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Chemosensitive movement describes the active orientation of individuals on chemical
signals. In cases of cellular slime molds or flagellated bacteria, chemosensitive move-
ment leads to aggregations and pattern formation. The classical mathematical model to
describe chemosensitive movement is the diffusion based Patlak-Keller-Segel model. It
suffers from the drawback of infinite propagation speeds. The relevant model parameters
(motility and chemo-sensitivity) are related to population statistics. Hyperbolic models
respect finite propagation speeds and the relevant model parameters (turning rate, dis-
tribution of new chosen velocities) are based on the individual movement patterns of the
species at hand. In this article hyperbolic models (in 1-D) and a transport model (in
n-D) for chemosensitive movement are discussed and compared to the classical model.
For the hyperbolic and transport models the following topics are reviewed: parabolic
limit (which in some cases leads to the Patlak-Keller-Segel model), local and global ex-
istence, asymptotic behavior and moment closure. The moment closure approach leads
to models based on Cattaneo’s law of heat conduction (telegraph equation).

Keywords: Chemosensitive movement, chemotaxis, transport equations, Keller-Segel
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1. Introduction

Transport equations are very well suited to model movement of populations of uni-
cellular organisms like bacteria or amoeba. In particular, flagellated bacteria show a
characteristic movement pattern of runs and tumbles (%), which can be modeled by a
velocity jump process, hence transport equation (37). Transport models are favorable
to related diffusion based models in that they account for finite propagation speed.
Moreover, the relevant model parameters (like turning rate, turning distribution)
can be measured from individual movement patterns of members of the population
at hand. If the cells adapt their movement according to a chemical signal, the
adaptation is called chemosensitive movement. Linear transport models can be
extended in a straightforward way to cover this effect.

As we will see later, the long time asymptotics of a typical transport model is
described by a related diffusion based model. The two competing model classes;
diffusion based and transport models, show the same results asymptotically. This
explains the success of diffusion based models in this field (see e.g. Murray 52).

Transport equations for biological applications are closely related to transport
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models in a physical context, like neutron transport, semiconductor theory, radi-
ation transport or the Boltzmann equation. The functional analytical properties
differ in that in a biological context there is one preserved quantity; the total pop-
ulation size, whereas typical collision events of gas molecules respect mass, mo-
mentum and energy conservation. This is reflected in the fact the kernel of the
corresponding turning operator is one dimensional in a biological context and (typ-
ically) 5 dimensional in physical applications. Since, in the case studied here, the
set of possible velocities V' is a-priori bounded (bacteria or slime molds can not
move arbitrarily fast), we can extend some of the theories from physics, which are
limited by unbounded velocities. (e.g. moment closure approximations, Section 5).

It is a great challenge to the live sciences to understand the response of individ-
uals and communities to external stimuli. All species recognize signals from their
surrounding environment and they adapt their behavior accordingly. Examples
are orientation toward light sources, the avoidance of harmful substances, foraging
strategies, aggregational tendencies in amoeba and strategies to find a sexual part-
ner. Many of the responses to different stimuli have been measured experimentally,
which leads to a good understanding of the biological phenomenon. The exper-
iments can roughly be classified into two classes: (i) measurements of individual
behavior and (ii) measurements of population behavior. Of course the behavior
of a population is determined by the individual behavior of its members. It is far
from obvious how the individual behavior affects the collective behavior. Indeed
this question is one of the leading questions for mathematical biology today. Math-
ematical modeling provides an excellent tool to connect the individual behavior
to the collective behavior. This will be demonstrate in context of chemosensitive
movement.

Originally, the effect of chemosensitive movement was classified into two classes;
chemotazis and chemokinesis. We discuss the differences of chemotaxis and chemoki-
nesis in Section 2. For chemotaxis and chemokinesis a mathematical discipline on
its own has evolved. Starting with the Patlak-Keller-Segel model (PKS), which is
based on Brownian motion, results on aggregation and finite time blow-up have
been achieved. We summarize known results for the PKS model and for alternative
models in this Introduction.

Whereas the PKS model is based on diffusion, another class of models is based
on correlated random walk assumptions, which lead to nonlinear transport equa-
tions. The main part of this text focuses on transport models for chemosensitive
movement. Two methods will be presented which allow the reduction of the trans-
port equations to simpler models. From a multi scale analysis we obtain diffusion
based models. We will explain that transport models are based on the individual
movement behavior whereas diffusion models are population models. The question
of individual versus collective translates into the connection of transport models to
diffusion based models.

Another technique to reduce a full kinetic transport model is the moment closure
method. The moment closure leads to hyperbolic sub-models. In the two-moment
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case the reduced models depend on Cattaneo’s law of heat conduction. We will
illustrate the moment closure method in Section 5.

The topics chosen for presentation here are subject to my own preferences. I
include a number of references which enable the reader to find more information on
all the topics which are only briefly discussed here.

In Section 2, the biology of chemosensitive movement is explained and the clas-
sical PKS-model is introduced. In Section 3, a hyperbolic model for chemosensitive
movement in one space dimension will be presented, which is based on a corre-
lated, biased random walk. Section 4 gives a complete picture of transport models
for chemosensitive movement and it illustrates the parabolic scaling. The classi-
cal PKS-model appears in appropriately chosen limits. In Section 5 we discuss
the moment closure approach and we derive a Cattaneo model for chemosensitive
movement. Before we consider chemosensitive movement, we recall some known
facts about transport equations:

1.1. Velocity Jump Processes and Transport Equations

As observed in experiments with (see e.g. Adler !, Dahlquist, Lovely, Koshland
8 or Berg and Brown ?), bacteria have a characteristic movement behavior. They
move in a certain direction with an almost constant speed (run). Suddenly they stop
and choose a new direction (tumble) to continue movement. The tumbling intervals
are short compared to the mean run times. This type of individual movement
pattern can be modeled by a stochastic process which is called a wvelocity jump
process (see Stroock 87). The characteristic parameters are mean runtime, turning
distribution and mean speed. Stroock showed how a transport equation (see (1.1)
below) for the spatial distribution of one particle can be derived from such a velocity
jump process.

