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Universität Tübingen, Biomathematik, Auf der Morgenstelle 10,
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In this paper we study a version of the Keller–Segel model where the chemotactic
cross-diffusion depends on both the external signal and the local population den-
sity. A parabolic quasi-linear strongly coupled system follows. By incorporation of a
population-sensing (or “quorum-sensing”) mechanism, we assume that the chemo-
tactic response is switched off at high cell densities. The response to high population
densities prevents overcrowding, and we prove local and global existence in time of
classical solutions. Numerical simulations show interesting phenomena of pattern
formation and formation of stable aggregates. We discuss the results with respect
to previous analytical results on the Keller–Segel model. © 2001 Academic Press
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1. INTRODUCTION

We consider the parabolic chemotaxis system

ut = ∇�∇u− V �u� v�∇v�
vt = µ�v + g�u� v� (1)

u�0� 	� = u0� v�0� 	� = v0

on a C3-differentiable, compact Riemannian manifold � without boundary.
In particular, this includes a 1-D interval with periodic boundary conditions
or a one-point compactification of � and in 2-D a torus (e.g., �2/Z2�. In
n-D we consider any sphere, torus, or some appropriate compactification
of �n. From solutions to homogeneous Neumann boundary conditions on
intervals in one (or two) dimensions, we can construct solutions with peri-
odic boundary conditions on a domain of double (quadruple) the size, and
therefore Neumann boundary conditions on intervals in 1- and 2-D are also
included.
The function u�t� x� describes the particle density at time t, at position

x ∈ �; v�t� x� is the density of the external signal. Models of the above type
were first proposed by Patlak [23] and Keller and Segel [12] to describe
directed movement and aggregation of individuals in response to envi-
ronmental cues. Here, the chemotactic cross-diffusion V is assumed to be
bounded, and the function g�u� v� describes production and degradation of
the external stimulus.
We will show global existence of classical solutions for

V �u� v� = uβ�u�χ�v�� (2)

where β�χ ∈ C3 satisfy the conditions

�i� χ > 0

�ii� β�0� > 0� there exists a ū > 0 such that β�ū� = 0 and

β�u� > 0 for 0 < u < ū	

(3)

For the production term g�u� v� we assume that it is of birth–death struc-
ture, i.e., we assume g ∈ C2��2� and

g�u� v� = g1�u� v�u− g2�u� v�v� (4)

with bounded death rate g2 ≥ δ > 0 and with birth rate g1 ≥ 0. Then there
exists a v̄ > 0 such that

g�u� v̄� ≤ 0 for all 0 ≤ u ≤ ū	 (5)
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The standard example for V is

V0�u� v� = χu�1− u�� (6)

and for g it is the linear function

g0�u� v� = γu− δv� γ ≥ 0� δ > 0� (7)

which has been used in related literature as well. In contrast to previous
studies of parabolic chemotaxis equations, we assume that the chemotactic
cross-diffusion V is bounded. It is well known that unbounded V �y� can
result in finite-time blow-up of solutions, even for the case of linear V
and g.
The case of V �u� v� = uχ�v� has been studied in great detail in the lit-

erature (see, e.g., Childress and Percus [5, 6], Jäger and Luckhaus [11],
Nagai [15], Gajewsky and Zacharias [7], Senba [28], Rascle and Ziti [25],
Herrero and Velazques [8, 9], Yagi [31], Othmer and Stevens [21], or Levine
and Sleeman [14]). The possibility of blow-up has been shown to strongly
depend on space dimension. For V �u� v� = χu and linear reproduction,
g0�u� v� = γu − δv, finite-time blow-up never occurs in 1-D (unless there
is no diffusion of the attractant, v) but can always occur in n-D for n ≥ 3.
The 2-D case is crucial, and several thresholds (for radially symmetric solu-
tions and for nonsymmetric solutions) are found. If the initial distribution
exceeds this threshold, then the solution may blow up in finite time. When
the initial mass is below this threshold, the solution exists globally. The
latter has been proven by using a Lyapunov functional in Gajewski and
Zacharias [7]; Nagai, Senba, and Yoshida [18]; and Biler [3]. The Lyapunov
technique has been generalized to obtain similar thresholds for chemotactic
sensitivities χ�v� given by a primitive φ�v� = ∫

χ�v� which is strictly sublin-
ear (see [4]). This includes functional forms of φ�v� = log v�φ�v� = vp, for
0 < p < 1 or equally bounded functions φ�v� (see Nagai et al. [16, 17, 19]
and Biler [4]). Post [24] considers chemotactic velocities with saturation in
v and linear in u. Under modification of the Lyapunov function from [7],
the global existence of solutions was shown.
In the context of pattern formation, a process leading to “blow-up” indi-

cates permissibility of aggregative behavior: i.e., self-organization is possi-
ble. Yet, such biological processes do not end with the formation of the
aggregate: the initial aggregation phase of Dictyostelium development leads
to later stages, such as formation of the slug and fruiting body. Perti-
nently, the cAMP signaling mechanism responsible for initial aggregation
of Dictyostelium is also thought to play a major role in these subsequent
developmental stages [26, 29]. Throughout, a number of different processes
occur, such as the cell specification of embryonic cells into prespore/prestalk
cells. From such considerations, it is desirable to develop a simple chemo-
taxis model (like (1)) which excludes blow-up and permits global existence



