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VOLUME-FILLING AND QUORUM-SENSING IN
MODELS FOR CHEMOSENSITIVE MOVEMENT

KEVIN J. PAINTER AND THOMAS HILLEN

ABSTRACT. Chemotaxis is one of many mechanisms used
by cells and organisms to navigate through the environment,

and has been found on scales varying from the microscopic to
the macroscopic. Chemotactic movement has also attracted
a great deal of computational and modelling attention. Some
of the continuum models are unstable in the sense that they
can lead to finite time blow-up, or “overcrowding” scenarios.
Cell overcrowding is unrealistic from a biological context, as it
ignores the finite size of individual cells and the behaviour of
cells at higher densities. We have previously presented a mathe-
matical model of chemotaxis incorporating density dependence
that precludes blow-up from occurring, [19]. In this paper, we
consider a number of approaches by which such equations can
arise based on biologically realistic mechanisms, including the
finite size of individual cells - “volume filling” and the employ-
ment of cell density sensing mechanisms - “quorum-sensing”.
We show the existence of nontrivial steady states and we study
the traveling wave problem for these models. A comprehensive
numerical exploration of the model reveals a wide variety of
interesting pattern forming properties. Finally we turn our at-
tention to the robustness of patterning under domain growth,
and discuss some potential applications of the model.

1 Introduction An essential characteristic of living organisms is
the ability to sense signals in the environment and adapt their move-
ment accordingly. This allows the location of food, the avoidance of
predators or the search for mates. When the response involves the de-
tection of a chemical, it is termed chemotaxis, chemokinesis, or generally
chemosensitive movement. The term chemotaxis is used broadly in the
mathematical literature to describe general chemosensitive movement
responses, and it is in this context that we use the term here. How-
ever, it is important to bear in mind that this definition has a more
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restricted use in the experimental community (see also the discussion in
[18]). Chemotaxis can be either positive (chemoattraction) or negative
(chemoreplusion).

Models for chemotaxis have been successfully applied to bacteria,
slime molds, skin pigmentation patterns, leukocytes and many other
examples. Independent of the species at hand, the basic features of
chemotactic movement can be formulated in relatively straightforward
models.

In this paper we study the following model for chemotactic movement

(1)

∂u

∂t
= Du∇2u −∇ · {uχ(u, v)∇v} + f(u, v)

∂v

∂t
= Dv∇2v + g(u, v),

where u(x, t) represents the density of the cell-population, and v(x, t)
represents the chemoattractant (repellent) concentration. The chemo-
tactic component is represented by the negative-cross diffusion term in
the cell density equation, where χ(u, v) is commonly referred to as the
chemotactic sensitivity. Cell and chemical kinetics are given by f and g
respectively. In applications, typically zero-flux boundary conditions on
a bounded domain in IRn are applied.

In an extension to earlier works on Keller-Segel type of models we con-
sider cross-diffusion terms of the form uχ(u, v)∇v, compared to uχ(v)∇v
in classical applications. Thus, the population density of the chemotact-
ing population directly modulates its own sensitivity response. For the
specific form u(1 − u)χ(v)∇v, in [19] we have shown that this change
leads to global existence of solutions (independent of space dimension)
and to pattern formation.

In Section 2, we review some of the basic literature on chemotaxis.
In Section 3, we derive models based on realistic biological assumptions,
which incorporate the effects of volume filling and quorum sensing mech-
anisms and lead to the form of equation given by Equations (1). We
analyse the structure of the steady states. In Section 4 we analytically
and numerically study the travelling wave problem for (1). In Section
5 we explore the tremendous variety in pattern formation. In Section 6
we look at the effect of domain growth on the patterning. Finally, we
discuss some potential applications of the model, however the detailed
modelling should be carried out elsewhere.

2 Chemosensitive movement Chemosensitive movement has
been shown to play an integral role in cell guidance and tissue organisa-
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tion during embryonic growth. The early wiring of the nervous system
crucially depends on the detection and response to a group of chemical
cues by the tip of the growing nerve cells (growth cone), [59]. By acting
as attractants to some nerve types, while repelling others, the chemi-
cals help mediate the finely tuned movements required to form trillions
of connections. Chemotaxis has also been postulated to play a role in
cell guidance of other developmental process, such as primitive streak
guidance [65] and limb-bud patterning [30].

Cell-chemotaxis is also crucial during the subsequent physiological
maintenance of an organism: for example, the guidance of immune cells
to targets is mediated through chemotaxis. In tumour growth, the stim-
ulation of new blood vessel growth (“angiogenesis”), mediated by chemo-
taxis, is an indicator of increased malignancy. At a macroscopic level,
chemotactic-type responses allow sharks to detect blood in the water
many miles from a wounded animal, while moths emit pheromones as a
mechanism for attracting mates.

The greatest understanding into the mechanisms for these movements
have resulted from studies of chemosensitive movement in bacteria such
as Escherichia coli and Salmonella typhimurium. E. coli moves via ro-
tation of flagella and, when rotating anticlockwise, these flagella bundle
together resulting in a period of smooth swimming - a “run”. Clockwise
rotation, however, results in the flagella spraying outwards resulting in a
random reorientation, or a “tumble”. Normal swimming is characterised
by periods of smooth runs punctuated by tumbling. In the presence of a
chemoattractant, E. coli bias their behaviour by tumbling less frequently
in an increasing attractant gradient, resulting in the general movement
towards high concentrations. Detection of the attractant is made by the
binding of attractant molecules to cell surface receptors, which subse-
quently initiates a cell internal pathway which transduces the signal to
the movement machinery, [1].

In other bacteria or in eukaryotic cells the movement mechanism can
be substantially different. In the cellular slime mold, Dictyostelium dis-
coideum, the sensing of a chemotactic signal (cAMP) invokes the protru-
sion of a pseudopod at the point of detection and subsequent elongation
of the cell body. Adhesion to the substrate takes place at the front of
the cell, and loss of adherence at the cell rear permits forward movement
of the cell, (e.g., see [16, 10]).

In modelling chemosensitive movement, increased computational
power has allowed the greater employment of approaches where cells
are treated as individuals (see e.g. [46, 12]). Other approaches employ
continuum-based models, in particular the Patlak-Keller-Segel type sys-
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tems ([26, 47]):

∂u

∂t
= Du∇2u −∇ · {uχ(v)∇v} + f(u, v)

∂v

∂t
= Dv∇2v + g(u, v)

For suitable kinetics, the above model has been shown to demonstrate
pattern forming properties, with cells accumulating into high density
aggregations. The simplicity of the above model has resulted in exten-
sive application in a number of biological systems, including aggregation
patterns in bacteria [62, 63, 64], fish skin pigmentation patterning [45]
and angiogenesis in tumour progression and wound healing ([9, 40, 48]).
The model has also attracted a great deal of mathematical analysis, in
particular for the tendency of solutions to exhibit finite-time blow-up;
for more information see the reviews of Horstmann [20, 21].

Blow-up is undesirable from a biological standpoint, since it implies
the formation of cell aggregates of infinite density. Furthermore, the
highly stiff nature of the problem can create many difficulties from a
computational standpoint. In Hillen and Painter [19], the chemotactic
sensitivity depended additionally on the cell density, χ = χ(u, v), such
that:

• χ(0, v) > 0.

• There exists a ū > 0 such that χ(ū, v) = 0 and χ(u, v) > 0 for
0 < u < ū.

The simplest non-trivial choice is

χ(u, v) = χ0(1 − u).

Intuitively, the above conditions result in a switch to repulsion at high
densities, and thus we may expect a limit upon the size to which an
aggregation can grow. This was proved rigorously in [19], where an in-
variant region for solutions was shown, and solutions initiating within
this region were shown to exist globally in time. Numerical simula-
tions demonstrated aggregation, where the density to which aggrega-
tions could grow was controlled. For typical patterns see Figure 5 later
in this paper.

Density-dependence in the motility may arise via a wide range of pro-
cesses. Simply, the ability of a cell to migrate will be partially dependent
on the availability of space within its environment. Secondly, cellular
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adhesion, involving the contact and attachment between neighbouring
cells via classes of extracellular receptors, mediates cellular reorgani-
sation and positioning within tissues. Thirdly, the secretion of external
diffusible substances, allows cells to intercommunicate, mediating a wide
variety of processes including migration responses.

3 Derivation of chemotactic equations Throughout the deriva-
tions of the chemotaxis models in this section we neglect cell proliferation
and cell deaths, hence f(u, v) = 0. Later we include f as an additional
term, which incorporates the assumption that the oriented movement
and the cell kinetics are independent processes which act on similar
time scales.