In Hillen and Othmer 4270 the transport model (1.1) has been studied systemati-
cally with respect to different forms of biases; possible limit equations (of PKS-type)
and relations between the relevant parameters have been considered. Let p(t,z,v)
denote the population density at time ¢t > 0 at spatial position z € IR™ with velocity
v € IR™. Most important are space dimensions of n = 1,2, 3, the theory, however,
works for all n € IN. We assume that individuals choose any direction with bounded
velocity. We denote the set of possible velocities as V', where we assume V C IR" is
bounded and symmetric (i.e. v € V = —v € V). Then the linear transport model,
which is based on a velocity jump process (see e.g. Stroock 87 or Othmer et al. %9)
reads

1

Sop(t,0) + v+ Vplt,2,0) = —pplt,2,0) + [ T(0,0)p(0,2,00a, (1)

where p is the turning rate or turning frequency, hence 7 = % is the mean run

time and T'(v,v") is the probability kernel for the new velocity v given the previous
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velocity was v'. Of course
/T(v,v')dv =1

to ensure particle conservation.

From a mathematical point of view the use of transport models for populations
is not rigorously justified. The transport model has been derived for a one-particle
distribution function (Stroock #7). If individuals move independently, transport
models are still suitable. If, however, there are correlations between individuals,
which might come from birth-death interactions or from alignment or chemosensitive
movement, then the verification of transport models from stochastic processes, even
in 1-D, has still to be carried out mathematically. This is an ongoing field of
mathematical research. The same holds for diffusion based models.

In a special case of movement in one space dimension, with constant speed v and
constant turning rate p we obtain the Goldstein-Kac model for correlated random
walk (39, 31). Tt is assumed that the total population density u(t, z) can be split into
densities for right/left moving part of the population, u®, respectively. Of course
u = uT +u~. The Goldstein-Kac model for this correlated random walk reads:

(u™ —u?)
(u+ - u_)’

uf +yuf =

i (1.2)
Up — YUy =

wE R

where lower case indices denote partial derivatives with respect to that variable.
This model is a special case of (1.1) for two velocities v € {+v} in one space
dimension and with T'(v,v") = .

In terms of the total population density u and the population flow v = ut —u~,

system (1.2) is equivalent to

ug+yv, = 0 (1.3)
Vg + YUy = —uU.

Using Kac’s trick we obtain an equation for u alone: Differentiate the first equation
with respect to time and the second equation with respect to space and eliminate
the v-variable. Then wu satisfies a telegraph equation

1 2
—Ug + Ut = luzz- (1.4)
I I

A diffusion equation u; = Dug, follows formally by considering a limit of high
turning rates y — oo and large speed v — oo in such a way that

2
D:liml<m.
I

This special scaling is called a parabolic limit. It can be shown that a time and
space scaling of 7 = €2t and ¢ = ez with fixed v, 1 leads to the same limit for ¢ — 0

(42)_
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To model birth and death processes for a randomly spreading population usually
reaction-diffusion models are studied (see e.g. Murray 2). Similarly for transport
models we obtain reaction-transport models. Depending on the situation at hand
reactions may depend on the actual velocity of the particles, hence a nonlinear
reaction-transport equation reads (3°)

pe+v-Vp=—pp+u / T(v,0)p(t, 2,0)d0' + f(0,p,m0),  (L5)

where the total population density is denoted as

mO(t, ) :/Vp(t,:c,v)dv. (1.6)

Reaction-transport models of this form have been studied by Hadeler 3637 and by

Schwetlick 898!, In %! we assume that individuals give birth at rest only. In the
parabolic limit a reaction-diffusion model follows with effective birth and death
rates.

2. Chemosensitive Movement

The movement behavior of most species is guided by external signals: amoeba move
along chemical gradients, insects orient towards light sources, the smell of a sexual
partner makes it favorable to choose a certain direction. Some species are able to
extract directed information from their surrounding (e.g. gradient of a chemical)
others are too small to sense chemical gradients and they turn more often, when they
move in an unfavorable direction. Both behaviors lead to orientation towards the
source of a chemical, but the mechanisms have been distinguished into chemotaxis
— for directed movement — and chemokinesis — for undirected movement — (see *,
p.516). If the movement is towards or away from the source of stimulus we call it
positive or negative bias, respectively.

The distinction of chemotaxis versus chemokinesis is not at all straightforward
and we denote responses to chemical stimuli in general by chemosensitive movement.
This includes chemokinesis, chemotaxis and responses to non-local information as
well. Some of the most studied species for chemosensitive movement are bacteria
(e.g. E. coli), slime molds (e.g. Dictyostelium discoideum), or leukocytes.

2.1. The Classical Patlak-Keller-Segel Model

The earliest model for chemosensitive movement has been developed by Patlak
™ and Keller and Segel 3. Here we give a brief derivation of the PKS model. We
assume that in the absence of any external signal the spread of a population density
u(t,z) is described by the diffusion equation

uy = dAu, (2.7

where d > 0 is the diffusion constant. We define the net flux as j = —dVu. If there
is some external signal S we just assume that it results in a chemotactic velocity 5.
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Then the flux is
j=—dVu + Bu.