bounded chemotaxis 283

independently of thresholds or of space dimensions. This will allow study
of the dynamics of pattern formation during both the initial aggregation
phase and the subsequent development of this pattern. A second consid-
eration for excluding blow-up concerns the applicability of numerical tools
in the studies already mentioned. The sharp gradients associated with solu-
tions to chemotaxis systems can pose stability problems in numerical meth-
ods, resulting in confusion about whether a blow-up scenario or simply a
sharp (or “spike”) aggregate is being observed.
In fact, a steady-state analysis of (1) together with (3) shows that station-

ary nonconstant patterns are possible for sufficiently large χ. In 1-D the
steady-state analysis leads to

ux = uβ�u�χ�v�vx�

implying that a stationary solution u�x� has an extremum when u = 0
or u = ū or vx = 0. Thus the distribution will be flat about u = 0 and
u = ū, which has indeed been observed in our numerical simulations (see
Section 3). A detailed bifurcation analysis of steady states for a system sim-
ilar to (1) can be found in Schaaf [27].
Chemotactic systems of type (1) can be derived from a biased random

walk model, whereby the probability of a particle jumping is modulated
by an extracellular signal and by the local population density. In particu-
lar, specific conditions for the chemotactic cross-diffusion can be derived
from realistic assumptions based on how individual cells detect and inter-
pret local environmental cues. Using plausible biological assumptions, we
consider a variety of different mechanisms that can result in systems of the
type given by (1) together with (3) in a separate paper [22].
The main result of this paper is the global existence of solutions in time

as presented in Theorem 2.5. The proof of global existence relies on the
existence of an invariant region � as shown in Theorem 2.1. However,
the known literature on quasi-linear parabolic systems does not present
a result on local existence which fits (1) exactly. We start our analysis by
showing local existence in time, using a fixed-point argument. In the case
of a bounded region � with Dirichlet boundary conditions, the results of
Amann [2] on local existence could be applied if V < 2

√
µ. This condition

guarantees that it is a parabolic equation. As demonstrated in what follows
we need no such restriction. For the proof of global existence below, we use
a schematic for the regularity properties of the heat equation semigroup as
given in Taylor [30] (see Lemma 2.1).
Finally, we present numerical simulations for (1) in one and two dimen-

sions and demonstrate how the modified function results in formation of
a steady pattern, as opposed to blow-up of solutions, and demonstrate the
potential pattern variety. A more detailed analysis of these patterns and
further numerical simulations will be presented in [22].
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2. LOCAL AND GLOBAL EXISTENCE

We study classical solutions of (1) for some t0 > 0 in spaces

�u �= C�0� t0��W σ�p����� �v �= C�0� t0��W σ+α�p�����
with

1 < σ < 2� 1 < α < 2� 2 < σ + α < 3�max
{

n

σ − 1
�

n

2 − σ

}
< p	 (8)

For this choice of parameters we have a Sobolev imbedding W σ�p → C1
b

(see [1]).
Equation (1) falls into the class of quasi-linear systems with cross-

diffusion. However, in its present form there is no existence result in the
literature which applies directly. The works of Ladyžhenskaya, Solonnikov,
and Ural’ceva [13] and Amann [2] are standard information sources in this
field.
We will construct solutions using a contraction mapping argument. This

involves intensive use of the following regularity properties of the solution
semigroup e�t of the heat equation ut = �u on �.

Lemma 2.1 (Taylor, [30, p. 274]). For all p ≥ q > 0 and s ≥ r we have

e�t � W r�q��� → W s�p���� with norm Ct−κ�

where κ is given by

κ = n

2

(
1
q
− 1

p

)
+ 1
2
�s − r�	

Our analysis starts by identifying an invariant region � for solutions in
�u × �v. We proceed to show a number of appropriate a priori estimates
which enable a contraction mapping argument for local existence. More-
over, these estimates demonstrate bounds which grow algebraically in time,
leading to global existence.
For simplicity of notation, we shall denote all constants by C, even though

they might have different values in the same estimate. We will omit the
argument ��� of the Sobolev spaces W σ�p, and we denote the norms by
�	�σ�p.

2.1. Invariant Region

The zero of the chemotactic cross-diffusion V �u� v� at u = ū permits us
to demonstrate the existence of an invariant region for �u� v� in �2. This
a priori L∞-estimate is the key ingredient to obtaining global existence
in time.
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Theorem 2.1. Assume (2)–(4). Then the region

� �= ��u� v� ∈ �2 � 0 ≤ u ≤ ū� 0 ≤ v ≤ v̄�
is positively invariant for solutions of (1).

Proof. We explicitly prove the existence of an upper limit �ū� v̄�. The
proof of nonnegativity uses the same construction.
Let �u� v� ∈ �u × �v be a solution of (1). We define

u+�t� x� �=
{

u�t� x� − ū� if u�t� x� > ū,
0� otherwise.