To derive models for chemotaxis, we use the approach of Othmer and
Stevens (for more details, see [41] and the reference therein), where a
master equation for a continuous-time, discrete-space random walk on
a one-dimensional equi-distant lattice is considered. We define ui(t) to
be the probability of a walker to be at i ∈ Z at time t, conditioned on
beginning at i = 0 at t = 0. We assume this evolves according to the
continuous-time discrete-space equation:

(3)
∂ui

∂t
= T +

i−1ui−1 + T −
i+1ui+1 − (T +

i + T −
i ) ui.

In the above T ±
i (·) define the transitional-probabilities per unit time of

a one-step jump to i± 1. Herein, we shall equate the probability distri-
bution above with the cell density. The above model simply describes
the changing particle/cell numbers as individuals enter or leave a site.

3.1 The classical chemotaxis model The dependence of the tran-
sitional probabilities, T ±

i , is crucial on the form of equation we derive.
In the context of chemosensitive movement, the decision of when/where
to jump is dependent on additional factors, such as the external concen-
tration of a chemotactic agent. This introduces a spatial bias into the
random walk, and we therefore assume T ±

i = T ±
i (v), where v is a vector

representing the chemical concentration defined on the lattice. While a
variety of different models can be postulated for how the cells detect the
chemical concentration (see [41]), we assume here that cells have the
capacity to detect a local gradient, i.e.,

(4) T ±
i = α + β (τ (vi±1) − τ (vi))

where α and β are constants and τ represents the mechanism of signal
detection. The ratio of α to β (τ (vi±1) − τ (vi)) models the strength of
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random motility to chemotaxis. For transitional probabilities of this
form (4) we always assume that they are not negative; that is, α is not
small compared to β and the variations τ (vi±1)−τ (vi) are not too large.

We substitute (4) into Equation (3), which under rearrangement gives:

∂ui

∂t
= α (ui+1 − 2ui + ui+1)

− β
(
(ui+1 + ui) (τ (vi+1) − τ (vi)) − (ui + ui−1) (τ (vi) − τ (vi−1))

)
We set x = ih, reinterpret x as a continuous variable and extend the
definition of ui accordingly. As the spatial scale, h, is changed, the tran-
sitional probabilities to jump to a neighbouring location must depend on
that scale. Thus we assume that T ±

h = k
h2 T ± for some scaling constant

k. As we expand the right-hand side in powers of h we obtain for the
density u(x, t):

∂u

∂t
= k

(
α

∂2u

∂x2
− 2β

∂

∂x

(
u

∂τ (v)
∂x

))
+ O(h2).

In the limit of h → 0 we formally arrive at the following model for
chemotaxis:

∂u

∂t
= Du

∂2u

∂x2
− ∂

∂x

(
uχ(v)

∂v

∂x

)
where

(5) Du = kα, and χ(v) = 2kβ
dτ (v)

dv
.

The above model is of the same form originally proposed by Patlak, [47]
and Keller and Segel, [26]. The function χ(v) is commonly referred to
as the chemotactic sensitivity function. The simplest assumption is a
linear dependence for τ on v, in which case χ = χ0 is constant. For
this sensitivity, we add cell and chemical kinetics of the form f(u, v) and
g(u, v) respectively, and we extend to higher dimensions:

(6)

∂u

∂t
= Du∇2u − χ0∇ · {u∇v} + f(u, v)

∂v

∂t
= Dv∇2v + g(u, v)

where Dv is the chemical diffusion coefficient. We shall refer to this
model as the “classical chemotaxis equation”. It is also possible to in-
corporate details of the process of signal detection and transduction by
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the cells. For example, as outlined in the introduction, chemoattrac-
tant detection in E. coli involves the binding of molecules to cell surface
receptors, subsequently initiating a complex pathway linking to a move-
ment response. We assume that the binding of the chemical v to a cell
receptor R converts it into an active form Ra according to:

R + v
k+

�
k−

Ra.

If (1) binding and disassociation occur on a much faster timescale than
subsequent signal transduction, and (2) the total number of cell surface
receptors, R0, remains about constant, then the number of activated
receptors is Ra = R0v/(K + v), K = k−/k+. Assuming the chemotactic
response relates to the number of occupied receptors, τ (v) ∝ Ra then
we obtain a receptor response law, [55]:

χ(v) =
ρ

(K + v)2
.

where ρ is a constant.
Equations (6) have been studied for various forms of f and g. In

particular, for chemical kinetics of the form g(u, v) = u − v, the model
has been shown to give rise to spatial patterning phenomena. In two
or higher dimensions, this can take the form of finite time blow-up (see
references in [20, 21]). Blow-up explains the initial aggregation, but is
problematic from the biological viewpoint, since it implies the forma-
tion of aggregations of infinite cell density. Furthermore the highly stiff
problem creates restrictions on numerical evaluation of the model. It
is therefore desirable to develop simple models for chemotaxis in which
blow-up behaviour is precluded and solutions exist globally.

We extend the derivation of the above model to incorporate two po-
tentially important factors: (1) The effect of the finite volume of the or-
ganism on the ease of movement, and (2) The effect of chemical-mediated
cell density sensing mechanisms on movement.

3.2 Volume-filling chemotaxis models In the volume filling ap-
proach, we assume that the probability of making a jump depends upon
the availability of space into which it can move. For example, consider
Figure 1(a) where cells (circles) are chemotactically migrating in an in-
creasing attractant gradient. Cell A is in a low density region, and can
move with freedom, though the chemosensitive bias is to the right. Cell
B, on the other hand, is in a semi-packed environment and although it
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A

B

Increasing chemoattractant concentration Increasing chemoattractant concentration

C

(a) volume filling approach (b) quorum−based approach

FIGURE 1: Illustration of the (a) Volume filling model, and (b) Quorum
sensing model

experiences a bias to the right, the lack of space inhibits motion in that
direction. Cell C is completely packed on all directions, and unable to
move.

We incorporate this into the derivation of a chemotaxis equation by
assuming that the probability of jumping into a neighbouring site is
dependent upon the amount of space available at that site, i.e.,

(7) T ±
i = q(ui±1)

(
α + β (τ (vi±1) − τ (vi))

)
where q(u) is the probability of the cell finding space at its neighbouring
location. We shall assume that only a finite number of cells, Umax,
can be accommodated at any site, and thus we stipulate the following
conditions on q:

q(Umax) = 0 and q(u) ≥ 0 for all 0 ≤ u < Umax

Clearly, a logical choice is

q(u) = 1 − u

Umax

,

which states that the probability of a jump into a site decreases lin-
early with the cell density at that site. A more complex choice could
incorporate other cellular processes, e.g.

q(u) = u

(
1 − u

Umax

)
.

This models a biphasic response; at low cell densities the probability of
a jump increases with cell density, while at high densities the probability
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decreases with cell densities. The response at low densities may arise
through the necessity of cellular contact for migration to occur.

Substituting Equations (7) in to the Master Equation (3) gives:

d

dt
uk = qk(α + β(τk − τk−1))uk−1 + qk(α + β(τk − τk+1))uk+1

−
(
qk+1(α + β(τk+1 − τk)) + qk−1(α + β(τk−1 − τk))

)
uk

= α
(
qkuk−1 + qkuk+1 − (qk+1 + qk−1)uk

)
+ β

(
qk(τk − τk−1)uk−1 + qk(τk − τk+1)uk+1

− qk+1(τk+1 − τk)uk − qk−1(τk−1 − τk)uk

)
.

Once more, we reinterpret space as a continuous variable and expand
the right hand side. In the limit, we arrive at the PDE:

∂u

∂t
= kα

(
q(u)

∂2u

∂x2
− u

∂2q(u)
∂x2

)
− 2kβ

∂

∂x

(
q(u)u

∂τ (v)
∂x

)

which in divergence form reads:

(8)
∂u

∂t
=

∂

∂x

(
Du (q(u) − q′(u)u)

∂u

∂x
− q(u)uχ(v)

∂v

∂x

)

where q′(u) denotes the derivative of q with respect to its argument,
and Du and χ(v) are given by (5). Note that for non-increasing q(u)
the diffusion coefficient Du(q(u) − q′(u)u) is always positive, hence (8)
is well defined.

Including cell kinetics and signal dynamics we arrive at a model for
chemosensitive movement incorporating volume filling:

(9)

∂u

∂t
=

∂

∂x

(
Du (q(u) − q′(u)u)

∂u

∂x
− q(u)uχ(v)

∂v

∂x

)
+ f(u, v)

∂v

∂t
= Dv

∂2v

∂x2
+ g(u, v)

For the special choice of q(u) = 1−u/Umax we obtain q(u)−q′(u)u = 1.
For this choice of q we study the relative density ũ = u/Umax, (and drop
the ˜). Combined with chemical dynamics and cell kinetics and extended
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to general dimensions we finally get system (1) with χ(u, v) replaced by
χ(v)(1 − u).

With chemical kinetics of the form g(u, v) = g1(u, v)u− g2(u, v)v and
f(u, v) = 0, the above model (1), was previously introduced in [19] where
it has been shown that all solutions of this model (and generalisations)
exist globally in time and there is no finite time blow-up. Intuitively,
this is what we would expect from a “volume-filling” approach: cells
aggregate into a space until maximum capacity is reached, after which
no more cells can move in.

