

I0(κ)

)
I2 + I2(κ)

I0(κ)
ννT . (16)

An illustration of the bimodal von Mises distribution is shown in Figure 5 on the
right.

For the present chapter we exclusively concentrate on two-dimensional appli-
cations, however it is worth remarking that extensions can be made to three
dimensions. The equivalent of the von Mises distribution in three dimensions is
called the Fisher distribution and is given by

qF (n, ν, κ) = κ

4π sinh(κ)
eκn·ν, n ∈ S2. (17)
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Again, first and second moments have been previously calculated for this distribu-
tion (see [23]), given by

EqF
=

(
coth κ − 1

κ

)
ν , (18)

VqF
=

(
coth κ

κ
− 1

κ2

)
I +

(
1 − coth κ

κ
+ 2

κ2 − coth2 κ

)
ννT . (19)

3 Derivation of Fully Anisotropic Advection-Diffusion
Equations

Here we present two derivations of the FAAD model (2), respectively, from a
position-jump and velocity-jump process. We will find that both the macroscopic
drift velocity a and the diffusion tensor D depend on statistical properties of the
parameters in the corresponding random walk model. Hence, the choice of an
appropriate model can be linked to the available data: if we can compute mean and
variance of species locations, then the position-jump framework applies (see our cell
movement example); if the data allow estimates for mean speeds, mean directions
and their variances, then the velocity-jump process is perhaps a better choice (see
the sea-turtle example).

3.1 Position-Jump Derivation

For the position-jump derivation we will make a number of convenient restric-
tions:

1. we assume random walks in which the jumps can occur in any direction (i.e.
lattice-free), but are restricted to fixed length δ.

2. we assume the jump is myopic (or short-sighted).

The first restriction determines that the set D in equation (8) simply becomes the
sphere of radius δ. The myopic nature of the jump implies that the heading is
based only on environmental information obtained at the present site, i.e. at (x, t)

for a walker at position x at time t ; alternatives could involve, as an example, a
dependence on information at the destination site, or a comparison between the
current and destination site [55].

The consequence of these assumptions is that our redistribution kernels can be
written in terms of a directional distribution for choosing direction n ∈ Sn−1, i.e.
K(y, x, t) = k(n, x, t) where n is in the direction y−x

|y−x| and the Master equation
becomes
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u(x, t + τ) − u(x, t) =
∫

Sn−1
k(n, x − δn, t)u(x − δn, t) − k(n, x, t)u(x, t)dn .

(20)
At this point it is interesting to quickly consider the connection to the one-
dimensional case (4) that was studied earlier. In the one-dimensional case we have
only two headings, n ∈ {−1, 1}. Hence we define

k(n, x, t) = qδ0(−1 − n) + (1 − q)δ0(1 − n),

where δ0 denotes the Dirac-delta distribution. Then (20) becomes

u(x, t + τ) = qu(x − δ, t) + (1 − q)u(x + δ, t),

which is exactly (4).
For small values of δ and τ we expand the right-hand side of equation (20) about

x and the left-hand side about t to obtain

∂u

∂t
+ O(τ) = δ

τ

∫

Sn−1
−n · ∇ (ku) + δ

2
(n · ∇)2 (ku) + O(δ2)dn ,

= − δ

τ

(
∇·

∫

Sn−1
n (ku) dn

)
+ δ2

2τ

(
∇∇:

∫

Sn−1

nnT kdn
)

u + O(δ3/τ) ,

where we use the colon notation (:) which denotes the contraction of two tensors as

A : B =
n∑

i,j=1

aij bij , A,B ∈ R
n×n.

As discussed in Section 2.2, distinct scalings generate different continuous limits
and we again consider both the drift and diffusion dominated scenarios.

• (drift dominated) if δ, τ → 0 such that limδ,τ→0
δ
τ

= c (constant) we have the
hyperbolic model

∂u

∂t
+ ∇ · (a(x, t)u) = 0 ,

where a(x, t) = c
∫
Sn−1 nk(n, x, t)dn (i.e. the advection is proportional to the

first moment of k).
• if δ, τ → 0 such that limδ,τ→0

δ2

2τ
= d then we have two cases

– (diffusion dominated) if
∫
Sn−1 nkdn = 0 then we have

∂u

∂t
= ∇∇ : (D(x, t)u) ,

where D(x, t) is the n×n matrix defined by D(x, t) = d
∫
Sn−1 nnT k(n, x, t)dn.
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– (drift-diffusion). If limδ,τ→0
δ2

2τ
= d and limδ,τ→0

δ
τ

∫
Sn−1 nkdn ∼ cδ, we

have

∂u

∂t
+ ∇ · (a(x, t)u) = ∇∇ : (D(x, t)u) ,

with

a(x, t) = c

∫

Sn−1
nk(n, x, t)dn ,

D(x, t) = d

∫

Sn−1
(n − a(x, t))(n − a(x, t))T k(n, x, t)dn .