For each time t, where 0 ≤ t ≤ t0, we split the manifold � into three
disjoint sets � = J−�t� + J0�t� + J+�t�:

J−�t� �= �x ∈ � � u�t� x� < ū�
J0�t� �= �x ∈ � � u�t� x� = ū�
J+�t� �= �x ∈ � � u�t� x� > ū�	

Since u�t� 	� ∈ W σ�p for σ > 1, p > n/2 it is continuously differentiable (by
the Sobolev imbedding). Thus, these sets are measurable and ∂J+�t� is a
differentiable submanifold. We can write

d

dt

1
2
�u+�t� 	��22 =

∫
J−�t�

u+u+
t dx+

∫
J0�t�

u+u+
t dx+

∫
J+�t�

u+u+
t dx

=
∫
J+�t�

�u− ū�utdx

since, on J0 ∪ J−, we have u+ = 0. The set J+�t� is an open set T → t. Then
it follows from u+ = u − ū that u+

t = ut on J+�t�. From the first equation
of (1) we obtain

d

dt

1
2
�u+�t� 	��22 =

∫
J+�t�

�u− ū��∇�∇u− V �u� v�∇v��dx

= −
∫
J+�t�

�∇u�2 +
∫
∂J+�t�

�u− ū��∇u · ν�dS

+
∫
J+�t�

∇uV �u� v�∇v dx

−
∫
∂J+�t�

�u− ū�V �u� v��∇v · ν�dS�

where ν denotes the outer normal on ∂J+�t�. On the boundary of J+�t� we
have u = ū, and the boundary integrals vanish identically. Thus,

d

dt

1
2
�u+�t� 	��22 = −

∫
J+�t�

�∇u�2 +
∫
J+�t�

∇uV �u� v�∇v dx	 (9)
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As we are interested in solutions inside � only, we allow V outside � to be
modified into

Ṽ �u� v� �=
{

V �u� v�� if u ≤ ū
0� else,

which is continuous at ū. Then for solutions of (1), with Ṽ instead of V ,
the estimate (9) can be reduced to

d

dt
�u+�t� 	��22 ≤ 0	

If initially u+
0 = 0, then u+�t� 	� = 0 for all times of existence. Since V ≡ Ṽ

on � the same conclusion holds for (1) with the original V .
To prove the upper bound of v we define

v+�t� x� �=
{

v�t� x� − v̄� if v�t� x� > v̄,
0� else.

We again split � according to v <�=�> v̄ and consider d
dt
1
2�v+�t� 	��22. Here

d

dt
�v+�t� 	��22 ≤ 0

follows directly. This proves v�t� x� ≤ v̄, if initially v0�x� ≤ v̄.
The nonnegativity property, u ≥ 0, v ≥ 0, can be shown with the use of

a similar construction.

2.2. A Priori Estimates

We study first the second equation of (1).

Theorem 2.2. Assume (2)–(4) and p�σ� α are as given in (8). Then solu-
tions �u� v� ∈ �u × �v, with �u�t� x�� v�t� x�� ∈ �, of (1) satisfy

�v��v
≤ �v0�σ+α�p + C0t

1−h
0 ��u��u

+ �u�2�u
+ �v��v

�� (10)

where h = 1
2 �σ + α− 1� and the constant C0 > 0 depending as

C0 = C0�σ�α�p� ū� �g1�C1����	 (11)

Proof. With the use of semigroup notation Tµ�t� �= eµ�t , we can write
the solution of vt = µ�v + g�u� v�, v�0� x� = v0�x� formally as

v�t� = Tµ�t�v0 +
∫ t

0
Tµ�t − s�g1�u� v�uds −

∫ t

0
Tµ�t − s�g2�u� v�v ds

≤ Tµ�t�v0 +
∫ t

0
Tµ�t − s�g1�u� v�uds	 (12)
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Here we have made use of g2 ≥ 0, v ≥ 0 and the fact that Tµ�t� is positive.
From Lemma 2.1, we obtain Tµ�t�� W 1�p → W σ+α�p with norm Ct−h, where
h �= 1

2 �σ + α − 1� and C = C�σ�α�. From the assumptions on σ and α it
follows that 0 < h < 1. Then we obtain (suppressing the arguments �t� x�
or �s� 	� of the dependent functions u� v)

�v��v
≤ �v0�σ+α�p + sup

0≤t≤t0

∫ t

0
�Tµ�t − s�g1�u� v�u�σ+α�pds

≤ �v0�σ+α�p + Ct1−h
0 sup

0≤t≤t0

�g1�u� v�u�1�p

≤ �v0�σ+α�p + Ct1−h
0 sup

t
��g1u�p + ��g1�u∇uu�p

+ ��g1�v∇vu�p + �g1∇u�p� (13)

≤ �v0�σ+α�p + Ct1−h
0 �g1�C1��� sup

t
��u�p + �u∇u�p

+ �u∇v�p + �∇u�p�	 (14)

Since σ > 1, we have �u�p + �∇u�p ≤ �u�σ�p. From Hölder’s inequality
it follows that �u∇u�p ≤ C�u�2σ�p and �u∇v�p ≤ �u�p̃p�v�1�q̃p for some
p̃−1+ q̃−1 = 1. To obtain the Sobolev imbedding W 2�p → W 1�q̃p, we choose
1 ≤ q̃ ≤ n

n−p
. Finally, from the existence of an invariant region �, it follows

that there is a constant C > 0 such that �u�p̃p ≤ Cū, where C = C�q̃� p�.
This gives �u∇v�p ≤ Cū�v�2�p. Collecting these together, (10) follows
from (14).

With this estimate, we can derive several auxiliary inequalities which will
be useful in the sequel.

Corollary 2.1. Assume the conditions of the above theorem.

1. For a choice of t0 ≤ �1/2C0�1/�1−h�, we obtain

�v��v
≤ C1��v0�σ+α�p + �u��u

+ �u�2�u
�� (15)

where C1 = 2max�1� C0t
1−h
0 �.