Other choices for q(u) can also be considered, for example, if we
choose

q(u) = 1 − uγ , γ ≥ 0

then q(u) − q′(u)u = 1 + (γ − 1)uγ . This gives, compared to diffusion
without volume filling mechanism, enhanced diffusion for γ > 1 and
reduced diffusion for γ < 1.

3.3 “Quorum-sensing” approaches The volume-filling approach
provides an intuitive way into how density-dependent chemotactic mod-
els may be realistically derived. In most tissues, however, the cell den-
sity is carefully controlled at levels well below the theoretical maximum
resulting from tight packing. Excessive cell densities may result in over-
depletion of important nutrients and necrosis, as occurs in pathological
diseases such as cancer.

While the mechanisms in place for this regulation are largely un-
known, a great deal of interest has recently been generated by “quorum-
sensing”, or population sensing, in bacterial populations [33, 56, 57]. A
wide range of physiological processes in bacteria have been shown to de-
pend on the bacterial population density. A well-studied example is the
light generating marine bacteria Vibrio fischeri, which forms a symbi-
otic relationship with a number of eukaryotic hosts by providing light in
exchange for nutrients [54]. The bacteria only start generating light at
high cell densities, since low cell numbers produce insufficient light. Cells
detect the population level by sensing the concentration of a diffusible
chemical secreted into the environment, known as an “auto-inducer”.
Light production is only stimulated when this is sufficiently high. Such
“quorum-sensing” has been shown to induce a diverse range of physi-
ological functions in many bacteria, including antibiotic secretion and
biolayer-formation in Pseudomonas aeruginosa, swarming motility in
Burkholderia cepacia and sporulation in Myxococcus xanthus (see above
references).
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Similar mechanisms occur in eukaryotic populations. The cellular
slime mold Dictyostelium discoideum has been widely studied due to
its particular life-cycle. In a nutrient rich environment, the population
grows while the amoeboid cells consume the available nutrient. Star-
vation, however, stimulates secretion of cAMP, inducing other D. dis-
coideum cells both to secrete cAMP and chemotactically migrate towards
the cAMP source, resulting in an aggregation. Cellular differentiation
follows, eventually resulting in a fruiting body structure composed of a
ball of spore cells supported by a stalk of dead cells. This positions the
spore cells such that dispersion into a more favourable environment can
occur. Quorum-sensing type behaviour occurs both prior to starvation
and during aggregation stages. At starvation cells secrete CMF (glyco-
protein conditioned medium factor) into the environment, and only when
a sufficient concentration of CMF is detected do the cells start the cAMP
pathway, [13]. This may ensure that the environment is sufficiently de-
pleted of resources before the aggregation process is initiated. During
aggregation, cells secrete another molecule, counting factor (CF), which
regulates the size of the aggregation to optimise the efficiency with which
the fruiting body can disperse the cells, [5, 6]. The CF is thought to
determine the group size via modulation of the adhesive and motility
properties of the cells [52].

Clearly, “quorum-sensing” behaviour may play a key role in regulat-
ing a huge variety of cell functions. We incorporate the effect of such
a mechanism by assuming the existence of a secondary chemical which
allows the cells to determine the local density and alter the chemotactic
response to the chemoattractant v accordingly. For example, consider
again Figure 1. In the volume filling approach, (a), cells aggregate until
packed. However, if cells are also secreting a secondary molecule, (b),
then the concentration of the molecules sensed by the cell will be an
indicator of the local density. Response to the chemoattractant is regu-
lated by the quorum sensing molecule, providing a mechanism by which
cells can pack at a lower density. We therefore assume transitional prob-
abilities of the general form, T ±

n (v, w), where v is the chemoattractant
and w is the quorum-sensing molecule. Different models can be derived,
depending on exactly how the quorum sensing modulates the signalling
pathway. Here we consider two possibilities:

3.3.1 Mediating attractant strength We first assume that w modulates
the sensitivity to chemical gradients, i.e.,

T ±
n = α + β(wi) (τ (vi±1) − τ (vi))
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Again we assume that the parameters involved are such that T ±
n ≥ 0.

Here we are assuming that w is interfering with the chemotactic sig-
nalling pathway downstream of detection; i.e., cells sense the same gra-
dient of chemical at the surface, but the “strength” signalled to the
movement dynamics is modulated by w.

This may be an apt description of the response of growing nerve cells
to a variety of molecules. Certain chemicals have been shown to elicit
both attractant and repellent responses, depending on the environmental
state of the neuron, e.g. [59, 58, 34]. In high concentrations of extracel-
lular cAMP the response to Netrin-1 is attractive, while at lower cAMP
levels the response is repellent. In the above, these responses may be
modelled by choosing β(w) such that β(w) < 0 for w < w∗ and β(w) ≥ 0
for w ≥ w∗. Dual responses of cells to single chemical agent have also
been identified in chemotactically migrating mesoderm cells, [29] and
immune cells [51].

The derivation of the parabolic PDE model follows as above, and here
we obtain the following three component system:

(10)

∂u

∂t
= Du

∂2u

∂x2
− ∂

∂x

(
β(w)uχ(v)

∂v

∂x

)
+ f(u, v, w)

∂v

∂t
= Dv

∂2v

∂x2
+ g1(u, v, w)

∂w

∂t
= Dw

∂2w

∂x2
+ g2(u, v, w),

where again, χ(v) is given by (5). In the special case where the quorum
sensing molecule w is not diffusing and it is a monotone increasing func-
tion of the cell density, w = w(u), we can replace β(w) = β(w(u)) =:
φ(u). If we assume that w switches the response to v from attrac-
tant at low concentrations of w to repellent at high concentrations (e.g.
β(w) = 1−w/w∗), then the connection with the model of [19] becomes
apparent and we may reasonably expect global existence in certain sce-
narios.

Here, the density to which cells fill-up is not necessarily the maximum
volume, but to a level determined by the concentration of w.

3.3.2 Mediating at gradient detection A second possibility is that w
interferes at the level of gradient sensing, in which case:

T ±
n = α + β (τ (vi±1, wi±1) − τ (vi, wi))
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Assuming T ±
n ≥ 0 we substitute this into Equation (3) and derive the

PDE:

(11)

∂u

∂t
= Du

∂2u

∂x2
− ∂

∂x

(
uχv(v, w)

∂v

∂x

)

− ∂

∂x

(
uχw(v, w)

∂w

∂x

)
+ f(u, v, w)

∂v

∂t
= Dv

∂2v

∂x2
+ g1(u, v, w)

∂w

∂t
= Dw

∂2w

∂x2
+ g2(u, v, w)

Thus, the migration of cells is dictated by gradients in both v and w.
Dual-gradient systems have been considered in [44], where a number of
possibilities for how multiple chemical signals are integrated at the level
of the cell surface have been examined. For example, w may bind to
the chemoattractant receptors, thereby reducing the availability of free
receptors for v to bind to.

Again it is possible to make the connection with the model of [19]
by considering special-case scenarios. For example, we may consider the
following simple dual gradient system:

(12)

ut = Duuxx − χv (uvx)x + χw (uwx)x

vt = Dvvxx + u − v

wt = Dwwxx + γuv − δw

Here χv, χw are considered constant. In this model, the amount of se-
cretion of w is regulated by the amount of chemoattractant detected by
the cells. Under the assumption that γ and δ are large, and Dw is small
we can make the first order approximation w ∼ ρuv, where ρ = γ/δ.
Substituting this into the equation for u gives

ut = ((Du + ρχwuv) ux)x − (u (χv − χwρu) vx)x

vt = Dvvxx + u − v

This is essentially the same form as Equations (1), however here the
diffusion term is dependent on u and v. Since diffusion has a stabilising
effect on gradients, we would expect similar behaviour for this system,
and simulations later confirm this intuition.
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In fact, the above may reasonably describe certain behaviours in E.coli
and other bacteria; which are shown to demonstrate both attractant
responses to substances such as food, and repellent responses from nox-
ious or toxic substances. Aerobic respiration of E. Coli results in the
generation of a number of toxic byproducts, such as hydrogen peroxide
(e.g. [24]) and chemorepulsion to gradients of hydrogen peroxide have
been demonstrated, e.g. [3],

3.4 Steady states for the volume filling model We can obtain a
better understanding into the form of the steady states to the chemotac-
tic model by analysing the problem in more detail. Here we exclusively
consider the volume-filling model, Equations (8), without cell population
dynamics. The cell density for this model evolves according to:

ut =
(
Du(q(u) − q′(u)u)ux − χ0q(u)uτx

)
x
.

We study this equation on the interval [0, l] with homogeneous non-flux
boundary conditions:

(13) Du(q(u) − q′(u)u)ux − χ0q(u)uτx = 0, at x = 0, l.