The final form is particularly relevant, as it is exactly the FAAD model we
introduced earlier. In this case, we now have a connection to the advection velocity
and diffusion tensor terms from the underlying statistical inputs k(n, x, t) of a
random walk process.

3.2 Velocity-Jump Derivation

To facilitate the derivation we consider a simplified form of transport equation.
Specifically, we assume that the turning kernel does not depend on the previous
velocity v′, i.e.

T (v, v′, x, t) = T (v, x, t) .

Using this choice in (10) for (9) we have the considerably simpler form

pt (v, x, t) + v · ∇p(v, x, t) = −μp(v, x, t) + T (v, x, t)u(x, t) , (21)

where we have defined the macroscopic density

u(x, t) =
∫

V

p(v, x, t)dv. (22)

The process from here is to derive an evolution equation for the macroscopic density
u(x, t), which can be achieved through a variety of scaling techniques, including
parabolic scaling, hyperbolic scaling and moment closure. For a detailed treatment
for model (21) we refer to our earlier paper [22] and we summarise one such choice
here: moment closure.



From Random Walks to Fully Anisotropic Diffusion Models for Cell. . . 123

3.2.1 Moment Closure Method

In a moment closure approach, the idea is to identify statistically meaningful
quantities related to p and T , such as expectations and variances. We remind
ourselves that the formulation demands that the turning distribution T (v, x, t) is
a probability measure, i.e.

T (v, x, t) ≥ 0,

∫

V

T (v, x, t)dv = 1,

and we consider its expectation ET and variance VT ,

ET (x, t) =
∫

V

vT (v, x, t)dv,

VT (x, t) :=
∫

V

(v − ET (x, t))(v − ET (x, t))T T (v, x, t)dv . (23)

ET (x, t) describes the mean new velocity vector for the turning kernel, while
VT (x, t) is its variance–covariance matrix.

We now introduce the same quantities for p(v, x, t), although we note that p in
itself is not a probability measure, since

∫
V

p(v, x, t)dv = u(x, t) is not necessarily
equal to one. But we can normalise, introducing p̂ via the equation

u(x, t)p̂(v, x, t) = p(v, x, t)

and noting that
∫
V

p̂(v, x, t)dv = 1. We subsequently introduce the expectation and
variances

Ep̂(x, t) =
∫

V

vp̂(v, x, t)dv,

Vp̂(x, t) =
∫

V

(v − Ep̂(x, t))(v − Ep̂(x, t))T p̂(v, x, t)dv.

Then, Ep̂ defines the mean velocity of the normalised population while Vp̂ is its
variance–covariance matrix. In terms of the original population density p, we can
write

∫

V

vp(v, x, t)dv = Ep̂(x, t)u(x, t) , (24)

∫

V

(v − Ep̂(x, t))(v − Ep̂(x, t))T p(v, x, t)dv = Vp̂(x, t)u(x, t) . (25)

Next we explain the moment closure method itself. We can derive equations for
the expectation and variance introduced above, and it turns out that the equation
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for the expectation (first moment) depends on the variance (second moment) while
the equation for the variance depends on a third moment, etc. Effectively we obtain
an infinite hierarchy of moment equations, where each new equation depends on
a next higher moment. To obtain a usable model, the sequence of equations must
be cut somewhere, a process termed moment closure. Generally, choosing the right
closure condition is a work of art and many plausible approaches are available in the
literature [8, 20]. Here we will choose a standard method that uses the equilibrium
distribution and cut at the second moment to obtain a single equation of type (2) for
the mass density u(x, t).

Let us start by integrating equation (21) over V and express each term with
respect to the corresponding moments. Note that hereon we omit the arguments
for readability.

∫

V

ptdv +
∫

V

∇ · vp dv = −μ

∫

V

p dv + μ

∫

V

T dv u,

which can equivalently be written as

ut + ∇ · (Ep̂u) = −μu + μu = 0.

Hence our first equation is a conservation law

ut + ∇ · (Ep̂u) = 0 . (26)

As a next step we multiply (21) by v and again integrate over V . We obtain

∫

V

vutdv +
∫

v(∇ · vp)dv = −μ

∫

V

vp dv + μ

∫

V

vT dv u ,

which can be equivalently written as

(Ep̂u)t + ∇ ·
∫

V

vvT p dv = μ(ET − Ep̂)u . (27)

We write the second moment
∫

vvT pdv in terms of the variance of p̂, i.e.

Vp̂u =
∫

V

(v − Ep̂)(v − Ep̂)T pdv ,

=
∫

V

vvT pdv − 2
∫

V

vET
p̂
pdv + Ep̂ET

p̂
u.