2. For the contraction mapping argument later we require the following.
Given two functions ϕ1� ϕ2 ∈ �u, the corresponding solutions vj = vj�ϕj� of
vj�t = µ�vj + g�ϕj� vj�, vj�0� = v0, for j = 1� 2, satisfy

�v1 − v2��v
≤ C2�ϕ1 − ϕ2��u

� (16)

for some constant C2�C0� v̄� �ϕ1��u
� �ϕ2��u

� t0� > 0 for sufficiently small t0
(e. g., it satisfies (17)).



288 hillen and painter

Proof. The estimate (15) follows directly from (10) through the specific
choice of t0. To show (16), we consider the difference - �= v1 − v2. This
satisfies

-t = µ�- + g�ϕ2� v2�- + �G1 −G2�v1� -�0� = 0�

where Gi = g�ϕi� vi�, i = 1� 2. For -, estimate (14) must be supplemented
by the term

+Ct1−h
0 sup

t
��G1 −G2�v1�p ≤ Ct1−h

0 �g�C1�����ϕ1 − ϕ2��u

+ �v1 − v2��v
��v1�p	

From the existence of the invariant region � we have �v1�p ≤ Cpv̄. The
quadratic term in (14) can be estimated as

�ϕ1 − ϕ2�2�u
≤ ��ϕ1��u

+ �ϕ2��u
��ϕ1 − ϕ2��u

	

Then it follows that

�v1 − v2��v
≤ Ct1−h

0 ��ϕ1 − ϕ2��u
+ �v1 − v2��v

�	
Assuming

t0 ≤
(
1
2C

)1/�1−h�
� (17)

we obtain (16) with an appropriate C.

Remark. If, moreover, �g1�u = 0 (which includes the linear functional
g0 = γu− δv), then

�v��v
≤ C1��v0�σ+α�p + �u��u

�	 (18)

Under the condition �g1�u = 0, the term containing u∇u in (13) vanishes
identically, and the corresponding term �u�2�u

in estimate (10) also vanishes
and (18) follows from (15).
We now proceed with our analysis by attending to the first equation

of (1).

Theorem 2.3. Assume (2)–(4) and p�σ� α as given by (8). For solutions
�u� v� ∈ �u × �v of (1) with values in �, there exist constants C3� C4� C5
(given by �33�) such that

�u��u
≤ 2

(
�u0�σ�p + C3t

1−σ/2
0 �v��v

+ C4t
1−b
0 �v�2�v

+C5t
σ�1−c�/�σ−1�
0 �v�σ/�σ−1�

�v

)
� (19)

where

b = n

2p
+ σ

2
� c = n�σ − 1�

2p
+ σ

2
	 (20)
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Proof. We again use the semigroup approach, T �t� = e�t , to solve for u,

u�t� = T �t�u0 −
∫ t

0
T �t − s�V �u� v��v ds� (21)

−
∫ t

0
T �t − s�Vv�u� v��∇v�2 ds (22)

−
∫ t

0
T �t − s�Vu�u� v�∇u∇v ds� (23)

where Vu� Vv denote the partial derivatives of V with respect to u� v, respec-
tively. We assume v ∈ �v and consider these three terms separately.

Term (21). We use the regularity Lemma 2.1 for

T �t�� Lp → W σ�p with norm Cσt
−σ/2 (24)

and obtain∥∥∥ ∫ T �t − s�V �v ds
∥∥∥
σ�p

≤ Cσt
1−σ/2
0 sup

0≤t≤t0

�V �v�p

≤ Cσt
1−σ/2
0 �V �� sup

0≤t≤t0

�v�t� 	��2�p� (25)

where Cσ = Cσ�σ�p� and �V �� denotes the supremum norm on � ⊂ �2.

Term (22). Here we use the regularity Lemma 2.1 for

T �t�� Lp/2 → W σ�p with norm Cbt
−b� (26)

where b is given in (20). From the parameter conditions (8) it follows that
b < 1. We obtain∥∥∥ ∫ T �t − s�Vv�∇v�2 ds

∥∥∥
σ�p

≤ Cbt
1−b
0 sup

0≤t≤t0

�Vv�∇v�2�p/2

≤ Cbt
1−b
0 �Vv�� sup

0≤t≤t0

�v�t� 	��21� p	 (27)

Term (23). It turns out to be much more difficult to obtain an appro-
priate estimate for the product ∇u∇v. We start by using Young’s inequality
to get

�∇u∇v�p/σ ≤
∥∥∥ ε

σ
�∇u�σ + 1

qεq/σ
�∇v�q

∥∥∥
p/σ

≤ ε

σ
�u�σ

1�p + 1
qεq/σ

�∇v�σ/�σ−1�
p/�σ−1��
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where q = σ
σ−1 and some ε > 0. We use the interpolation inequality

([30, p. 22, Proposition 6.2])

�u�θσ�p ≤ C�θ��u�θ
σ�p�u�1−θ

p

for θ ∈ �0� 1�. If we choose θ = σ−1, we get

�u�σ
1� p ≤ C�σ��u�σ�p�u�σ−1

p 	 (28)

As � is a bounded invariant region, there exists a constant C = C�p�σ�
such that

�u�σ−1
p ≤ Cūσ−1	 (29)