To be more specific, we assume that the chemotactic velocity # has the direction
of the gradient VS and that the sensitivity x to the gradient depends on the signal
concentration S(t,z). Then

B=x(S)VS.

We use this modified flux in (2.7) to obtain the parabolic chemotaxis equation
ug = V(dVu — x(S)VSu). (2.8)

If x(S) is positive, which means that the chemotactic velocity is in direction of the
gradient, we call it positive bias, whereas x < 0 is called negative bias.

Depending on the species at hand, the external signal is produced by the indi-
viduals and decays, which is described by a nonlinear function f(S,u). We assume
that the spatial spread of the external signal is driven by diffusion. Then the full
system for u and S reads

Uy V(dVu —ux(S)VS),

(2.9)
Sy = aAS+ f(S,u).

The time constant 0 < 7 < 1 indicates that the spatial spread of the organisms u
and the signal S are on different time scales. The case of 7 = 0 corresponds to a
quasi-steady state assumption for the signal distribution.

This system has first been derived by Patlak 7 from a position jump process.
Since the early work of Patlak is difficult to read, model (2.9) has become well
known as the Keller-Segel model for chemotaxis. Here we presented the derivation
of Keller and Segel %3 for (2.9).

The PKS model has been used in many applications to study aggregation or
pattern formation (see e.g. Murray 2, Okubo ¢, Keller and Segel °*). The model
has been criticized, though. First, the movement process of the population is mod-
eled by diffusion. However, for bacteria, it is known that they move along straight
lines, suddenly stop to choose a new direction, and then continue moving in the new
direction. This is not a Brownian motion, it is a velocity jump process, as described
earlier. Second, the diffusion terms in (2.9) allow for infinite fast propagation of
information, which is an undesired property. Finally, the relevant parameters like
diffusion constants d, @ and chemotactic sensitivity x are not directly related to the
individual movement pattern of the species. They can be measured only indirectly
(see e.g. Tranquillo *, Segel 2 or Ford 27). In this context, it is useful to study al-
ternative models, like hyperbolic equations and transport models (see the following
sections).

As we have shown in *? the parabolic system (2.9) describes the long time
asymptotics of solutions of transport models (5%, 42). This means that if we wait
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long enough the description of an experiment with (2.9) is as good as a description
with a transport model. This explains the success of parabolic models so far.

2.2. Theoretical Results on the PKS Model

Since the PKS model is designed to describe the behavior of bacteria and bacteria
aggregates, the question arises whether or not this model is able to show aggregation.
Intensive theoretical research uncovered exact conditions for aggregations and for
blow up (see e.g. Childress and Percus 76, Jiiger and Luckhaus *°, Nagai 62,
Gajewski and Zacharias 28, Senba 83, Rascle and Ziti 77, Herrero and Velazquez
39,38 " Othmer and Stevens "2 or Levine and Sleeman 7). Following the definitions
given in Othmer and Stevens, aggregation denotes a global existing solution which
has a unique global maximum, whereas blow up denotes a solution with a maximum
that grows to infinity in finite time. After blow up has occurred the model is no
longer appropriate. That is the reason that several authors denote the blow up
scenario with chemotactic collapse.

The possibility of blow-up has been shown to depend strongly on space dimen-
sion. For x = const. and linear reproduction, f(u,S) = yu—49, finite time blow-up
never occurs in 1-D (unless there is no diffusion of the attractant, S), but can always
occur in n-D for n > 3. The 2-D case is ambiguous and thresholds 6,,4 for radially
symmetric solutions and 4om = Oraq/2 for solutions in smooth domains have been
found. If the initial distribution exceeds its threshold, then the solution blows up in
finite time. When the initial mass is below its threshold, the solution exists globally.
An interior blow up point is supported by a mass of exactly 0;,4, a boundary blow
up has half of this mass. Horstmann considers the case, where the total mass is
in-between these thresholds. He shows that in these cases blow up occurs only at
the boundary #847. Senba and Suzuki * consider stationary solutions and they use
the above thresholds to estimate the number of blow-up points. The number of
possible blow-up points is limited by the total mass divided by O4om.

Global existence below these thresholds has been proven using a Lyapunov func-
tional in Gajewski, Zacharias 2, Nagai, Senba and Yoshida ¢ and Biler 1. The
Lyapunov technique has been generalized to obtain similar thresholds for chemotac-
tic sensitivities x(S) given by a primitive ¢(S) = [ x(S) which is strictly sub-linear
(see 11). This includes functional forms of ¢(S) = log S, #(S) = SP, for0 <p < lor
equally bounded functions ¢(S) (see Nagai et al. 67645 Biler 11). Post 7® considers
chemotactic velocities with saturation in S and linear in «. Using a modification of
the Lyapunov function from 2%, global existence of solutions was shown. Horstmann
46 gave sufficient conditions for reaction-diffusion systems in general, such that a
Lyapunov function of the above form exists.

A version of the PKS model, that allows for global existence in any space dimen-
sion, has been discussed in *3. There we assume that the individuals sense the local
cell density (e.g. E.coli releases a quorum sensing molecule), and the chemotactic
sensitivity is reduced or vanishes at high population densities.
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3. Hyperbolic Models in 1-D

It is fairly useful to study models for chemosensitive movement in one space dimen-
sion first. This provides good insights into basic phenomena, which also become
important in 2 or 3 dimensions. Furthermore, some experimental situations can be
formally reduced to a one dimensional problem, e.g. experiments in a cylindrical
test chamber where the medium is homogeneous in each cross section (see Chen,
Ford, Cummings 14).