Hence
∫

V

vvT pdv = Vp̂u + Ep̂ET
p̂
u.
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We use this expression in (27) and obtain the equation for the expectation:

(Ep̂u)t + ∇ · (Ep̂ET
p̂
u) = −∇ · (Vp̂u) + μ(ET − Ep̂)u . (28)

So far we have simply integrated and introduced a few fancy variables for Ep̂,Vp̂,
etc. The next step is to present two critical assumptions that allow us to close the
system:

(a1) Moment closure – the variance Vp̂ is computed from the equilibrium
distribution pe: Vp̂ ≈ Vp̂e

.

(a2) Fast flux relaxation – the equation (28) for the expectation Ep̂ is in quasi-
equilibrium.

It is noted that the above assumptions were originally conceived in a physical
context, namely the kinetic theory of dilute gases [8]. The extent to which these
can be directly translated to biological particles, such as cells and organisms, is
uncertain and a goal for further investigations: within the present article we simply
take them as stated. The first assumption has proven to be useful in a number of
studies. The second assumption effectively stipulates that, at the space/time scales
of the macroscopic model, the particle instantaneously respond to local information:
reasonable, say, for an organism switching direction multiple times a day but studied
over a macroscopic scale of months to years.

The equilibrium distribution pe can be computed from the condition L pe = 0
where L is the integral operator from (10). In our case

L p = μ(T u − p) = 0

is solved by the equilibrium distribution ,

pe(v, x, t) = u(x, t)T (v, x, t).

This equilibrium distribution has the expectation

Ep̂e
u =

∫

V

vpedv =
∫

V

vuT dv = ET u . (29)

Now we approximate the highest order term, the variance as

Vp̂ ≈ Vp̂e
=

∫

V

(v − Ep̂e
)(v − Ep̂e

)T uT dv = VT u . (30)

In assumption (a2) we postulate that the equation (28) is in quasi-steady state, i.e.

0 ≈ −∇ · (Vp̂u) + μ(ET − Ep̂)u ,
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and, substituting the moment closure (30), we find the approximation

Ep̂u ≈ − 1

μ
∇ · (VT u) + ET u . (31)

Finally, we substitute (31) into the conservation law (26) and we assume that the
approximation is good (i.e. we replace ≈ with =) to obtain a closed system

ut + ∇ · (ET u) = 1

μ
∇∇ : (VT u) . (32)

This closed equation is exactly the fully anisotropic advection-diffusion equation
(FAAD) in (2) with

a(x, t) = ET (x, t) and D(x, t) = 1

μ
VT (x, t). (33)

Let us consider two special cases of this derivation.

Example 1 (Directional Distributions) Some further simplifications can be used
to relate turning directly to a directional distribution. Let us restrict movement to
a single speed, i.e. V = sSn−1, where s is the mean speed and Sn−1 is the n-
dimensional sphere. Hence, v = sn where n ∈ Sn−1 defines the directional heading.
We can therefore simply define T in terms of a directional distribution, say q, for
choosing some heading n ∈ Sn−1. Specifically,

T (v, x, t) := q(n, x, t)

sn−1 , (34)

where the sn−1 factor results from moving between a distribution over V to one over
Sn−1. Subsequently, advection and diffusion tensors for (2) will be given by

a(x, t) = sEq(x, t) = s

∫

Sn−1
nq(n, x, t)dn , (35)

D(x, t) = s2

μ
Vq(x, t) = s2

μ

∫

Sn−1
(n − Eq)(n − Eq)T qdn . (36)

Notice that for the von-Mises and Fisher distributions discussed earlier, we have
already computed expectation and variances: i.e., they are ready to be used.

Example 2 (including external drift) The above derivation can also be applied to
the case of particles that are drifting in an external velocity field b(x, t) ∈ R

n,
for example turtles transported in ocean currents or insects blown by the wind. If
particles are inactive, their heading is exactly the direction of the external flow field
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b(x, t), in which case the directional distribution used for the turning kernel would
be a point measure

T (v, x, t) = δb(x,t)(v) .

Then, expectation and variances can be calculated as

ET (x, t) = b(x, t) and VT (x, t) = 0 .

The above macroscopic limit is a pure drift equation

ut + ∇ · (b(x, t)u) = 0. (37)

Note that the same equation arises if we simply assume that a force proportional
to b acts on cells, where the cells have no inertia. In that case we also get a
drift of the form b(x, t). For situations in which we have a population of actively
navigating/moving particles immersed in an external velocity field we can simply
combine the two cases of (35), (36) and (37) to obtain

ut + ∇ · ((a(x, t) + b(x, t))u) = ∇∇ : (D(x, t)u). (38)

Indeed, this case was used to analyse sea turtle data in [43].

4 Applications to Cell/Animal Orientation Datasets

We illustrate the methodology through our two motivating applications. In each case
we take as a starting point an individual-based description for oriented movement:
an underlying velocity-jump process for the random walk. This initial description
arises naturally, given our fundamental knowledge of particle behaviours: cells on
fabricated substrates reveal alignment and orientation according to the substrate
anisotropy (Figure 1); datasets for turtles are based according to their mean swim-
ming orientation when subjected to specific magnetic fields (Figure 2). We remark
that in each application a two-dimensional approximation (n = 2) is reasonable:
cells migrate across the two-dimensional substrate and the diving capabilities of
young turtles restrict their movements to the ocean surface [10]. Simulation methods
are provided in the Appendix.