For chemosensitive movement the parameter function τ is a function of
the signal concentration v(t, x), where v satisfies a parabolic Neumann
problem (second equation of (1)). Thus, at the boundary:

τx = τ ′vx = 0, at x = 0, l.

and consequently

(q(u) − q′(u)u)ux = 0, at x = 0, l.

Steady states satisfy ut = 0. With the boundary conditions (13) it
follows that on [0, l]

(14) Du(q(u) − q′(u)u)ux = χ0q(u)uτx

We study several cases.

3.4.1 The function τ (x) is given For a given function τ (x) and the
standard case of volume filling: q(u) = 1− u, we have q(u)− q′(u)u = 1
and (14) leads to a logistic equation

(15) ux = µ(x)u(1 − u), on [0, l]
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(x)τ

u(x)

FIGURE 2: Example of a two-peak steady state solution for u.

with

(16) µ(x) :=
χ0

Du
τx(x).

Hence the numerically observed patterns are plateaus of level 0 or 1,
which are connected by solutions of the logistic equation (15). In the case
of increasing τ we have an increasing sigmoide curve, and for decreasing
τ a decreasing sigmoide curve. We solve the boundary value problem
for the logistic equation (15) using the standard separation ansatz.

(17) u(x) =
c

e−M(x) + c
, with M(x) =

χ0

Du
τ (x).

The constant c is specified using conservation of mass:∫ l

0

u(x)dx = Ū0 =
∫ l

0

u0(x)dx.

The given function τ (x) appears explicitly in (17). The solution follows
the shape of τ (x). We show a two-peak example in Figure 2.

For general q(u), with the same µ(x) as above (16), we obtain:

(18) ux = µ(x)
q(u)u

q(u) − q′(u)u
.

This equation is also separable and the solution is given implicitly of the
form

(19)
u

q(u)
= ceM(x), where again M(x) =

χ0

Du
τ (x)

and c is specified by conservation of mass. We denote the left hand side
by

Φ(u) :=
u

q(u)
.
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If we consider q(u) to be decreasing (this includes the standard volume
filling model), then we find:

Φ′(u) =
q − q′u

q2
> 0.

Hence Φ is strictly increasing, invertible and Φ−1 is also strictly increas-
ing. The solution of (18) is therefore given by:

(20) u = Φ−1
(
ceM(x)

)
and once again u(x) has the same profile as τ (x). For the example
q(u) = 1 − u we find

Φ−1(z) =
z

1 + z
.

3.4.2 Steady states of the full chemotaxis model Here we use the above
observations to study the volume filling model (9) in the following form

ut =
(
Du(q − q′u)ux − quτ ′(v)vx

)
x

vt = Dvvxx + γu − δv

on [0, l] with boundary conditions

(21) vx = 0, and (q − q′u)ux = 0

at x = 0, l.
A suitable non-dimensionalisation of variables x, t and v allows us to

rewrite the above system as:

ut =
(
D(q − q′u)ux − χ0quτ ′(v)vx

)
x

(22)

vt = vxx + u − v(23)

where D and χ0 are constants and q, q′, τ, τ ′ have been replaced with
their non-dimensionalised counterparts. From the boundary conditions
it follows that steady state solutions satisfy

D(q − q′u)ux = χ0quτ ′(v)vx(24)

0 = vxx + u − v,(25)
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We solve equation (24) as above. Once more, u satisfies the logistic-type
equation (18) and the solution is given as

(26) u = Φ−1
(
ceM(v(x))

)
, where now M(v(x)) =

χ0

D
τ (v(x)),

where c is again specified through mass conservation. Finally, with the
use of the second equation (25), we obtain the following nonlinear elliptic
boundary value problem for v:

(27) vxx − v = −Φ−1
(
ceM(v)

)
, vx|0,l = 0.

Problem (27) is a standard elliptic boundary value problem. We use
phase-plane methods to analyse this system.

3.4.3 Phaseplane analysis First of all we summarise some facts con-
cerning Φ−1 and f(v) := v − Φ−1(ceM(v)). As mentioned earlier Φ−1

is strictly increasing. Since M(v) is also increasing, the map Ψ(v) :=
Φ−1(ceM(v)) is a strictly increasing function. Moreover it is of sigmoide
type.

The function Φ(u) = u/q(u) has a pole at u = 1 and limu→1− Φ(u) =
+∞. Consequently we have limz→+∞ Φ−1(z) = 1. Thus

lim
v→∞ Ψ(v) = lim

z→∞Φ−1(z) = 1.

Moreover we find
Ψ(0) = Φ−1(ceM(0)) > 0.

We obtain two generic cases. In the first case there is only one intersec-
tion of v 	→ v with Ψ(v). and in a second case there are at least three
intersection points. The case of two intersection points is non generic.

Case 1: There is a unique v0 with

v0 − Ψ(v0) = f(v0) = 0.

Then f ′(v0) > 0. Now we introduce Z = vx and we write the steady
state equation (27) as a system

(28)
vx = Z

Zx = f(v).
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The linearization at (v0, 0) is

(
v
Z

)′
=
(

0 1
f ′(v0) 0

)(
v
Z

)

The determinant of the corresponding Jacobian is −f ′(v0) < 0. Hence
(v0, 0) is a saddle point with eigenvalues ±

√
f ′(v0) and eigenvectors

(
1

±
√

f ′(v0)

)
.

Due to Neumann boundary conditions we require Z(0) = 0 and
Z(l) = 0. Except for the steady state (v0, 0) there is no trajectory
which connects the v-axis with itself. This leads to the following:

Lemma 3.1. If v − Ψ(v) has only one zero v0 then the unique steady
state is the homogeneous distribution (v(x), Z(x)) = (v0, 0).

Case 2: There are at least three zeros of single multiplicity v0 <
v1 < v2. Then we necessarily have f ′(v0) > 0, f ′(v1) < 0, f ′(v2) > 0.
Hence (v0, 0) and (v2, 0) are both saddle points. The linearization at
(v1, 0) gives a centre point. Let F (v) denote a primitive of f(v), then

H(v, Z) = F (v) − Z2

2

defines an energy functional for system (28). Hence (v1, 0) indeed
is a centre. The eigenvalues of the linearization around (v1, 0) are
±i
√

|f ′(v1)|. Then solutions of (28) near (v1, 0) are composed of
cos(

√
|f ′(v1)|x) and sin(

√
|f ′(v1)|x). The minimum interval length l∗

that allows for a nontrivial connection from Z(0) = 0 to Z(l∗) = 0 is the
length which corresponds to a half period of the above sin, cos functions.
Hence

l∗ =
π√

|f ′(v1)|
.

If l is sufficiently large then solutions are possible which loop around
(v0, 0) more often. These correspond to multi-peak steady states.
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3.5 Existence of solutions We will not go into details of proving ex-
istence and uniqueness of solutions to the aforementioned models. How-
ever, as this is an important issue we add some remarks on what we
expect.

In comparison to the results of [19], Equation (1) has the additional
term f(u, v). This term does not involve derivatives, and is therefore of
lower order than the diffusion or drift terms. Thus, if f is smooth enough
we expect local existence of solutions in Sobolev spaces. Moreover, if
solutions to the pure kinetic problem

ut = f(u, v), vt = g(u, v)

exist globally in time, we may expect the same for the volume filling
model (9). It has previously been shown, [4] that a strong decay in f for
high particle densities u can control an aggregation force which, without
f , would lead to finite time blow-up.

The existence of solutions for the quorum sensing models (10) and
(11) is less straightforward. However, as we demonstrated above, cer-
tain scenarios lead to models very closely related to the system given by
Equations (1), and it is therefore appropriate to assume that under rea-
sonable choices of β, f, g1, g2, χv, χw we expect no problems. The exact
conditions needed for these parameters must be made precise elsewhere.

In the following sections we shall explore behaviour of the above sys-
tems by numerically solving the equations. In particular, we shall look
at two phenomena commonly explored in mathematical modelling: trav-
elling wave formation and pattern formation.

4 Propagation waves Travelling wave behaviour has been exten-
sively studied in chemotactic systems, and applied to a variety of prob-
lems ranging from bacteria movement [27, 25, 39, 37]), to angiogenesis
in wound healing and tumour growth, [9, 40, 48]. In many studies
of travelling wave behaviour, a key focus of attention is on how the
wave-speed depends on the various system parameters [23]. In wound
healing, for example, controlling the speed may have beneficial effects
following surgery. We study the implications of the density dependence
in the equations on the wave speed and compare with the wave speed in
classical models of chemotactic growth.

4.1 Linear concentration gradient We consider a population of
chemotactic cells in a constant chemoattractant gradient, vx = con-
stant, where the chemotactic sensitivity dependence on v is constant,
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and the density dependence is given by φ(u). Coupling this with logistic
cell kinetics gives:

(29)
∂u

∂t
= D

∂2u

∂x2
− χ0

∂uφ(u)
∂x

+ ru(1 − u).