Due to recent experiments by e.g. Soll and Wessels % or Fisher et al. 2%
and others ®5-% it turned out that, in general, the speed and the turning rates of
individuals depend not only on the magnitude of an external signal S(t,z) but on
temporal and spatial variations S;(¢,z) and S,(¢,z) as well. Depending on the
situation at hand, the signal can be produced and decay in time. This will be
described by a function f(S,u™ + 4~). Then a modification of the Goldstein-Kac
model (1.2) gives the following hyperbolic model for chemosensitive movement in
one space dimension:

uf + (v(S, 8, Se)ut)e = —pt(S, S, Se)ut + u (S, S, Sp)u,
ug — (708, 8, Se)u")e = pt(S, S, Se)ut — p (S, S, Sa)u, (3.10)
78y = aSze + f(S,ut +u7), >0,
u®(0,.) = ud, S(0,.) = So.

Here the rates u* are turning rates, whereas in (1.2) p is a stopping rate and each
direction will be chosen with probability of 0.5.

Segel 82 has considered a hyperbolic model of type (3.10) without the equation
for S. He studied a given increasing attractant concentration and constant particle
speed +, constant turning rate u~, and u* depending on the gradient of S in char-
acteristic direction. The external stimulus S is assumed to decay with a constant
rate. His model has been used by Rivero et al. ™® to describe experiments with flag-
ellated bacteria and with leukocytes. Greenberg and Alt 32 consider the special case
of (3.10), where the speed is constant, with special choice of the turning rates, and f
is linear. They pose the problem of existence of solutions for their hyperbolic model
and use it to motivate a non local PKS model. The hyperbolic model proposed in
(3.10) allows more general dependencies in the turning rates and the velocity, and it
compares with the experiments of Soll (83). Chen et al. 1514 considered a model of
the above type to describe experimental data for the movement of E. coli bacteria.
In their model the bacterial speed is close to constant and the turning frequency
depends on the temporal gradient of the external signal. Consequently, the bacteria
“feel” spatial gradients by moving through them. The model is put into relation
with a one dimensional projection of a 3-D model by Alt 2, which we discuss later.
The connection of the hyperbolic model (3.10) to the PKS model (°3) opens a wide
field of interesting questions concerning scaling and modeling of crucial parame-
ters. Some of them have been answered in 4270, For the special case of constant
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speed and for turning rates depending on S and S, we have proven local and global
existence of solutions in L™ in #5. To achieve an abstract existence result for de-
pendence on S; a more detailed analysis is required. Without S; dependence the
preservation of total population size is sufficient to show existence of weak solutions
in L*°. To control S; stronger pre-assumptions are required. If the speed depends
on S or its gradients we expect the formation of steep gradients. This case has been
considered in 4. There we showed global in time existence for v = (S), where we
assumed that the signal distribution is in quasi-equilibrium (7 = 0). Then, with a
vanishing-viscosity method we obtain local and global existence.

3.1. The Parabolic Limit in 1-D

In this section we consider the parabolic limit for the hyperbolic model for
chemosensitive movement (3.10). The mathematical details are presented in 4.
One first derives an equivalent system for u = u™ +4~ and v = 4+ —u~. From this
a general telegraph equation (1.4) can be derived. The resulting telegraph equation
is independent of v only if we assume that the auxiliary function

B S, S, S.)
h(t) == u* (S, S, Sa) + 11 (S, S, Sy _ 78,5, )
(1) = i+ (5.5, 5:) + 7 (5,50,5,) - Wt

(3.11)
does not depend on the spatial position z. Of course this is a restriction to the
parameters u*, v which, however, is satisfied for many examples. We give examples
in the next subsection.

Since here v and p* are functions of S(¢,z) we can not just pass to the limit of
v, pt = 0o. We introduce an additional dimensionless small parameter ¢ > 0 and

set

+
— Fo
g2’

Yo

= and p* (3.12)

where vy and p(? are of order 1 with respect to €. Then the auxiliary function h
scales as
_ ho(t)

ht) = =57, with  ho = i +pg 52% (3.13)
0

and for e —» 0 we obtain

v %
D=lim—=——"——. 3.14
BNRO " (314

We introduce this scaling in the corresponding telegraph equation (see *° for details)
and for € =& 0 we formally obtain the following limit equation of PKS type:

ut = (Duy — xuSs),

with a diffusion parameter given by (3.14) and chemotactic sensitivity x given by

—__ T o Lot
e = = (st i 2 1)) (3.15)
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This relation in a special case has also been found by Rivero et al. "® and Segel 82.
Since the chemotactic sensitivity consists of two terms, we can identify two
effects which lead to positive or negative biases.

1. We consider v = y(S) > 0 and we assume, that the difference pu — g is of
order e®, for ¢ — 0, with some x > 1, then ut — u= = O(¢~2) and

XSy = —— 124, (3.16)

ny + 1o

and the limiting equation for chemosensitive movement reads

0
= (22 e+ 24Se)) (3.17)
Mo + Ko z

If 4'(S) < 0, which means that the population slows down at high concen-
trations of S, then a net flow of the population in the direction of higher
concentrations of S follows, which is a positive bias.

If 4'(S) > 0, which means that higher concentrations of S enhance the speed,
then the population has a stronger tendency to spread out, as compared to
simple diffusion. This causes a negative bias. Hence the population glides in
the direction of decreasing concentrations of S.