The two applications differ not only in their field of study but also with respect to
the “usable data”. For cell movement we consider a tabulated summary of responses
for distinct micro-ridge substrates, Table 1. This is data at a population-averaged
level, and we do not have explicit data on each individual cell’s orientating response.
Nevertheless, we can still use this data to directly parametrise our model, which
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is done directly at the FAAD level that arises as a continuous approximation of
the individual model. In the case of hatchling movements, a circular dataset is
available for the mean heading of each tested turtle in samples exposed to distinct
navigation fields. In this case, we can directly parametrise the von Mises distribution
that describes an individual’s orientation response, and subsequently scale to a
macroscopic FAAD equation in order to collect population-level measurements.

4.1 Application A: Cell Movement on Microfabricated
Structures

The data of Jeon et al. [25] in Table 1 are at a population level: the mean x-
velocity (vx ±vx,error ), mean y-velocity (vy ±vy,error ) and mean speed (s ±serror ),
where velocity components are measured according to absolute values. To relate
these to the parametrisation of (2), we first remark on some particulars induced by
the anisotropic arrangement. Firstly, the dominant drift velocity a = 0, since the
environment is essentially bidirectional and, on average, equal numbers of cells will
be found travelling up or down (left or right). Secondly, the substratum is anisotropic
but spatially homogeneous, and hence the diffusion tensor D is constant in space.
Finally, anisotropies coincide with the coordinate axes, so D becomes a diagonal
matrix

D =
(

λx 0
0 λy

)
, (39)

with two eigenvalues λx and λy .
Given that D is constant in space, the fully anisotropic diffusion model becomes

identical to the standard anisotropic diffusion equation:

ut = ∇ · D∇u . (40)

Hence we can exploit results relating to the above. Firstly, the fundamental solution
of (40) is the Gaussian distribution with covariance matrix D:

u(x, t) = 1

2πt
√

DetD
exp

(
− 1

4t
xT

D
−1x

)
(41)

(in two spatial dimensions), where the set

Ec := {x : xT
D

−1x = c}

gives the set of locations for which there is an equal probability of finding a random
mover that started at the origin. This set defines a diffusion ellipse, with semi-axes of
lengths

√
λx and

√
λy , respectively, and provides one way to graphically visualise
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the anisotropy of D. A second method is the diffusion peanut, which is the image of
the map w �→ wT

Dw for w ∈ S1, and relates to the mean-squared displacement in
direction w, σ 2

w, via σ 2
w = 2twT

Dw [45]. This gives rise to the apparent diffusion
coefficient in direction w,

ADCw := σ 2
w

2t
= wT

Dw .

In particular, given coordinate directions (1, 0)T and (0, 1)T , we find that the mean
squared displacements in x- and y-directions will be 2tλx and 2tλy respectively.
This provides the key for using the data in Table 1: given the mean velocities in x and
y directions and taking a unit time step of 1 min, we convert to mean displacements
for the x and y directions and in turn estimate the λ’s in (39), the values of which are
listed in Table 2 for each experimental setting. To illustrate some of the anisotropies
graphically, we plot diffusion ellipses and peanuts for the three cases 16 × 32, 16 ×
64 and 16 × ∞ in Figure 6. As the structure is stretched along the y− direction
we observe progressively thinned-out ellipses/pinched peanuts, reflecting restricted
movement along this axis.

For turning rates of the order of 2.5/min and a tracking timeframe of 400 min,
each cell turns on average 1000 times across its track. Given an average speed of
0.5 µm/min, each particle travels about 200 µm in this timeframe, suggesting this
to be a suitably macroscopic scale. We subsequently plot solutions to the FAAD
model on this spatial and temporal scale, plotting the evolving distribution for 10
individuals presumed to have started at the origin. Exploiting the spatially uniform
nature of the environment, solutions will simply be governed by the fundamental
solution (41), which we plot in Figure 7 at t = 100 and t = 400 for the same
three cases 16 × 32, 16 × 64 and 16 × ∞. Consistent with the diffusion ellipses,
the highest degree of environmental anisotropy generates a quasi-one-dimensional
spread of the cells along the y-axis. We note that there is no direct information in
[25] that allows us to directly compare these plots to their data, and therefore this
represents a prediction of the expected population distribution.

We can turn the argument full circle and use the measured data to estimate
cell movement parameters that would be required in the underlying velocity-jump
process: speed s, turning rate μ, and concentration parameter κ of the bimodal von-
Mises distribution (14). We should note that this is predicated on an assumption
of the individual-level behaviour: i.e., that cells orient according to a bimodal von-
Mises distribution. In the absence of specific individual-level data, this is of course
impossible to state with certainty, yet it is nevertheless instructive to show how we
can “reverse the process”.