This is effectively the classical Fisher wave equation with an additional
convection term. We assume an infinite domain and initial conditions
such that u = 1 for all x ≤ 0 and u = 0 for x > 0. By converting to
the travelling wave coordinate system z = x − ct we derive an ODE for
U(z):

0 = DU ′′ + (c − χ0 (φ + Uφu))U ′ + rU(1 − U)

where ′ denotes the derivative w.r.t. z, and φu = dφ(u)
du . By analysing

the stability of steady states (0, 0) and (1, 0) in the phase plane:

(30)
U ′ = V

V ′ = − 1
D

{(c − χ0 (φ(U) + Uφu(U)))V + rU(1 − U)} ,

it is straightforward to determine that (1, 0) is linearly unstable, while
(0, 0) is stable with complex eigenvalues if c < χ0φ(0)+2

√
rD and stable

with real eigenvalues if c ≥ χ0φ(0)+2
√

rD. Thus for solutions to remain
relevant (i.e., ≥ 0), we must have:

c ≥ c∗ := χ0φ(0) + 2
√

rD.

Indeed we find that c∗ is the minimum wave speed:

Proposition 1. For the classical case of φ(u) = 1 and for the volume
filling case of φ(u) = 1 − u there exists a travelling wave solution for
equation (29) for each speed

c ≥ c∗.

Proof: For the case of φ(u) = 1 we transform the speed as c̃ = c − χ0.
Then (30) with speed c̃ has exactly the same form as for the corre-
sponding Fisher equation without drift. Then the minimal wave speed
is c̃∗ = 2

√
rD (e.g. [36]).

For the case of φ(u) = 1 − u we transform as ĉ = (c − χ0)/
√

rD and
apply a result of Murray and Gibbs (see [35]). There it is shown that
ĉ∗ = 2 is the minimum wave speed.

Simulations confirm that there is no difference in the wave speeds of
the classical and the volume filling model.
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4.2 Waves with cell growth and chemical kinetics We now as-
sume that the chemical gradient is altered by the cell density according
to the following model:

∂u

∂t
= D

∂2u

∂x2
− χ0

∂

∂x

(
uφ(u, v)

∂v

∂x

)
+ ruv

∂v

∂t
=

∂2v

∂x2
− uv

with initial conditions v(x, 0) = 1.0, and u(x, 0) such that u = us at
x = 0 and u = 0 for x > 0. This models a simple experiment where
a small population of bacteria is inoculated at the centre of a petri
dish containing a suitable nutrient environment. Simulations indicate
that following the initial stages of evolution, solutions settle into trav-
elling wave behaviour, examples of which are shown in Figure 3(a). We
compare the form and speed of waves generated under two choices of
φ(u): (i) the classical model, φ(u) = 1 and (ii) the volume-filling model,
φ(u) = 1−u. At low values of χ0, there is no appreciable difference in so-
lutions to the above equations, and wavespeeds are similar. However, as
we increase χ0, travelling waves with the volume filling approach move
more slowly compared to the corresponding waves using the classical
approach, see Figure 3(b), and the wave has a much shallower form.

By putting a dependence in the sensitivity such that the nature of
the molecule switches from attractant at low concentrations to repellent
at higher densities (i.e., φ(u, v) = 1 − v), we see a much different wave
profile emerge. For sufficiently strong chemotaxis, a peak develops in
the cell density at the front of the wave, Figure 3(c). Such rings have
been observed in the swarming edges of bacterial colonies in petri dish
experiments.

5 Pattern formation Pattern formation due to chemosensitive
movement is seen in bacteria such as E. coli and S. typhimurium. E.
coli have been shown to form a range of patterns, including rings and
spots as they spread out in a nutrient environment [7, 8]. Chemotactic
models similar to those proposed earlier have been demonstrated to ex-
plain these patterns, [64, 63, 62, 14]. In other applications chemotaxis
equations have been applied to several processes of pattern formation
in development, for example in the formation of pigmentation patterns,
[45].
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FIGURE 3: Column (a): Typical cell density (top) and chemical con-
centration travelling wave profiles for the model for low chemotactic
strengths (χ0 = 0.5). Note that the results were very similar for all
choices of chemotactic sensitivity, φ = 1, 1 − u, or 1 − v. Wave direc-
tion indicated by arrows. (b) Top: Difference in wave profiles for the
chemotactic sensitivity terms φ = 1 (dotted) and φ = 1 − u (solid) for
χ0 = 2.0. Bottom: Comparison of numerically calculated wave speed
for different chemotactic strengths for φ(u) = 1 (solid) and φ(u) = 1−u
(dashed). (c) For a chemotactic sensitivity term of the form φ = 1 − v,
a peak developed at the front of the cell density wave (top). Bottom
graph shows the chemical concentration. For all simulations, other pa-
rameters are given by r = 1.0, D = 0.01, us = 0.01, with time steps of
10 between wave profiles

5.1 Linear analysis To understand the parameter regions where we
may expect instability of a homogeneous solution, and thus the pos-
sibility of spatial patterning, a linear analysis can be performed (e.g.,
see [36]). The general model for chemotaxis with multiple chemotac-
tic agents, including the models derived in Section 2 is given by the
following equations:

ut = ∇ · {Du∇u − uΦ(u,v)∇v} + f(u,v)

vt = Dv∇2v + g(u,v)

where u is the cell population, v represents the n−vector of chemical
species, Φ represents the n-vector of chemotactic sensitivities, Dv is
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the diagonal matrix of chemical diffusion rates and f and g are cell and
chemical kinetics. On a smooth domain Ω we assume zero-flux boundary
conditions:

Du∇u · η − u
∑

(Φi(u,v)∇vi) · η = 0

∇v · η = 0,

where η denotes the outer normal at ∂Ω. We assume that the above
system has a non-trivial steady state solution (u∗,v∗) which is stable
in the absence of spatial terms. We assume Du =constant and restrict
attention to the one-dimensional domain [0, L]. We linearise the above
system about the spatially homogeneous steady state (u∗,v∗). Solutions
which satisfy the boundary conditions have the form cos(kx)eλt, where
λ is the eigenvalue determining temporal growth and k is commonly
referred to as the wavenumber. The dispersion relation is derived by the
following equation:

(31)
∣∣∣∣ −Duk2 − λ + fu u∗Φ(u∗,v∗)k2 + fv

gu −Dvk2 + gv − Iλ

∣∣∣∣ = 0

In the event that there exists a range of positive k2 for which the eigen-
value λ has positive real parts, then perturbations to the homogeneous
solution grow with time and the homogeneous solution is unstable. In
such scenarios we may expect spatial patterning. Note that only discrete
values of k will satisfy the boundary conditions, k = nπ

L , where n ∈ Z
is termed the wavemode and corresponds to the number of peaks such
that n = 2 describes a 1 peak pattern, while n = 3 describes a 1 1

2 peak
pattern.

We consider three cases:

Case 1: Zero cell kinetics, one chemical species
For f = 0 and a single chemical species, the characteristic polynomial

determined from Equation (31) is:

0 = λ2 +
(
(Du + Dv) k2 − gv

)
λ + b1(k2)

b1(k2) = DuDvk4 − (Dugv + guu∗Φ(u∗, v∗)) k2

where, by cell conservation, u∗ is determined by the initial conditions.
Since gv < 0 (assuming stability of steady state in absence of spatial
terms), instability of the uniform solution can only occur via b1(k2) < 0,
hence necessarily

Dugv + guu∗Φ(u∗, v∗) > 0
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FIGURE 4: Typical dispersion relations where parameters predict an
unstable range of wavenumbers for cases (1), (2) and (3). Solid lines
refer to real eigenvalues, while dashed lines refer to complex eigenvalues

This provides conditions on the strength of chemotaxis for instabilities
to occur. It is straightforward to see that the dispersion relation under
this scenario leads to a range of k2 given by

[
0, ku

2
]

for which IR (λ) > 0,
Figure 4(a).

Case 2: Non-zero cell kinetics, one chemical species
For f(u, v) �= 0 and a single chemical species, we can calculate the

dispersion relation as:

λ2 +
(
(Du + Dv) k2 − (fu + gv)

)
λ + b(k2) = 0

DuDvk4 − (Dugv + Dvfu + guu∗Φ(u∗, v∗)) k2 + fugv − fvgu = b2(k2)

Stability of the steady state for the corresponding kinetic equations
(without diffusion) implies fu + gv < 0 and fugv − fvgu > 0. Con-
ditions for the steady state to be unstable here can be found, however
now the range of unstable wavenumbers is given as k2 ∈

[
kl

2, ku
2
]

where
kl > 0, Figure 4(b).