2. Now we assume that v = const. and that the difference in turning has an
expansion as

pt—p =1+ o,

with appropriate functions ¢1(S, S, Sz), ¢2(S, St, Sz). This means pd —pg =
g1 + €2py. Then the chemotactic sensitivity is given by

Yo

XSz = ——F/——=¢1.
pg + Ho
Moreover, if we assume linearity in S, e.g. 1 = ©o(95)S, then a PKS model
follows 9
Yo Yo
up = — Uy + —0(95)S u) . (3.18)
(:“0++:“0 T ug + e

Here, the swarming or aggregation behavior depends exactly on the sign of
the difference between the turning frequencies.

If S, > 0 and ¢¢ < 0, then the right moving population, which is moving up
the gradient, turns less often than the left moving one, which is moving down
the gradient. This is the basic behavior also observed in experiments with
bacteria.

If S; > 0 and g > 0, then the right moving population, which is moving up
the gradient again, turns more often than the left moving one. This behavior
enhances the spreading out of the total population.
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Hence two effects lead to positive bias: When moving upward a signal gradient,
individuals slow down, they lower their turning rate, or both. These effects have
also been found by Schnitzer 7
bacterial movement, where memory effects have been included.

in a similar one-dimensional hyperbolic model for

4. Transport Models

In Stroock 37 and in Keller 52 a transport equation has first been proposed for bac-
terial chemotaxis. Soll and Voss (in #¢) showed how the movement rules of “run”
and “tumble” can also be applied to movement behavior of slime mold amoeba
like Dictyostelium discoideum. W. Alt studied a transport equation for amoeba-
chemotaxis in two papers 2. He assumed specific movement and signal detection
rules and he used the run length as another state variable. In the case of constant
run length the model of Stroock or Keller follows from Alt’s transport equation.
Alt uses singular perturbation methods to derive a diffusion equation of PKS-type.
In Othmer, Dunbar and Alt ° different forms of random movement for biological
species are compared; position jump processes, velocity jump processes and dif-
fusion models. Chen et al. 5
Alt’s equation, which reduce to a special case of the one dimensional hyperbolic
model for chemosensitive movement discussed above (3.10). Griinbaum 33 general-
ized Stroock’s model to incorporate internal dynamics. Then the chemical network
of signal recognition, transduction pathway and adaptation processes can be incor-
porated into the model. His analysis is based on specific scaling assumptions, but
the mathematical methods need further justifications. An overview of results and
known facts related to internal dynamics and chemical pathways is presented in a
survey article of Othmer and Schaap "*. Dickinson and Tranquillo 2! and Dickinson
20 study perturbation expansions of a stochastic velocity jump process with external
bias due to chemotaxis. We will compare their results to the results of 4279 later in
a discussion section.

study perturbation expansions and projections of

The diffusion approximation of transport models is a well known technique in
many physical applications. We will summerize known results from neutron trans-
port, kinetic theory of gases, radiation transport and stochastic processes in Section
4.5. For a detailed comparison it is better to first present the methods we used in
42,70

In the case of chemosensitive movement in (1.1) the turning rate p and the
velocity distribution kernel T'(v,v') may depend on the signal distribution S(¢,z),
its gradient VS(t,z) or on other properties of S (e.g. non-local dependence can be
included).

uw=u(S,VS,..), T(,)=T(,", 5VS,...) (4.19)

There are many experimental data available, where the dependence of turning rates
p and velocity distribution 7" on concentrations, spatial gradients or temporal vari-
ations have been measured (e.g. Berg and Brown &, Soll and Wessels 35:36 Fisher,
Merkl, Gerisch 24, Tani and Naitoh 8, Vicker 89, Macnab ®® to name but a few).
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See also the Dicty-home-page: http://dicty.cmb.nwu.edu/dicty/dicty.html.

In 4270 we consider general transport models for chemosensitive movement based
on (1.1) and (4.19). A theory has been derived to generate a diffusion limit from a
multi-scale analysis, which generalized the work of Alt 2®. The long time asymp-
totics of solutions of the transport model for chemosensitive movement are given in
certain situations by a PKS-model. With this analysis a very natural connection of
the parameters of the transport model (turning rate u, velocity distribution T') to
the parameters of the PKS-model (motility d, chemotactic sensitivity x) has been
found. We recall the main results of 4270 here:

4.1. Basic Assumptions (T1)-(T4)

In *2 the linear transport equation (1.1) is considered in © = IR". It is assumed
that the set of velocities V' C IR™ is compact and symmetric such that v € V implies
—v € V. Let K denote the cone of non-negative functions in L?(V). Define the
following operators on L2(V):

T p(v) / T (v,v")p(z, v, t)dv’, T*p(v) = / T, v)p(z,v',t)dv',
L = —‘//«L(I -7), '
where I denotes the identity. We state the following assumptions on the kernel T'.
(T1) T(v,v") >0, [T(v,v')dv=1, and [ [T?*(v,v")dv'dv < .

(T2) There exist some ug € K with ug # 0, some integer N and a constant p >0
such that for all (v,v") € V xV

ug(v) < TV (W',v) < puo(v),
where the N-th iterate of T is
TN (v,0') == /.../T(v,wl)T(wl,wg) < T(wn_1,v")dw; .. .dwy_1.
(T3) [|Tllay= < 1, where (1)* denotes the orthogonal complement of the subspace
(1) ¢ L3(V) of functions constant in v.
(T4) [, T(v,v")dv' = 1.

The turning operator has the following properties:
Theorem 1 Assume (T1)-(T4). Then

1. 0 is a simple eigenvalue of L with eigenfunction ¢(v) = 1.

2. There exist an orthogonal decomposition L2(V) = (1) @ (1)* and for all ¢ €
(1) we have

/¢’C¢dv S _V2||¢||%2(V), with Uy = /l,(l - ||T||(1>L)
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3. Each eigenvalue X # 0 satisfies —2pu < Re A < —vy < 0, and there is no other
positive eigenfunction.