Recall that, given the symmetric/bidirectional scenario, the drift velocity
a = 0 and the macroscopic model becomes the pure fully anisotropic diffusion
equation

ut = ∇∇ : (Du) ,
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Table 2 Speed and diffusion coefficients λx and λy from the data from Jeon et al. [25]. We also
list the values for the turning rate μ, and the concentration parameter κ of a corresponding bi-modal
von-Mises distribution.

Case Ridge height Speed ± error λx± error λy± error Turning rate Anisotropy

(µm× µm) (µm) (µm/min) (µm2/min) (µm2/min) (/min) parameter

12 x 24 3 0.78±0.027 0.072±0.0057 0.17±0.015 2.53 2.57

12 x 48 3 1.01±0.045 0.039±0.0039 0.41±0.041 2.29 10.79

12 x ∞ 3 0.59±0.029 0.0032±0.00040 0.16±0.016 2.17 49.49

16 x 32 3 0.9±0.03 0.12±0.010 0.21±0.017 2.48 1.96

16 x 64 3 1.0±0.039 0.048±0.0047 0.38±0.033 2.34 8.32

16 x ∞ 3 0.84±0.0072 0.0072±0.00080 0.32±0.029 2.15 44.84

24 x 48 3 0.55±0.027 0.034±0.0039 0.088±0.010 2.47 2.89

24 x 96 3 0.58±0.022 0.020±0.0024 0.12±0.0098 2.40 6.42

24 x ∞ 3 0.52±0.028 0.0072±0.00084 0.12±0.013 2.20 16.47

12 x 24 10 0.65±0.026 0.055±0.0053 0.11±0.011 2.63 2.10

12 x 48 10 0.83±0.046 0.016±0.0023 0.29±0.033 2.25 18.28

12 x ∞ 10 0.61±0.032 0.00081±0.00012 0.18±0.019 2.05 224.22

Control 0 0.63±0.025 0.072±0.0072 0.085±0.014 2.53 0.83

Fig. 6 Diffusion ellipses (black solid line) and peanuts (red-dashed line) representing the
anisotropic cell migration for the 16 × 32, 16 × 64 and 16 × ∞ micro-ridge arrangements, see
Table 2. Note that we renormalise the longer axes to aid comparison between their respective
shapes.

with diffusion tensor from (36)

D = s2

μ
Vq = s2

2μ

(
1 − I2(κ)

I0(κ)

)
I2 + s2

μ

I2(κ)

I0(κ)
ννT . (42)

For now let us write the diffusion tensor in (42) as

D = k1I2 + k2ννT , k1 = s2

2μ

(
1 − I2(κ)

I0(κ)

)
, k2 = s2

μ

I2(κ)

I0(κ)
. (43)
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Fig. 7 Population distributions u(x, t) plotted at (top row) t = 100 and (bottom row) t = 400 for
10 cells initiated at x = 0.

Since the primary direction of anisotropy is in the y-direction, we have ν = (0, 1)T

and can explicitly compute

D =
(

k1 0
0 k1 + k2

)
=

(
λx 0
0 λy

)
,

where we employed (39) for the second equality. Therefore, we obtain two equations
relating k1, k2 and λx, λy :

k1 = λx k1 + k2 = λy.

Using the expressions for k1 and k2 in (43) we find trD = λx + λy = s2

μ
, which

gives

μ = s2

λx + λy

. (44)

The corresponding values for the turning rate μ are listed in Table 2. Furthermore
we can use the previous relations to compute

I2(κ)

I0(κ)
= μ(λy − λx)

s2 . (45)
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Fig. 8 Bimodal von Mises distributions for the turning distributions of stochastic velocity-jump
random walks corresponding to the macroscopic cases in Figure 7.

Determining concentration (or anisotropy) parameter κ demands inverting the ratio
of modified Bessel functions I2(κ)/I0(κ), a monotonically increasing function from
0 to 1 for κ ∈ [0,∞). We use Wolfram Alpha to invert this function for our data
and list the corresponding values in Table 2.

The turning rate μ is surprisingly consistent between the different experiments,
which may reflect that this parameter is (relatively) independent of the form of
the substratum (for example, determined mainly by intracellular factors). The
anisotropy parameter κ , however, varies over several orders of magnitude with the
most anisotropic cases corresponding to those without ridges in the x-direction, as
expected. Graphical illustrations of the bimodal von Mises distribution for the three
cases 16 × 32, 16 × 64 and 16 × ∞ are provided in Figure 8. Higher ridges (10
µm) offer even more guidance and, consequently, larger anisotropy: including an
extreme of κ = 224. This upper value effectively reduces the bimodal von Mises
distribution to a pair of Delta functions in opposite directions, so that movement is
almost completely confined to the one-dimensional y-direction.