Finally we use T �t�� Lp/σ → W σ�p with norm Cct
−c , where c is as given

in (20). It is easily verified from (8) that c < 1. Thus∥∥∥ ∫ t

0
T �t − s�Vu∇u∇v ds

∥∥∥
σ�p

≤ Cct
1−c
0 sup

0≤t≤t0

��Vu∇u∇v��t� 	��p/σ

≤ Cct
1−c
0 �Vu�� sup

0≤t≤t0

(
ε

σ
�u�σ�pū

σ−1 + 1
qεq/σ

�∇v�σ/�σ−1�
p/�σ−1�

)
(30)

≤ C6t
1−c
0 �Vu��

(
ε

σ
�u��u

+ 1
qεq/σ

�v�σ/�σ−1�
�v

)
�

where C6 = C6�Cc� ū�.
We collect estimates (25, 27, 30):

�u��u
≤ �u0�σ�p + Cσt

1−σ/2
0 �V ���v��v

+ Cbt
1−b
0 �Vv���v�2�v

+C6t
1−c
0 �Vu��

(
ε

σ
�u��u

+ 1

qε
q
σ

�v�σ/�σ−1�
�v

)
	 (31)

For given t0 > 0 we choose

ε = σ

2t1−c
0 �Vu��C6

	 (32)

Then, from (30), estimate (19) follows with constants C3� C4� C5 given by

C3 = Cσ�V ��� C4 = Cb�Vv��� C5 = C6

(
2�Vu��C6

σ

) 1
σ−1

	 (33)
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2.3. Local Existence

Theorem 2.4. Assume (2)–(4) and p�σ� α as given by (8). For each initial
datum u0 ∈ W σ�p, v0 ∈ W σ+α�p with �u0�x�, v0�x�� ∈ � for all x ∈ �, there
exists a t0 > 0 and a unique solution �u� v� ∈ �u × �v of (1).

Proof. We use a fixed-point argument. Consider ϕ ∈ �u with ϕ�0� = u0
and let v = v�ϕ� denote the corresponding solution of the v-equation:

vt = µ�v + g�ϕ� v�� v�0� = v0	 (34)

For this v we define u = u�v�ϕ�� to be the corresponding solution of
ut = ∇�∇u− V �u� v�∇v�� u�0� = u0 = ϕ�0�	 (35)

These solutions exist from standard theory and the a priori estimates (10)
and (19). Moreover, the above estimates show that this procedure defines
a map Q� �u → �u, Qϕ �= u�v�ϕ��. We first show that for t0 sufficiently
small, Q maps a ball

�m �= �ϕ ∈ �u� ϕ�t� ∈ Bm�0�� 0 ≤ t ≤ t0�� m �= 2�u0�σ�p + 1	

into itself. Indeed, if we combine the estimates (19) and (15) we obtain

�Qϕ��u
≤ 2

(
�u0�σ�p + C3C1t

1−σ/2
0 ��v0�σ+α�p + �ϕ��u

+ �ϕ�2�u
�

+ C4C
2
1 t
1−b
0 ��v0�σ+α�p + �ϕ��u

+ �ϕ�2�u
�2

+ C5C
�σ−1�/σ
1 t

σ�1−c�/�σ−1�
0 ��v0�σ+α�p + �ϕ��u

+ �ϕ�2�u
��σ−1�/σ

)
≤ 2�u0�σ�p + 1�

for small enough t0.
Now we demonstrate that at small times, Q is a contraction. Consider

ϕ1� ϕ2 ∈ �u and let vi for i = 1� 2 denote the corresponding solutions of
the v-equation (34). Then the difference Qϕ1 −Qϕ2 satisfies

Qϕ1 −Qϕ2 = −
∫ t

0
T �t − s��V1�v1 − V2�v2�ds� (36)

−
∫ t

0
T �t − s��V1� v�∇v1�2 − V2� v�∇v2�2�ds (37)

−
∫ t

0
T �t − s��V1� u∇u1∇v1 − V2�u∇u2∇v2�ds� (38)

where Vi �= V �ϕi� vi� for i = 1� 2 and Vi� u� Vi� v denote partial derivatives
with respect to u and v, respectively. Again we study each term separately.
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Term (36). We use (24), (16), and the fact that

sup
0≤ϑ≤t

�V �ϕ1�ϑ� 	�� v1�ϑ� 	�� − V �ϕ2�ϑ� 	�� v2�ϑ� 	���∞ ≤ �V1 − V2��	

Then for t0 small enough we get∥∥∥∥ ∫ t

0
T �t − s��V1�v1 − V2�v2�ds

∥∥∥∥
σ�p

≤ Cσt
1−σ/2

(
�V1 − V2�� sup0≤ϑ≤t ��v1�ϑ� 	��p

+�V2�� sup0≤ϑ≤t ��v1 − �v2�p

)
≤ Ct1−σ/2�ϕ1 − ϕ2��u

� (39)

where C = C�C2� Cσ� �V �C1���� �ϕ1��u
� �ϕ2��u

�.
Term (37). Here we use (26) to obtain∥∥∥ ∫ t

0
T �t − s��V1� v�∇v1�2 − V2� v�∇v2�2�ds

∥∥∥
σ�p

≤ Ct1−b sup
0≤ϑ≤t

(
�V1� v − V2� v����∇v1�2�p/2 + �V2� v����∇v1�2

−�∇v2�2�p/2

)
	