4 Ll zL2(vy,L2(vy) < 2p-

5. L restricted to (1)~ C L?(V) has a linear inverse F with norm
1
IF N eys,aysy < v

The proof is given in 2. In (T1) we state that 7 and 7* are compact Hilbert-
Schmidt operators. Assumption (T2) ensures that 7 is wo-positive in the sense
of Krasnoselskii 6. There exists a unique positive eigenfunction ¢(v) = 1. The
assumption (T2) allows us to include turn-angle distributions, which are zero for
larger turn-angles. If, for example, individuals choose new velocities in an arc of
45° compared to the previous velocity, then the iterate 7* would be ug positive.
With assumption (T4) we obtain the orthogonal decomposition of L?(V'). Property
(T3) represents the dissipative character of the transport model and this condition
becomes important to show that the limit equation, which we will derive, indeed is
parabolic.

4.2. The Parabolic Scaling

For some species (e.g. for E.coli) it appears that per unit of time there are many
directional changes with a small net displacement. This behavior can be classified
into three time scales: the mean run time 1/u, the drift-time scale of about 100
individual turns and a diffusion-time scale of about 10000 individual turns. These
scales can be modeled using the parabolic scaling

T=¢’t and {=cx (4.20)

for a small parameter ¢ (~ 1072). We transform equation (1.1) accordingly, which
gives
e’p, +ev- Vep = Lp. (4.21)

For k > 2 we consider an expansion of p:

k

p(Ta §7 ’U) = Z Di (Ta 57 U)Ei + Dk+1 (7-7 §7 U)SIH_I .
=0

We collect terms of equal order in &:

Y. 0= Lpo,
el : v-Vpo = Lp1, (4.22)
e?: por +v - Vp1 = Lpa,

where we omitted the subscript £ on the nabla operator. We use the spectral
properties of £, as summarized in Theorem 1. It follows from the order one equation



14 Hyperbolic Models for Chemosensitive Movement

that pg = po(7,£). Hence pg is independent of v € V. Since V is assumed to be
symmetric, the solvability condition [v - Vpodv = 0 of the el-equation is satisfied.
Hence p; = F(v- Vpg), where F is the pseudo inverse of £ restricted to the space
(1)1, as defined in Theorem 1. The solvability condition for the e2-equation reads

/p0T+U‘vp1 dv = 0.
v

This leads, with use of the representation of p;, to the following partial differential
equation:

e =YDV, (&0 = [ pl& 0.0, (4.23)
%
with diffusion tensor D= —é / vFuT dv. (4.24)
v

The procedure can be continued to higher orders in € and as shown in 42, the
residuum of this approximation can be controlled:

Theorem 2 Let (T1)-(T4) be true and let F denote the pseudo inverse from The-
orem 1. For k > 2 we define a sequence of functions po(&,7), p1(&0,7), ...,
pr(&,v,7) as follows:

(al) po solves the parabolic limit equation (4.23)
(a2) for each 1 < j <k let / p;i(&v,7)dv = 0.
v
(a3) for each 2 < j <k let / vp;(& v, 7)dv = 0.
v
(ad) p1(§0,7) :=F(v - Vpo(§, 7))
(a5) pj(& v, 1) = F(pj_2,r +v-Vpj1), fir2 <j<k.

Then for each 4 > 0 there is a constant Co > 0 with the property that the sum

k
=Y e'p;
=0

satisfies

||p($a at) - qk(ma '5t)||L2(V) < 05k+1'

for all 9/e* < t < 0o and each z € Q.

Hence the asymptotic behavior of solutions of (1.1) is described by the diffusion
equation in (al). The proof of this result uses an induction argument. In particular
property (T3) is important to show that the limit equation in (al) is parabolic.
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4.3. The Diffusion Tensor D

In (4.24) we found that in general diffusion is non isotropic, hence D is a tensor.
We will show under which conditions this tensor is isotropic, i.e. it is a scalar
multiple of the identity. We define the expected velocity

B(v) = / T, ) dv. (4.25)

With assumption (T1) it follows that f;, #(v)dv = 0. Moreover, we assume that V'
is symmetric with respect to SO(n). Then there exists a constant Ky such that

/ wwldv = KyI
v

(which can be seen by applying the left hand side onto two test-vectors and using
the divergence theorem). In the case of V = sS™~1 we have Ky = wps?/n.
We compare three statements:

(S1): There is an orthonormal basis {e1,...,e,} of R™ such that for each i =
1,...,n the coordinate mappings m; : V — R, m(v) =v; are eigenfunctions
of L with common eigenvalue v € (—2u,0).

(S2): There is a constanty € (—1,1) such that for eachv € V the expected velocity
o(v) satisfies

o(v) [|v  and

(S3): There is a constant d > 0 such that the diffusion matriz is given by D = d I,.

Theorem 3 Let (T1)-(T4) hold and assume that V is symmetric with respect to
SO(n). Then we have

(S1) <= (S2) = (S3).
The constants v,y and d are related as follows.

K K
e e

7 wr  wp(l—7)

If T also satisfies (T5): There is a matriz M such that 5(v) = Mv for allv €V,

then all three statements are equivalent.

This Theorem is proven in 42.