4.2 Application B: Magnetic Navigation in Loggerhead
Hatchlings

Our second application considers hatchling loggerhead turtle navigation, investigat-
ing the extent to which oriented swimming keeps them within the relative safety of
the North Atlantic Gyre. Specifically, we extend the agent-based simulation study
of [51], exploiting the computational advantages of the FAAD model to investigate
how different amounts of oriented swimming help to maintain turtle trajectories. We
specifically focus on two critical regions of the Gyre as follows.

• (NE) a north east Gyre location corresponding to a “corridor” along its north-
eastern sector, the region where it breaks into northerly (perilous) and southerly
moving streams. We centre this region on the point marked 3 in Figure 2, with its
corresponding dataset providing the parameters for orientation.
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• (SW) a south west Gyre location corresponding to a region of the Carribean,
where the Gyre branches into a more northerly stream that remains within the
Gyre, or continues west into the Gulf of Mexico. We centre this region on
point 7 in Figure 2, with its corresponding dataset providing the parameters for
orientation.

In each case we quantitatively assess the extent to which hatchling turtles that
are continuously immersed at some point inside (NE) or (SW) tend to maintain
a trajectory within the Gyre. Specifically, for each region (NE) and (SW) we
numerically solve the FAAD equation, as extended to incorporate both an additional
drift (as derived above, see equation (38)) due to currents and a constant (in time)
source representing hatchlings entering the region under investigation. Specifically,
defining u(x, t) to be the hatchling turtle density, we solve

u(x, t)t +∇·((a(x, t)+b(x, t))u(x, t)) = ∇∇ : (D(x, t)u(x, t))+γ δx0(x) , (46)

where, in addition to previous definitions, γ represents the rate at which new
hatchlings enter the system and δx0 is the 2D Dirac delta function. The point
x0 defines the “immersion site” and we set x0 = (25◦W, 44.5◦N) for (NE) and
x0 = (56.5◦W, 8◦N) for (SW), respectively denoting points upwards of the general
current direction for the regions. Encountered currents b(x, t) can vary considerably
over time, and we therefore inject hatchlings continuously into the corridor across a
full calender year (taken to be 2016). Our restriction to the two-dimensional ocean
surface follows from the poor diving abilities of young marine turtles: a maximum
dive of the order of 1–2 metres for loggerhead hatchlings [10].

We define a “success” and a “failure” boundary for each region, removing turtles
if they hit either of these boundaries and tracking over time the total numbers that
have done so. In the context of the continuous model, this corresponds to setting
absorbing boundary conditions along two boundaries. For the (NE) region we define
the success boundary along the 42.5◦N line and the failure boundary along 46.5◦N
line; the more northerly line represents turtles moving towards cooler waters and
straying from the southerly shifting Gyre. For (SW) the success boundary is set
along 18◦N line and the failure boundary marked by 64.5◦W; success is implied by
a northerly shift with the Gyre, while failure is marked by a westward shift towards
the Gulf of Mexico. Of course, the lack of any data makes any such notion of success
or failure moot and we cannot equate these boundaries with survival probabilities:
they simply provide a proxy to track the tendency to remain within the Gyre.

To close the computational regions we consider two further boundaries with
reflective boundary conditions associated with them, so that there is no net loss
across these boundaries. For (NE) we consider the lines 28◦W/12◦W, and for (SW)
the lines 54.5◦W/8◦N. Note that these lines are all reasonably far from the initial
injection site such that, in practice, the vast majority of turtles end up becoming
absorbed by one of the success/failure boundaries before hitting one of the reflective
boundaries.
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4.2.1 Data and Parametrisation

The model demands two specific components that can be drawn from biological
data: the ocean currents b(x, t) for the passive drift vector field and naviga-
tion/movement parameters for hatchling active movement. Velocity fields for ocean
currents are obtained from HYCOM (the global HYbrid Coordinate Ocean Model,
[6]), an ocean forecasting model forced by wind speed, heat flux and numerous
other factors that has been subsequently assimilated with field measurements
(from satellites, floats, moored buoys, etc.) to generate post-validated output. The
resolution of HYCOM data (1/12◦ and day to day) allows it to reproduce both the
large scale persistent currents and localised phenomena such as eddies. Note that
the surface/near-surface swimming behaviour of young turtles allows us to restrict
to the (2D) upper-most layer of HYCOM datasets. HYCOM data for each of regions
(NE) and (SW) was downloaded from http://pdrc.soest.hawaii.edu/data/data.php,
accessed during June/July 2017. Note that for computations, HYCOM data has been
interpolated from its native resolutions (1/12◦ and day-day) to the spatial/temporal
resolution required by the numerical code via standard linear interpolation
schemes.