Case 3: Non-zero cell kinetics, two chemical species
With two chemicals, a cubic dispersion relation follows of the form:

0 = λ3 + a(k2)λ2 + b(k2)λ + c(k2)

We note that stability of the steady state in the absence of spatial terms
implies a(k2) > 0 for all k. Stability can be lost either through b(k2) < 0
or c(k2) < 0. Note that several classes of dispersion relation can be
found; shown are (i) a range of unstable wavenumbers with real eigen-
value and (ii) a range of unstable wavenumbers with complex eigen-
values. More complicated classes can also be found, for example those
which show two non-connected ranges of unstable wavenumbers, which
may have either real or complex eigenvalues. The type of instability
must be studied separately in each application.
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FIGURE 5: (a) Early evolution of a multi-peak pattern for Model (1)
with χ(u, v) = χ0(1−u) and with initial cell density of 0.5 shown at T=0
(dot), 20 (dot-dash) and 100 (solid). (b) Initial density = 0.2, at T=0
(dot), 50 (dot-dash) and 100 (solid). (c) Initial density = 0.8, at T=0
(dot), 50 (dot-dash) and 100 (solid). (d) Long time evolution for initial
cell density of 0.5 showing coarsening to a single half-peak pattern. (e)
q(u) = 1 − uγ for γ = 4.0 (solid), 1.0 (dot) and 0.25 (dash). We use a
domain of length 20 and parameters Du = 0.25 and χ0 = 4.0 Data is
plotted at T = 500. (f) q(u) = exp(−γu) for γ = 1.0 (dot, T = 300.0),
3.0 (dot-dash, T = 5000) and 5.0 (solid, T = 5000).

5.2 Pattern formation: simulations in one-dimension

5.2.1 Zero Cell Kinetics We consider the volume-filling chemotaxis
system, given by Model (1) with cell kinetics f(u, v) = 0 and χ(u, v) =
χ0(1 − u), χ0 > 0 a constant. Unless stated otherwise, throughout
the following sections we shall assume chemical kinetics take the form
g(u, v) = u − v, and zero flux boundary conditions. Initial conditions
will be set at the homogeneous steady states, but spatially perturbing
the chemical concentration by a small random amount.

For initial conditions u(x, 0) = us (constant) the homogeneous steady
state is (u∗, v∗) = (us, vs). The results of the linear stability analysis
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FIGURE 6: (a) Chemotaxis modulated by a secondary (quorum sens-
ing) molecule, shown at t = 2000 for: χ0 = 1.0 (dot-dash line),
χ0 = 3.0 (solid), χ = 10.0 (dashed). Other parameters: Du =
0.1,Dw = 1.0, δ = 1.0 and an initial density of u = 0.5. (b) Den-
sity regulation in the attraction-repulsion system. Density profile at
t = 10000 for chemorepulsion strength: χw = −1.0 (dotted line), −0.75
(solid line), −0.5 (dashed), and −0.25 (dot-dash). Other parameters:
Du = 0.02, Dv = 1.0,Dw = 0.1, χu = 1.0, δ = γ = 1 on the domain
of length 40. (c) Example of oscillating solutions in the three species
attractant-repellent system.

indicate that we have instability of the homogeneous solution when

χ0 >
D

us(1 − us)
.

Under this scenario, from Figure 4(a) we expect all low wavemodes to be
unstable. The cell density is crucial on the ability to form patterns: at
low and high values of us, the system is stable to spatial perturbations.
Effectively, this indicates that the chemoattractant with the above ki-
netics behaves as quorum-sensing molecule — there is a switch in the
behaviour of the system from homogeneity (e.g. “vegetative swarming of
bacteria”) to spatial patterning (i.e., “aggregation of bacteria”) through
a change in the density of the population, mediated by the cell secreted
chemoattractant molecule.

The above case was explored in [19]. Typical numerical simulations
are shown in Figure 5(a–c) for a range of different initial cell densities.
As expected from the above condition, for us close to 0 or 1, we do not
get spatial patterning. In the region of instability a series of cell density
peaks form. The growth at the peak is capped by the space filling
mechanism, resulting in the formation of “density plateaus”. This is in
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sharp opposition to those patterns generated by the classical chemotaxis
model, where sharp spikes form in cell density. By varying the initial
density of the cell population (shown in Figure 5(a)–(c) for us = 0.5,
0.2 and 0.8 resp.), the variation in the thickness and inter-width of these
plateaus can be controlled. Thus the above mechanism forms a robust
method of generating variations in cell density of varying thickness.

Subsequent evolution of the solutions results in a sequence of coarsen-
ing as peaks slowly merge and/or collapse. When ran for enough time,
this results in a single half peak at the boundary, 5(d). This process can
also occur for other chemotactic sensitivity forms, and bears similarities
with coarsening processes described in Cahn-Hilliard models [60]. An
intuitive understanding for the coarsening process in a related model
for cell movement can be found in [43, 22]. The development of these
patterns, the process of merging and coarsening and the appearance of
ultra-long transients is studied in [50]. Simulations for different choices
of space-occupancy function, q(u) in Equation (9) are shown in Figure
5(e) and (f). In (e) we consider q(u) = 1 − uγ for γ = 4, 1.0 and 0.25.
Note that there is very little effect of γ on the form of the solutions. In
(f) we choose q(u) = exp(−γu). The absence of a u∗ such that q(u∗) = 0
means that we can no longer apply the results of [19]. Higher choices
of γ do limit the growth of an aggregate, yet low γ result in very sharp
cell density aggregates.

We now consider the quorum/chemical-mediated approaches to incor-
porating density. From the linear analysis for a one-cell, two chemical
system, we obtain a cubic dispersion relation, and correspondingly a
much richer variety in solution behaviour, cf Figure 4(c).

Simulations of the model given by Equations (10) are shown in Fig-
ure 6(a), for the same chemical dynamics as above for v, and χ(v) = χ0,
β(w) = (1−w) and g2(u, v, w) = u− δw. Here the mechanical response
of cells to the chemical v is either attractant or repellent, depending on
the local concentration of a secondary molecule, w. Once again, this
mechanism provides an effective method of controlling population den-
sity in aggregations. However, as we alter the strength of the chemotactic
term, the shape of the aggregation changes from a simple aggregation
to a “split-peak” pattern, with the cell density higher at the edge of the
aggregation. This pattern emerges as a result of the high levels of w in
the centre of the aggregation switching the behaviour to chemorepulsion.

The “attractant-repellent” system, Equations (11), also provides a
mechanism for density control, as we indicate by the simulations in Fig-
ure 6(b) using model equations (12). Here, by altering the strength of
the chemorepulsion, we can switch from high density aggregations to low
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FIGURE 7: (a) Time sequence showing cell density evolution for simu-
lation of Equations 1 with cell kinetics f(u, v) = ru(1 − u/um). Here,
parameters r = 0.5, um = 0.25, χ0 = 9, D = 0.25 define a point close to
the stability/instability boundary and we solve on [0, 20] with zero-flux
boundary conditions. (b) Time sequence showing cell density for pa-
rameter set r = 0.5, um = 0.25, χ0 = 10, D = 0.25 on the domain [0, 20].
During early evolution, solutions demonstrate temporal dynamics be-
fore stabilising into the pattern shown at T = 400. The full sequence
is illustrated by the space-time plot on the right showing cell density
evolution.

density aggregations. The additional solution classes predicted by the
linear analysis can be derived under suitably chosen kinetics/parameters.
When kinetics and parameters were chosen such that a dispersion rela-
tion of the form Figure 4(c), (ii) (i.e., complex eigenvalues) was obtained,
the solutions oscillate both spatially and temporally, Figure 6(c).

5.2.2 Inclusion of cell kinetics The no-cell kinetics scenario demon-
strates aggregation. However the evolution demonstrated a coarsening
process during which the wavelength of the pattern increased until a
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single large aggregation is left. In many developmental processes of ag-
gregation, the number and/or size of aggregations is carefully controlled:
for example in the fruiting-body aggregations seen in Myxobacteria or
Dictyostelium, the number of cells is carefully controlled to provide op-
timum conditions for subsequent spore dispersal.

Of course, the zero-cell kinetics model does admit multiple aggrega-
tions, which can exist over large time scales (cf. Figure 5(d)). However,
whether this is “robust enough” for processes of development is clearly
an issue. To explore whether stable multi-peak aggregation patterns
can develop within the modified model, we incorporate the effect of cell
kinetics into the model.

Type I: f(u, v) = ru(1 − u/um)
For the above logistic-type kinetics, the (non-trivial) homogeneous

solution of (9) is given by: (u∗, v∗) = (um, vm), and instability of this
steady state is determined by the following condition on the parameter
values:

0 < 2
√

Dr < um(1 − um)χ0 − (r + D)

From our linear stability analysis, our dispersion relation now corre-
sponds to Figure 4(b). Thus, low wavemodes may now be stable to
spatial perturbation, and we can expect that, at least initially, higher
wavemodes corresponding to multi-peak solutions may develop.