If T has the symmetric form of T'(v,v") = t(Jv — v'|) then the diffusion limit is
isotropic (see also Alt 2). We will give an example for non-isotropic diffusion in the
next setcion.
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4.4. Application to Chemosensitive Movement

Let Ty and g denote turning kernel and turning rate in absence of any chemical
substance. In " we systematically study perturbations which come form chemical
cues of the form

T(/U,UI, g) = To(’l},’Ul) + EkT(U,/Ul,S), /J/(Ua g) = Mo + El/j’(vavla g):

for Kk = 0,1 and | = 1, where S denotes dependence on the function S and not
only on the local value S(t,z), e.g. dependence on S(t,z), VS(t,z), [ S(t,z)dz etc.
are included. Perturbations of higher order k,I > 2 will not affect the parabolic
limit equation. Perturbations of the turning rate uo of order one (I = 0) do not fit
into the framework developed here. But that case can be handled in the theory of
moment closure as illustrated in Section 5. There, it is shown that also order one
perturbations in the turning rate lead to PKS-type models.

We omit the most general formulations as stated in 7 and we prefer to give
some illustrative examples, where the parabolic scaling applies. For all examples
we restrict to fixed speed |v| =5,V =55""! and w = |V|.

Example 1: To get used to the method and the notations we start with a simple
biased random walk without chemical signal. We assume that the probability of a
change of velocity v’ to v depends on the angle between these two velocities.

1
Ti(v,v') = " (1 + é%(fu : v')) with a <n. (4.26)

It is easy to check that the expected velocity is
o(v) == /UITl(U,Ul)dUI = %v. (4.27)

The factor £ = 14 is denoted as persistence index (see Othmer et al. %°). Theorem
3 applies and the first order approximation po(7,€) fulfills the isotropic diffusion

equation

82

0 .
EPO = dApO: with d= m (428)

The case of a = 0 corresponds to random walk without persistence and the corre-
sponding diffusion constant is

s2

d=—. 4.29

o (4.29)

We have checked that a perturbation of lower order T'(v,v') = L (1+e% (v-v'))
does not affect the limit equation at all and (4.28) results with (4.29).

Now we consider chemosensitive movement. Note that Theorem 2 applies to
Example 5, but not to the other following examples. Nevertheless, the formal
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derivation of the limit equation, as illustrated in (4.21)-(4.24) works for all of the
following cases.

Example 2: Here we consider chemosensitive movement and we assume that
an individual actively chooses directions upward chemical gradients (positive taxis).
Then the angle of new velocity v and signal gradient VS is an important variable
and we assume

Tz(’U,’UI,S) = L

5(1 +ea(S)(v-VS)). (4.30)

Passing to the limit of small € leads to a PKS-type model

0
3P0 = V(deo —pox(S)VS) (4.31)
-

2

with d = ;—Z and x(S) = 2-a(9).

Example 3 (Bacteria): For bacterial chemotaxis the velocity distribution ap-
pears to be independent of signal gradients. But the turning rate increases if individ-
uals move down the gradient and it decreases if they move upwards (chemokinesis).

Hence we assume T'(v,v') = 1 and

p2(S) = po(1 — eb(S)(v - V). (4.32)

Then a PKS-model follows

0
<=po = V(dVpo = X(S)p V'S ) (4.33)
.

with d = Z—i and x(S) = %b(S). This example directly applies to the experiments
of Ford et al. with E. coli bacteria ( 27-26:25:12) We illustrated the details in ™.

Example 4 (Amoeba): If we consider amoebae-chemotaxis we obtain both
change of turning rate as in Example 3 and the active choice of preferred directions
as modeled in Example 2. A combination of both

Ty(v,0') = To(v,0"),  pa(S) = p2(S)

just leads to additional effects in the chemotaxis term

2

s
x(S) = E(a(S) + b(9)). (4.34)
This case is also covered by the results of Patlak 7 and of Alt 2.

For general situations it turned out in 42,7 that the diffusion limit is non
isotropic. We give one example.
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Example 5 (non-isotropic diffusion): We assume that a stream of elongated
bacteria such as myxobacteria is oriented in the direction n € IR™. To describe
alignment towards this stream we choose the turning kernel

Ts=w(v-n)(v'-n), Inl=1

If the actual direction v’ is in the direction 5 or —n, then there is an increased
probability to choose a new velocity v in the direction i or —n, respectively. If & is
small enough then the diffusion limit is

0

5.0 = V - DVpg
-

with non-isotropic diffusion

s> ws> ws? -t

The diffusivity in the direction n or —n is enhanced, whereas it has the standard
value s2/(\on) in the orthogonal direction.

Example 6 (non-local gradient): A non local gradient, which might be
measured by amoeba along their surface, can be modeled by

o n
S (.'L',t) = (.U()R gn-1

o S(z + Ro,t) do, (4.35)
where R > 0 is the effective sampling radius. If R — 0 then this expression approx-
imates the local gradient V.S. For chemosensitive movement we treat the non-local
gradient S in exactly the same way as we used VS in the previous Examples 2,3
and 4.

Example 7 (directional derivative): Bacteria, for example, are too small
to measure chemical gradients along their body axis. They move through a signal
field and they measure the signal variation along their path. Hence the turning rate
should depend on the directional derivative:

0yS =St +v-VS.

In the parabolic scaling this leads to 8,5 = 2S5, +ev - V¢S. The time derivative is
of lower order compared to the gradient term. To leading order we obtain the same
limit as in Example 3.

4.5. Discussion of Diffusion Limits

The approximation of a transport equation with its diffusion limit is a classical
method in many physical applications. This ranges from the kinetic theory of gases
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and thermodynamics over neutron transport theory to radiation transport models.
We will discuss the literature concerned with biological applications. The results of
Alt 23 Schnitzer 7, Chen et al. ', Othmer, Dunbar, Alt %° and Griinbaum 33
have been mentioned in the introduction of this Section 4.