With Hölder’s inequality we get

��∇v1�2 − �∇v2�2�p/2 ≤ �∇v1 + ∇v2�p�∇v1 − ∇v2�p	

With estimate (16) this leads to∥∥∥ ∫ t

0
T �t − s� �V1� v�∇v1�2 − V2� v�∇v2�2�ds

∥∥∥
σ�p

≤ Ct1−b�ϕ1 − ϕ2��u
� (40)

where C = C�C2� Cb� �V �C1���� �v1�1� p� �v2�1� p� �ϕ1��u
� �ϕ2��u

�.
Term (38). Once again, we use (24) and (16),∥∥∥ ∫ t

0
T �t − s��V1� u∇u1∇v1 − V2� u∇u2∇v2�ds

∥∥∥
σ�p

≤ Ct1−σ/2 sup
0≤ϑ≤t

���V1� u − V2� u�∇ϕ1∇v1�p (41)

+�V2� u�∇ϕ1 − ∇ϕ2�∇v1�p	+ �V2� u∇ϕ2�∇v1 − ∇v2��p�
≤ Ct1−σ/2�V �C1��� sup

0≤ϑ≤t

��∇ϕ1�p�∇v1�∞�ϕ1 − ϕ2��u
(42)

+�∇v1�∞�∇ϕ1 − ∇ϕ2�p + �∇ϕ2�p�∇v1 − ∇v2�∞�
≤ Ct1−σ/2�ϕ1 − ϕ2��u

� (43)

where C = C�C2� Cσ� �V �C1���� �v1��v
� �v2��v

� �ϕ1��u
� �ϕ2��u

�.
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2.4. Global Existence

In the foregoing estimates we saw that all bounds grow, at most, alge-
braically in time t0. We will use this to show global existence in time. The
procedure is standard and uses the successive application of the regularity
properties of the heat equation (e.g., as given in Lemma 2.1). Starting form
the known L∞ estimates (invariant region), we develop higher order esti-
mates for v, which lead to better estimates for u and so on. Here we work
with an additional set of parameters (σ̃� ν) such that one iteration step of
this procedure is sufficient. At each iteration we gain an order of σ̃ . For
the original parameters (σ�α) we would have had to use more iterations to
get the same result.

Theorem 2.5. Assume (2)–(4) and p�σ� α as given by (8) . For each
initial datum u0 ∈ W σ�p, v0 ∈ W σ+α�p with �u0�x�� v0�x�� ∈ � for all x ∈ �,
there exists a unique global solution

�u� v� ∈ C�0�∞��W σ�p ×W σ+α�p�
of (1).

Proof. We start with the global L∞ estimate (i.e., the invariant region �)
to successively derive higher order estimates. For technical reasons we
choose parameters σ̃ > 0 and ν > 0 such that

2 > σ̃ > max
{
σ�
5
3

}
(44)

2 − σ̃ < ν <
σ̃ − 1
2

(45)

1− ν + σ̃ = σ + α	 (46)

It is easy to check that these three conditions can be simultaneously
satisfied.

Lemma 2.2. There exists a constant κ1 = κ1�σ̃� p� ū� v̄� �g�C1���� such
that the solution of Theorem 2.4 satisfies

�v�σ̃�p ≤ �v0�σ̃�p + κ1t
1−σ̃/2
0 =� K1�t0�	 (47)

Proof. We consider the solution of the v-equation as represented
by (12), and we use (24) with σ̃ replacing σ .

Now, with the use of Tµ�t�� W 1−ν−σ̃�p → W 1−ν� p with norm Cσ̃t
− ˜σ/2, we

obtain from u�t� = T �t�u0 −
∫

T �t − s�∇�V ∇v�ds that
�u�t��1−ν� p ≤ �u0�1−ν� p + Cσ̃t

1−σ̃/2 sup
0≤ϑ≤t

�∇�V ∇v��1−ν−σ̃�p	
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Since ν > 2 − σ̃ we have 2 − ν − σ̃ < 0. Then there is a constant C =
C�σ̃� ν� such that

�∇�V ∇v��1−ν−σ̃�p ≤ C�V ∇v�2−ν−σ̃�p�

and we get

�u�t��1−ν� p ≤ �u0�1−ν� p + Ct1−σ̃/2 sup
0≤ϑ≤t

�V ∇v�2−ν−σ̃�p

≤ �u0�1−ν� p + Ct1−σ̃/2�V �� sup
0≤ϑ≤t

�v�1� p	

We apply Lemma 2.2 to show

�u�t��1−ν� p ≤ �u0�1−ν� p + Ct1−σ̃/2�V ��K1�t0� =� K2�t0�	
We use this estimate to get a better estimate for v, as in the previous
lemma. Since on the compact set � the function h�u� v� = g1�u� v�u is
uniformly bounded in C2���, it follows that the map h� W 1−ν� p → W 1−ν� p

is Lipschitz continuous, where the Lipschitz constant is bounded by H �=
�h�C2���. Then, from (12), it follows that

�v�t��1−ν+σ̃� p ≤ �v0�1−ν+σ̃� p +
∫ t

0
�Tµ�t − s�g1�u� v�u�1−ν+σ̃� pds

≤ �v0�1−ν+σ̃� p + Ct1−σ̃/2 sup
0≤ϑ≤t

�g1�u� v�u�1−ν� p

≤ �v0�1−ν+σ̃� p + Ct1−σ̃/2 sup
0≤ϑ≤t

�h�C2����u�1−ν� p

≤ �v0�1−ν+σ̃� p + Ct1−σ̃/2HK2�t0�	 (48)