We choose a set of parameter values such that we are just within the
instability region, and plot the results in Figure 7, sequence (a). Time-
evolution shows that multiple-peaked solutions develop, and simulations
indicate that they exist indefinitely. For um well below 1, the volume
filling effect has little difference, and solutions are very similar to those
resulting from the classical chemotactic model.

Applied to physical problems, it is crucial to understand how the solu-
tion behaviour varies deeper in the instability region, since the precision
to which parameters can be controlled is debatable. A typical simula-
tion is shown in sequence Figure 7(b). Although the pattern eventually
settles into a fixed pattern (T = 400 plot), the initial evolution shows a
temporally oscillating pattern as some peaks collapse together (e.g. see
frames T = 100−130). The space time plot showing how the cell density
evolves is indicated in the right hand plot.

This behaviour is even more pronounced further into the instability
region, as indicated by the space-time plots Figure 8(a)–(c). Simula-
tions indicate that a time-independent spatial pattern does not form,
and solutions remain locked in a continuous process of “merging and
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(a) (b) (c) (d)

FIGURE 8: Space-time plots for evolution of cell density in different
regions of parameter space. (a) r = 0.5, um = 0.25, χ0 = 20, D = 0.25:
Numerics indicate that a fixed spatial pattern does not occur, as new
peaks constantly emerge and merge. (b) r = 0.5, um = 0.75, χ0 =
20.0,D = 0.25. (c) r = 0.25, um = 0.25, χ0 = 5.0, D = 0.01. (d) Closer
to the stability/instability boundary a stable pattern emerges, here the
7 peak solution r = 0.25, um = 0.25, χ0 = 2.0, D = 0.01. All simulations
use the domain size [0, 20].

emerging”. Cell aggregations join together to form a single aggrega-
tion, resulting in a large space of low cell density. In the low density
regions, new cell aggregations subsequently arise. Examples at a variety
of points deep within the instability region are shown in Figure 8(a)–(c),
and the contrast with a point close to the stability-instability boundary
is indicated by Figure 8(d), where a time-independent 7-peak pattern
evolves.

Type II: f(u, v) = ruv(1 − u/um)
An alternative choice of cell kinetics can lead to stable aggregations,

even well within the instability region. For the above, we assume that
the chemical mediates both cell migration and cell proliferation. In fact,
many growth factors have been shown to stimulate such dual activ-
ity: for example, VEGF mediates both endothelial cell proliferation and
chemotaxis. Using the above kinetics, solutions demonstrate the same
initial period of coarsening seen in earlier models, however aggregations
eventually settle into a time-independent multi-peak structure. Here
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FIGURE 9: Snapshots for a typical evolution for kinetics given by
f(u, v) = ruv(1 − u/um) Here, r = 0.5, um = 0.25, χ0 = 10.0, d = 0.25
and the domain is [0, 40] (here 401 grid points used).

the dependency on the chemical limits new proliferation at the troughs,
and thus new peaks do not emerge. A typical example is shown in the
sequence of Figure 9.

5.3 Two-dimensional simulations

5.3.1 Zero cell kinetics We extend our numerical investigation to two
dimensions. Here, the difference between the behaviour in the classical
chemotactic system and the density regulated model become more ap-
parent. For the classical chemotactic systems, where the chemotactic
velocity depends linearly on the cell density, several studies have shown
that blow-up occurs.

The volume filling mechanism excludes such behaviour. Instead, when
(9) with q(u) = 1−u is solved on a two-dimensional domain, the pattern
that initially develops undergoes the same process of coarsening observed
in the one-dimensional case, Figure 10, top row. We expect that the
coarsening procedure, if ran for sufficient time, will eventually result in
the cells accumulated into a single aggregation. For an initial density of
us = 0.5, the type of pattern that develops has a labyrinthian structure,
however by changing this value we can see a transition to spots (at lower



532 KEVIN J. PAINTER AND THOMAS HILLEN

FIGURE 10: Coarsening process in the two-dimensional model with no
cell kinetics. Top row u(x, y, 0) = 0.5, Middle row: u(x, y, 0) = 0.25,
Bottom row: u(x, y, 0) = 0.75. Colourscale shows cell density (black
= low cell density, white = high cell density). Parameters are Du =
0.25, χ = 4.0 on the domain [0, 25] × [0, 25].
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FIGURE 11: Two dimensional patterns generated using the quo-
rum/chemical mediated approaches of Section 2. Here, depending on
the system parameters, we can see the formation of ring structures.
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initial densities, Figure 10 middle row) or inverted spots/honeycomb pat-
terns (at higher initial densities, Figure 10 bottom row). This transition
of patterns is reminiscent of those observed both experimentally ([42])
and numerically ([32, 38]) in Turing systems ([61]). It has been found
analytically that the formation of stripes or spots depends strongly upon
the nonlinearities in the kinetic terms, [15, 31]).

The chemical mediated models also provide mechanisms to limit the
population, as the results in one-dimension would lead us to expect. We
show typical numerical simulations for the model given by Equations
(10) in Figure (11). The “split-peak” patterns seen in one dimension
translate to ring patterns in two dimensions.

5.3.2 Nonzero cell kinetics Incorporating cell-kinetics of the form
ru (1 − u/u∗) into (9) resulted in merging-emerging process in one di-
mension. This is also seen in two dimensions, as demonstrated by the
time sequence shown in the sequence Figure 12(a). Shifting one of the
parameters (here we choose r) closer to the border between instabil-
ity/stability of the steady state, we move from a pattern of spots to
a more labyrinthian structure, or strands. The merging-emerging pro-
cess continues to take place, as shown by Sequence 12(b), however after
a while the stripes become orientated with respect to the boundaries.
Moving even closer to the stability/instability boundary stable patterns
can form, as our results in one dimension indicated. Shown in Fig-
ure 12(c) is a honeycomb lattice pattern. The above sequence of pat-
tern types as a parameter is varied was found to be typical of those
seen in other parts of the parameter space. Cell kinetics of the form
f(u, v) = ruv (1 − u/u∗) resulted in a pattern of multiple stable cell
aggregations (spots).

6 Pattern formation on growing domains Embryonic devel-
opment requires extensive tissue growth and deformation. Models for
patterning applied to such processes must therefore consider the poten-
tial implications of domain growth.

In previous studies, a large amount of attention has focussed on the
patterning resulting from solving Turing-type systems on growing do-
mains, [2, 28, 45, 11]. When solved on a growing one-dimensional
domain, new peaks in the chemical pattern are inserted as the domain
grows in a manner such that the inherent wavelength of the pattern is
(roughly) conserved. This was applied by Kondo and Asai to the particu-
lar problem of pigmentation patterns seen on species of marine angelfish.
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(a)

(b)

(c)

FIGURE 12: Patterning in the two-dimensional cell kinetics model. (a)
Time evolution of cell density for r = 0.5 on the domain 10 × 10. Black-
White gray-scale indicates density from 0.0 to 0.3. (b) Time evolution
of cell density for r = 1.0 on the domain 20 × 20. Black-White gray-
scale indicates density from 0.0 to 0.4. (c) Time evolution of cell density
for r = 2.0 on the domain 20 × 20. For all simulations, we set other
parameters at Du = 0.25, umax = 0.25, χ = 20 with (step size = 0.001,
101x101 grid points).
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Juvenile members of Pomacanthus display prominent pigment stripes on
the body. As the fish grows and doubles in length, new pigment stripes
are inserted between the existing stripes. The model of Kondo and Asai
was augmented in [45] to incorporate chemotactic movement by the
pigment cells to show additional features of the patterning phenomena.

Many patterning processes in development, however, require that the
structure of the pattern remains the same, despite any subsequent tissue
growth — For example, we only have two lungs, or one heart. Again,
examples can be found in fish pigmentation patterns; many species of
fish (e.g. members of the butterfly fish, Chaetodon) display a single
prominent spot on the flank. This often serves function as a “false eye”,
confusing potential aggressors into attacking less vulnerable parts. In
many other examples, the pigmentation pattern simply expands as the
fish grows.

We investigate the behaviour of the volume-filling chemotaxis model
(1) on a domain [0, L], growing exponentially such that L(t) = L0 exp(rt).
A rescaling of space transforms the chemotaxis system on a growing do-
main onto a time-independent domain, [0, Lc], where Lc is constant and:

∂u

∂t
= exp(−2rt)

∂

∂x

{
Du

∂u

∂x
− χ0u(1 − u)

∂v

∂x

}
+ f(u, v) − ru

∂v

∂t
= Dv exp(−2rt)

∂2v

∂x2
+ g(u, v) − rv

See [45] for further details of the derivation. Thus, the diffusion/chemo-
tactic coefficients are now time-dependent. The −ru,−rv terms can
be thought of as a dilation effect: as the domain grows, the existing
cells/chemical must be “stretched” over a larger region.