Defining the active movement component to motion requires specifying the
speed/turning rate (s, λ) parameters and the concentration/dominant direction (κ, ν)
parameters demanded by the von Mises distribution. Hatchlings are capable of
sustaining speeds of 0.72 km/h (see [51] and references therein) and, based on this,
we suppose the average daily swim length varies from 0–10 km/day, corresponding
to between 0 and ∼14 h per day of active swimming. Of course, whether a hatchling
would be capable of maintaining active swimming at the upper end of this spectrum
is somewhat debatable. For the turning rate, we assume a value of 50 per day,
although it is noted that modifying this parameter has very little bearing on the
overall results. Given this turning rate and assuming each turtle remains in the
simulated region for the order of 100 days, we obtain an average of 5000 turns
per trajectory. For average swimming speeds ranging between 0–10 km/day, turtles
swim up to 1000 km over the simulation timecourse, implying spatial scales of
the order 100–1000 km as suitably macroscopic. We remark that the comparisons
between the individual and continuous simulations suggest the veracity of the
continuous limit as a suitable approximation.

Concentration parameters/dominant directions can be drawn directly from the
hatchling orientation datasets illustrated in Figure 2. For region (NE) we utilise
the dataset indicated by position 3: fitting a von Mises distribution via standard
methods (e.g., see, [2]) allows us to obtain estimates κNE ≈ 0.874 and νNE ≈
(0.307,−0.952), the latter representing a true bearing of 162◦. The region (SW)
employs position 7 and yields κSW ≈ 0.797 and νSW ≈ (0.070, 0.998), represent-
ing a true bearing of 4◦. We assume these values are constant in space and time over
the respective regions.

http://pdrc.soest.hawaii.edu/data/data.php
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Fig. 9 Comparison between the FAAD model (46) and individual-based stochastic simulations
of the velocity-jump model for the problem of North Atlantic turtle hatchling movement. In each
frame we plot both the continuous population density distribution u(x, t) (reflected by the colour
map, where grey indicates negligible density and blue to yellow reflects increasing density) and
the individual dots generated by the velocity-jump simulations. Here, top and bottom boundaries,
respectively, define the “failure” and “success” boundaries, and the individual particles are colour
coded according to whether they are still moving (white dots) or have hit either the failure (black
crosses) or success (green crosses) boundary. Underlying ocean currents are indicated by the red
arrows. For this simulation we use region (NE) and release particles continuously from position
x0 = (25◦W, 44.5◦N) with γ = 5/day. The total daily swim is set at s = 2 km/day, with λ =
50/day, κNE ≈ 0.874 and νNE ≈ (0.307,−0.952). Note that the von Mises distribution for these
values is visualised by the dashed red line in the inset figure to the left-hand frame of Figure 11.
Simulations (in terms of ocean currents utilised) start on 01/01/2016 (midnight) with solutions
displayed on the days following as indicated.

4.2.2 Results

In Figure 9 we compare the density distribution predicted by the parametrised
FAAD model (46) with a particle distribution obtained through individual-based
simulations of the stochastic velocity-jump process. The close correlation between
the continuous density distribution (as reflected by the colourmap) and the distri-
bution of individual particles (white dots) indicates that the FAAD model provides
a highly acceptable approximation for the turtle distribution. Further simulations
(not shown) confirm this close correspondence, and we therefore exploit the FAAD
model for its computational advantages in the subsequent simulations.

Figure 10 compares density distributions for the same region at the same time
points under three choices for the amount of active swimming: 0 km/day (i.e. only
passive drifting occurs), 2 km/day and 10 km/day. A shift towards a greater amount
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Fig. 10 Comparison of population density distributions under varying amounts of active swim-
ming per day. In each frame we plot the turtle density distribution (colour density map, as described
in Figure 9) at the two separate times (left) +100 days and (right) +300 days for (top row) s = 0
km/day, (middle row) s = 2 km/day and (bottom row) s = 10 km/day. The strength and direction
of ocean currents is indicated by the red arrows. All other parameters and details as in Figure 9.

of active swimming has a clear impact on the density distribution, pushing it in an
expected southerly direction such that a greater density becomes absorbed by the
“success” boundary.

Finally, we plot the results from a more extended analysis, following a parameter
sweep for each of the two regions, classifying the data obtained in terms of the
following simple “success measure”:

Success at time T= Total density hitting success boundary by time T

Total density hitting success and failure boundaries by time T
.