To complete the proof of global existence we use 1− ν + σ̃ = σ + α (46).
Then from (48) it follows that

�v��v
≤ �v0�σ+α�p + Ct

1−σ̃/2
0 K2�t0� =� K3�t0�	 (49)

Hence �v��v
grows, at most, algebraically in time with maximal order of

2 − σ̃ .
Finally, to estimate �u��u

, we consider (30). For each time t0 > 0 we
choose ε = ε�t0� according to (32) and obtain (19). With the use of (49)
we observe that

�u��u
≤ 2

(
�u0�σ�p + C3t

1−σ/2
0 K3�t0� + C4t

1−b
0 K3�t0�2

+C5t
σ�1−c�/�σ−1�
0 K3�t0��σ−1�/σ

)
�

which also grows algebraically in time. Global existence in �u × �v

follows.
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3. NUMERICAL SIMULATIONS

In this section we consider one- and two-dimensional numerics to the
model (1) with chemotactic cross-diffusion V �u� v� = χu�1−u�. These sim-
ulations demonstrate interesting spatial and temporal behavior. Whereas
finite-time blow-up of solutions in the classical model (see Figs. 2a and 3a)
prevents study of behavior beyond a certain time, here we can study the
subsequent interplay between the different maxima (see Fig. 3b) and other
pattern phenomena (Fig. 4).
All simulations use model (1) with kinetics given by (7). Initially we set

u�x� 0� = u0 constant and a random spatial perturbation about the homo-
geneous steady state for the chemical concentration. For simulations we
use homogeneous Neumann boundary conditions on an interval in 1-D or
in 2-D. These boundary conditions can be arranged into dynamics on the
circle or on the 2-torus, respectively. Indeed, one-dimensional simulations
with periodic boundary data show no appreciable difference in behavior.

3.1. One-Dimensional Simulations

As mentioned previously, our modified system permits the global exis-
tence of solutions, enabling exploration of the temporal behavior. Figure 1
shows the space–time evolution for the population density u. Initially many
peaks develop, the wavelength of which can be predicted by a linear stabil-
ity analysis. In contrast to simulations of Turing systems (where the pattern
evolves to a heterogeneous steady state), solutions to the chemotaxis sys-
tem continue to evolve in a manner leading to the gradual disappearance
of the total number of peaks. This occurs either via collision of two peaks
into a single one or by the collapse of a single peak. When the simulation
is allowed to run for sufficient time, this results in a single boundary peak.
The above behavior is not restricted to the chemotactic velocities consid-

ered here. Merging of peaks also occurs for the classical problem, yet the
steepening of the peaks creates numerical problems, and a detailed study
is difficult.

3.2. Two Dimensions

As reported in the Introduction, the behavior in classical models has
been shown to depend strongly on the space dimension. In particular, blow-
up of solutions occurs in two dimensions for sufficiently strong chemo-
tactic velocities, and a threshold phenomenon is known. The results pre-
sented earlier preclude such behavior for the modified model, and we
demonstrate this numerically via comparison with the classical case. Fig-
ure 2, sequence (a), plots the evolving two-dimensional cell density patterns
for uβ�u�χ�v� = χ0u. An aggregation grows in the corner of the domain,
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FIG. 1. Time evolution of numerical simulations to the chemotaxis problem with β�u� =
1− u and χ�v� = 0	5. Numerical simulations show a collapse/collision of peaks: examples are
illustrated by the arrows. Other parameters and initial conditions are as follows: length =
10.0, Du = 0	025�Dv = 0	1� γ = δ = 1	0, u�x� 0� = 0	5. The chemical concentration is initially
given a small (1%) random spatial perturbation of its steady-state value (0.5).

eventually blowing up in finite time. In contrast, choosing the modified
chemotactic cross-diffusion (uβ�u�χ�v� = χ0u�U0 − u�) with the same ini-
tial data prevents this behavior, as we would expect from the earlier anal-
ysis. Figure 2, sequence (b), shows how the initial aggregations eventually
flatten out, forming a globally existing spatial pattern. A comparison of the
rate of growth of the maximum cell density, Fig. 2c demonstrates how the
two models initially grow at a similar rate before diverging. As one may pre-
dict from a linear analysis of the system in the vicinity of the homogeneous
solution, domain size has an important role in the number and position of
aggregates that develop. In the classical system the blow-up tends to occur
on the boundary of the domain, although for larger domain sizes interior
blow-ups can also occur, as shown in Fig. 3, sequence (a). Blow-up pre-
vents further numerical study of the solution behavior. However, by using
the modified model we can analyze the subsequent interplay between the
multiple aggregate peaks. Fig. 3b considers model data identical to that of
Fig. 3a, yet using the modified chemotactic cross-diffusion. This example
demonstrates how the cell density evolves in time, showing a rearrange-
ment of the pattern consistent with the collapse and collision of the peaks
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FIG. 2. Comparison of evolving cell density u in two dimensions for the classical model ((a),
uβ�u�χ�v� = 5u) and the modified model ((b), uβ�u�χ�v� = 10u�1−u�). Numerical time is as
indicated at the top of the figures. For sufficiently strong chemotactic sensitivities, solutions for
the classical model blow up in finite time. Cell densities for the modified model show similar
dynamics during early stages, yet the functional form prevents blow-up. (c) Comparison of
(log of) maximum particle density as a function of time for sequences (a) and (b). In both
sequences we use Du = 1, Dv = 1, β = 1, γ = δ = 1, u0 = 0	5. Domain dimensions =
0� 2π� × 0� 2π�. Initially we set u0 = 0	5 and randomly perturb v0 about its steady state.