6.1 Patterning under different growth rates In Figure 13(a)–(c)
we show space-time plots of the cell density for different choices of growth
rate r. Note that we have re-scaled space to represent the actual domain
size. For cell kinetics we have assumed that the cells grow at the same
rate as the domain expands; thus the growth function f(u, v) cancels
the dilation effect in the above equations. We choose the same chemical
kinetics as before and simply absorb the chemical dilation into the decay
term, i.e., g(u, v) − rv = u − v.

For a zero growth rate, we observe the coarsening process as previ-
ously described for the zero kinetics model, Figure 13(a). When growth
is incorporated into the model (r = 0.001, Figure 13(b)), however, the
coarsening process does not occur and the initial pattern selected (here,
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FIGURE 13: Evolution of the cell-chemotaxis model on a growing do-
main, [0, L], where domain growth is given by L(t) = L0 exp(rt). Space-
time plots show the cell density where black represents low and white
represents high density. In (a)-(c) we choose f(u, v) = ru, where (a)
r = 0, (b) r = 0.001 (c) r = 0.01. Other parameters are Du = 0.25, Dv =
1.0, χ0 = 4.0 and an initial domain of length 30. (d) f(u, v) = 0, other
parameters as above (e) f(u, v) = γu(1 − u/um) with um = 0.25, γ =
0.25,Du = 0.25, Dv = 1.0, χ0 = 10.0 (f) f(u, v) = γuv(1 − u/um) with
um = 0.25, γ = 0.25,Du = 0.25, Dv = 1.0, χ0 = 10.0.

a 4 peak pattern), is preserved throughout subsequent domain growth.
This general behaviour was found to preserve both at higher growth rates
(e.g. r = 0.01, Figure 13(c)) and lower growth rates (not shown). How-
ever, at higher growth rates, the initial pattern selected had a shorter
wavelength (in (c), a 6 peak pattern). This is likely a result of early
solution behaviour.

These simulations indicate that the chemotaxis model is able to
robustly generate a pattern that is insensitive to subsequent domain
growth and expansion, thus distinct from the type of patterns created
by Turing models on a growing domain. Clearly the chemotaxis model
may be suitable to systems where the patterning is insensitive to domain
expansion. Two dimensional simulations show the equivalent behaviour,
Figure 14.

6.2 Other cell kinetics We consider the effects of different cell kinet-
ics in the domain growth problem. In Figure 13(d), we choose zero cell
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(a) (b) (c)
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FIGURE 14: Evolution of the cell-chemotaxis model on a growing two-
dimensional domain showing the preservation of (a) spot (u0 = 0.25),
(b) labyrinthian/stripe, (u0 = 0.5), and (c) inverted spots (u0 = 0.75).

growth (i.e., f(u, v) = 0). The cellular aggregations resulting in this sce-
nario preserve the initial size of the aggregation throughout subsequent
domain growth (as indicated by the width of the white region). This
distinguishes the behaviour from the case where cell and domain growth
correlate (i.e., Figure 13(b)), and the size of the cell aggregations grow.

In Figures 13(e) and (f) we choose the Type I and Type II kinetics
discussed in the section for no domain growth. For Type I growth,
we observe the complex “merging-emerging” pattern seen previously.
Here, however, the average number of peaks increases as the domain gets
larger. For Type II kinetics, the same pattern preservation behaviour as
described above is observed.

7 Discussion Chemotactic movement is a widely employed mecha-
nism for guidance at a multitude of scales. In this paper, we have derived
a model of chemotaxis incorporating a density dependence in the chemo-
tactic sensitivity function. This model was previously introduced in [19],
where it was shown that under relevant chemical dynamics, solutions ex-
isted globally in time in all dimensions. Here we have demonstrated in
depth how such models can naturally arise via incorporating appropriate
biological details, including the space available for cells to migrate and
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the response of cells to quorum-sensing molecules.
Modelling cell movement in dense environments has received scant

attention to date. While detailed modelling requires close attention to
the mechanics of interaction between individual cells, or between cells
and the extracellular matrix; there is a strong need to develop models
that phenomelogically capture the correct characteristics of the system,
but remain amenable to both numerical and analytical insight. Here, we
demonstrated how setting a threshold on cell occupancy at a position
can lead to biologically realistic behaviour.

The dual role of chemicals as both attractants and repellents has been
identified in many systems. In the developing nerve systems, growing
nerve growth cones have been shown to be both attracted and repelled
by a specific chemical, depending on the local environment [59, 58, 34],
and similar responses have been identified in migrating mesoderm cells,
[29] and immune cells [51]. Such dual responses are also found in bac-
teria; glycerol is both an attractant and repellent to E. coli, [66], while
oxygen behaves both as an attractant and repellent for S. typhimurium
and E. coli, depending on its concentration. The switching in the nature
of a molecule from attractant to repellent can be employed as a mecha-
nism for controlling population size when mediated by a quorum sensing
molecule, as we demonstrate with the model, (10). “Quorum-sensing”
has been shown to mediate a wide-range of behaviours in bacteria, in-
cluding chemical synthesis and movement response. In our model, we
showed how the regulation of the chemotactic movement via quorum-
sensing type mediators provides a simple way of regulating the density
of the aggregate. This can be employed in a multitude of ways; for ex-
ample by switching the nature of a specific chemoattractant as above, or
by finely tuned balancing of a combination of attractant and repellent
cues. In the latter, we demonstrated how a simple model may give rise
to careful control of group density. In fact, the model employed (Equa-
tions 12) could be interpreted as a highly simplified model for aerobic
respiration of E. coli. E. coli are chemotactically attracted by oxygen
gradients (aerotaxis) [53] however, aerobic respiration results in the gen-
eration of a number of harmful byproducts, such as hydrogen peroxide.
The subsequent chemorepulsion away from the hydrogen peroxide (see
[3]) would thus be necessary to limit the group size to a level at which
the amount of hydrogen peroxide produced does not result in significant
toxic damage.

The type of kinetics was shown to have a strong bearing on the type
of patterning observed. Here we considered just three general forms.
Choosing zero cell kinetics gives rise to a coarsening process during which
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the wavelength of the pattern slowly increases. These dynamics may pro-
vide a robust mechanism for generating “unique” aggregation patterns;
though clearly the timescales over which they can be generated remains
an issue to be resolved (see [50]). Other kinetics gave rise to a perpet-
ually evolving solution of “merging and emerging”. In these patterns,
the average number of cell density peaks remained (crudely) consistent,
however the spatial localisation of the peaks was continuously chang-
ing. Interestingly, in a few simulations, a stable (time-independent)
pattern did sometimes emerge, indicating that such patterns can be sta-
ble. Clearly, understanding the stability of solutions for this system is
an avenue for exploration. Intriguingly, many species of cacti (in par-
ticular, members of the Cereus family) display body patterns with a
similar structure to the space-time plots shown in Figure 8. Although,
the mechanism involved in the formation of these patterns is highly un-
likely to involve cell movement, the striking similarity of the patterns is
of interest.

A simple modulation of the kinetics, such that the cell proliferation
was additionally dependent on the chemoattractant, gave rise to stable
spatial patterns, and no emerging-merging behaviour was observed. In-
terestingly, many growth factors shown to induce motility have also been
shown to have a mitogenic effect, and our results here suggests that such
dual behaviour may have important consequences on the robustness of
the patterns that emerge.

The question of pattern robustness is a crucial issue in development,
in particular in scenarios where domain growth occurs. The incorpo-
ration of domain growth into Turing mechanisms has previously been
shown to result in the alteration of the pattern such that more peaks
are accommodated as the domain grows in size. While this may be
appropriate in applications where the pattern changes with scale (e.g.
certain fish pigmentation patterns) it is less desirable in other patterning
processes. The simple chemotactic model presented here demonstrates
how scale invariant patterns can be generated. Different choices of cell
growth kinetics lead to patterns where the aggregation remains constant
or grows as the underlying domain grows in size.

Several potential applications of the work here can be considered. For
example, the early development of the vasculature arises as a result of
two general processes. Angiogenesis is the sprouting of new capillaries
from existing vasculature. Vasculogenesis, on the other hand, involves
the spontaneous formation of new capillary networks from angioblast
cells (endothelial cell precursors) in the mesoderm, see [17]. A num-
ber of basic growth factors have been demonstrated to play a role in
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vasculogenesis; fibroblast growth factor 2 (FGF-2) induces the forma-
tion of the angioblast cells (endothelial cell precursors), while VEGF
has been shown to play a critical role in the growth and development of
the initial vascular pattern, [49]. VEGF has been shown to stimulate
both proliferation of endothelial cells and chemotactic migration. As
we demonstrated in Figure 12(c), a simple chemotactic model can give
rise to a network like structure. Embryonic vasculogenesis, however, in-
volves many other processes and regulatory growth factors, and clearly
a detailed model exploring the generation of these patterns should be
attempted elsewhere.
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