The above clearly approaches 1 for a successful population and 0 for an unsuccessful
population. In the simulations here we set T = 500 for a population continuously
released at x0 from t = 0 (midnight, 01/01/2016) to the end of 2016 (t = 366);
the continuation until T = 500 ensures that by the end of the simulation only a
negligible fraction of the released population has failed to hit one of the absorbing
boundaries. Simulations are plotted in Figure 11 for each of the two regions,
under a range of daily active swimming distances and for three values of the
concentration parameter: the value obtained by the data fitting and perturbations
of ×2 and ×1/2 these values. The simulations clearly show that increasing the
amount of active swimming, or increasing the certainty of orientation, nudges a
greater proportion of the population towards the successful boundary, supporting the
hypothesis that oriented responses can help maintain hatchling movement within the
Gyre (e.g. [28, 51]). Extensions of the study to consider movement throughout the
full circulatory path would allow more detailed evaluations into the extent to which
oriented swims aid route maintenance: we remark that this would be a focus for a
future study and refer to [28] for such an analysis for an individual-based model.
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Fig. 11 Success is plotted as a function of daily swimming distance for the two regions and for
different concentration parameters. All other parameters and details as in Figure 9. Red dashed
line indicates a choice of κ as taken directly from the data fitting, with blue solid and black dot-
dashed respectively showing choices of ×2 and ×1/2 these values. Insets plot the corresponding
von Mises distributions used for each simulation set.

5 Conclusions

In this chapter we have described the use of fully anisotropic advection-diffusion
models as a way of modelling animal and cell movement behaviour. We have
described the derivation of these models from two fundamental stochastic random
walks, position-jump and velocity-jump processes, thereby connecting the macro-
scopic parameters and terms to the statistical inputs at the individual level. Utilising
two distinct datasets, we have shown how the models can be parametrised either
directly at the population level or by starting at the individual/stochastic random
walk model. Beyond the applications presented here, we note that similar methods
have been applied in a number of other applications in ecology and cell movement,
including seismic-line following behaviour of wolves and caribou populations
[22, 33], butterfly hilltopping [44] and anisotropic glioma growth [45, 56].
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6 Appendix: Numerical methods

Stochastic Velocity-Jump Process

The stochastic random walk simulations assume each individual performs a
velocity-jump random walk in either a static (cell movement) or flowing (turtles)
medium. Particle motion therefore derives from an oriented and active movement



138 K. J. Painter and T. Hillen

component that describes the individual’s self-motility (crawling, swimming, flying,
etc.), the details of which are encoded in the velocity-jump random walk, and a
passive drift due to movement of the medium (e.g. air or water flow). The passive
drift is described by a velocity vector field b(x, t) (x is position and t is time) that
could be either imposed (e.g. obtained from public-domain datasets) or separately
modelled (e.g. Navier-Stokes equation). Note that we implicitly assume that the
individuals have negligible impact on the flow of the surrounding medium.

For an individual i at position xi (t) and time t , travelling with active velocity
vi (t) = s(cos αi(t), sin αi(t)) where angle αi(t) denotes the active heading, then at
time t + Δt (where Δt is small) we have:

xi (t + Δt) = xi (t) + Δt(vi (t) + b(xi , t)) ;
vi (t + Δt) =

{
v′
i (t + Δt) with probability λΔt ,

vi (t) otherwise .

(47)

where v′
i (t + Δt) is the new velocity chosen at time t + Δt if a reorientation has

occurred, randomly chosen according to the given probability distribution for the
turning kernel of the velocity jump random walk.

The time discretisation Δt used in simulation is suitably small, in the sense that
simulations conducted with smaller timesteps generate near identical results. For
the selection of new active headings via the von Mises distribution we employ
code (circ_vmrnd.m) from the circular statistics toolbox [4]. Currents and the
inputs required for the active heading choice are interpolated from the native
spatial/temporal resolutions in the saved variables to the individual particle’s
continuous position x and time t via a simple linear interpolation scheme.

Continuous Model

As described earlier, moment closure analysis for the velocity-jump random walk
generates a continuous model of FAAD form

u(x, t)t + ∇ · ((a(x, t) + b(x, t))u(t, x)) = ∇∇ : (D(x, t)u(x, t)) . (48)

where a(x, t) and D(x, t) depend on the statistical inputs of the random walk (mean
speed, turning rates, moments of the turning distribution).

Numerical methods for solving (48) are adapted from our previous studies (e.g.
see [43]). We adopt a simple Method of Lines (MOL) approach, first discretising
in space (using a fixed lattice of space Δx) to create a large system of ordinary
differential equations (ODEs) which are subsequently integrated over time. The
“fully anisotropic” diffusion term is expanded into an advective and standard
anisotropic-diffusion component. This advective component, along with advection
terms arising from ocean currents and active directional swimming, is solved via
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a third-order upwinding scheme, augmented by flux-limiting to ensure positivity
of solutions (e.g., see [24]). The choice of finite-difference discretisation for
the anisotropic diffusion term is more specific: naive discretisations can lead to
numerical instability for sufficiently anisotropic scenarios (high κ values). The
method of [58] allows greater flexibility in the choice of κ: in this scheme, finite
difference derivatives are calculated and combined along distinct axial directions:
the axes of the discretisation lattice and the major and minor axes of the ellipse
corresponding to the anisotropic diffusion tensor. Under the moderate levels of
anisotropy encountered here we obtain a stable scheme. Time discretisation here
is performed via a simple forward Euler method with a suitably small time step.
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