observed for the one-dimensional numerics above. Intriguingly, the modi-
fied model demonstrates a variety of pattern types under certain parameter
modulation. In Fig. 4 we demonstrate how a transition between spotted,
striped, and inverted spots can occur under variation of the initial cell den-
sity, u0. We explore both of the above phenomena more comprehensively,
together with implications for biological pattern formation, in a separate
paper [22].
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FIG. 3. Comparison of evolving cell density u in two dimensions for the classical model
((a), uβ�u�χ�v� = 5u) and the modified model ((b), uβ�u�χ�v� = 10u�1− u�), using a larger
domain size (0� 10π� × 0� 10π��. Numerical time is as indicated at the top of the figures. For
larger domains, multiple aggregates initially develop, yet the finite-time blow-up behavior in
the classical model prevents exploration of the subsequent behavior. For the modified model,
we observe how the peaks subsequently collapse and coalesce in a manner analagous to the
one-dimensional behavior above. Other parameters and initial conditions are as previously.

Remark 3.1. The stiffness associated with chemotactic problems requires
close attention when the validity of numerical simulations is considered. One-
dimensional simulations have been conducted using two separate methods,
with a variety of space and time discretizations. Two-dimensional simulations
have been performed using an alternating direction implicite (ADI) method

FIG. 4. A variety of pattern types demonstrated by the modified model under variation of
the initial cell density, u0. (a) u0 = 0	25; (b) u0 = 0	5; (c) u0 = 0	75. A transition between
spotted, striped, and inverse spots is observed. Parameters and initial conditions are as for the
previous figure with the domain size 0� 20π� × 0� 20π�.
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augmentedbyanupwind scheme tocalculate the chemotactic components.All
2-D simulations have been checked with a variety ofmesh and time discretiza-
tions.

4. DISCUSSION

To prevent misunderstanding, the aim of this paper is not to oppose
those publications focusing on finite-time blow-up of chemotaxis systems.
Rather, we hope that this provides a continuation of the stimulating analysis
of such systems that may yield useful insights into additional phenomena,
for example, long-time behavior. Historically, the mathematical analysis of
chemotaxis systems was partly motivated by the question of whether the
models of Patlak [23] and Keller and Segel [12] are able to show strong
aggregational tendencies and thus are candidates for population models of
grouping in cells or organisms. Indeed, it was possible to prove the existence
of solutions which blow up in finite time. A number of mathematical direc-
tions have developed from the early studies (for example, Nanjundiah [20],
Childress and Percus [5, 6], Jäger and Luckhaus [11], and Nagai [15]). One
question concerns the form of blow-up and the problem of continuation
after blow-up [9]. Another aspect relates to the variety of functional forms
for the chemotactic sensitivity (χ�v� in our notation). Certain choices will
lead to global existence (see the references given in the Introduction). Our
ansatz relates the local particle density to the chemotactic sensitivity (via
β�u�), and, under realistic assumptions, global existence follows. These
results on global existence address the question of what patterns evolve
and the dynamic behavior observed. Our numerical investigations empha-
size interesting phenomena such as “tabletop” peaks and merging peaks in
one dimension and coarsening in two dimensions.
Our observation that different peaks merge or disappear reflects the

parabolic nature of the model. Due to long-range interactions, all peaks
interact with all others. It would be interesting to consider how the same
conditions with the hyperbolic chemotaxis model of Hillen and Stevens [10]
compare with those of the parabolic system. The hyperbolic model has a
finite range of interaction of peaks such that coexistence and stability of
smaller peaks may be possible.
The results on global existence presented here place a number of

restrictions on various aspects of the model (e.g., form of chemotactic
cross-diffusion, form of initial conditions). Although a variety of plausible
biological mechanisms can be considered which give rise to the class of
models considered here (see [22]), an important future goal is to extend
the existence results to more general models for chemotaxis. Chemotac-
tic behavior is a highly complicated process, with a variety of different
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factors contributing to the movement response. Consequently, models
incorporating different factors can lead to a wide class of parabolic PDE
systems. An understanding of the model classes either leading or not
leading to global existence would improve understanding of the relative
importance of the different factors.
The derivation of our model relies on the hypothesis that populations

(e.g., of bacteria) possess some form of regulatory mechanism which allows
them to control the size of the aggregate. Indeed, as previously mentioned,
such behavior is crucial for populations such as Dictyostelium, which accu-
mulate into fruiting bodies of up to 105 cells. Of course, while we have
considered a regularity mechanism of the bacteria themselves, more physi-
cal models could be developed which allow limiting of the population size.
For example, cells may be repelled by neighbors when they come too close.
Many biological systems use quorum sensing systems to regulate behavior,
and failure of such mechanisms can result in abnormal functioning. Other
derivations for incorporating a density effect in the movement may sim-
ply rely on space considerations—only a finite number of particles can fit
into a certain volume. We explore the derivation and behavior of different
models in a second paper [22].
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