Dickinson and Tranquillo 2! and Dickinson 2° divide the movement process of
the population into three subprocesses, each characterized by its own time scale.
Locomotion, the fastest time scale, describes inter-cellular pathways; translocation is
the scale of individual movement and the slowest time scale, migration characterizes
the movement of the whole population. The authors consider a stochastic process
which includes linear transport, reorientations, diffusion in velocity and rotations.
They use the method of adiabatic elimination of fast variables (see Gardiner 2°)
to derive the corresponding Smoluchovski equation. The Smoluchovski equation
is a drift-diffusion model, which depends on the scaling parameter. The method
of Dickinson et al. differs from our approach presented here in many ways. The
adiabatic scaling corresponds in our notation to a choice of 7 = et, £ = ex, which
leads to a diffusion limit depending on €. If one scales the time variable of the drift-
diffusion limit accordingly (7 = 7) then the diffusion limit follows. On the other
hand, a perturbation expansion in (7, £), as done here, would lead to an elliptic limit
equation (see ?). The connection of the adiabatic scaling to the parabolic scaling
has to be checked in more detail. It turns out that both methods are present in
different areas of physical applications (see e.g. °).

Bellomo considers Boltzmann equations for applications in biology, such as tu-
mor growth and epidemiology 7.

From a mathematical point of view there are estimates for the accuracy of the
diffusion approximation. First of all, in a paper by Papanicolaou "® the diffusion
approximation of the backward transport equation has been studied and estimates
have been derived. Similar results have been derived by many authors for different
applications and we found a good summary in Dautray and Lions '°. In Dautray
and Lions a singular perturbation method has been used, which is based on the
parabolic scaling. Estimates of the accuracy of the diffusion approximation include
the initial layer as well.

The discussion of diffusion limits is also well known in the field of stochastic
processes. The central limit theorem and Donsker’s theorem for martingales refer
to the property that under certain conditions a stochastic process approximates
Brownian motion (see Durrett 23 for details).

In all of the above studies it turned out that they are not directly applicable
to problems which come from biology. In the case of Boltzmann equations there
is conservation of mass, momentum and energy, whereas for populations we have,
at most, conservation of the total particle number. This translates into different
functional analytic properties of the turning operator. The kernel of the turn-
ing operator for the Boltzmann equation is five dimensional, which corresponds to
the Maxwellian distributions. The kernel for biological applications is one dimen-
sional, which corresponds to particle conservation. In neutron transport theory, or
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in radiation transport, most authors consider a symmetric kernel. In the case of
chemosensitive movement however, we find an anisotropy in the direction of the
signal gradient. Other authors assume a strictly positive turning kernel, which we
relaxed into condition (T2).

Overall, we think that the set of conditions given above, (T1)-(T4), represents
a quite general and sufficient set of conditions such that the diffusion limit for
biological applications can be obtained in a clear and transparent way.

5. The Moment Closure Method

One common feature in understanding the dynamic properties of reaction-transport
equations and of Boltzmann equations are moment methods. By multiplication
of (1.1) with powers of v and integration, one can derive an infinite sequence of
equations for the v-moments of p. As a matter of fact, in the equation for the
n—th moment the (n + 1)-st moment appears. To close the equations for the first
n moments, one needs an approximation of the (n + 1)-moment. This “closure
problem” is well known and widely discussed in transport theory. Most authors use
ad hoc arguments or regular expansions to close the moment system (see e.g. ®! or
19y Here we present a theory for closing the moment equations, which is based on
a minimization principle.

For Boltzmann equations the closure problem has been treated in the theory of
Extended Thermodynamics (see e.g. Miiller and Ruggeri 9°). An entropy functional
is maximized under the constraint of fixed first n moments. One assumes that the
(n + 1)-st moment of the minimizer approximates the (n + 1)-st moment of the
true solution. This gives the desired closure. It appears that theories for a large
number of moments are capable of approximating steep gradients and shocks ?°.

In a biological context, the negative L?(V)-norm can be seen as an entropy
as defined in thermodynamics. We close the moment system by minimizing the
L2-norm under the constraint of fixed first n-moments. This minimization flattens
oscillations, high frequencies in space and time will be smoothed out and the global
structure of the solution is emphasized. We present this procedure here to close the
system for the first two moments (total population density and population flux).
The closed system is a Cattaneo system, which is well known in heat transport
theory. In *!' we generalized this approach to close the moment system at any
order. We will summarize some results in a later section. Finally we apply this
method to the transport equation for chemosensitive movement.

5.1. Cattaneo’s Law
The Cattaneo system has the following form

uy+Vo = 0

(5.36)
T +dVu+v = 0,

where u(t,z) € R and v(t,z) € R™ are functions of space z € Q C IR" and time
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t > 0. The diffusion constant d and the time constant 7 are positive. There are two
interpretations of this system. First, it appears to describe heat transport with finite
speed, or heat transport in media with memory (5%:3%). Then u is the temperature
and v is the heat flux. Second, it can be seen as a generalization of a correlated
random walk (33). Then u is the population density and v the population flux. The
Cattaneo law (second equation in (5.36)) has been used by Cattaneo '3 to describe
heat transport with finite speed. It has been known to Maxwell %, who cast out
the time derivative, because it “... may be neglected, as the rate of conduction will
rapidly establish itself.” For 7 = 0 Cattaneo’s law becomes Fourier’s law. For 7 # 0
the flux is not directly proportional to the temperature gradient, it adapts with a
time constant of 7. The Cattaneo system directly leads to a damped wave equation

TU + U = DA'U,,

which for 7 — 0 formally converges to the heat equation (see the review article of
Joseph and Preziosi °° on heat transport or Hillen ° on the Cattaneo system). It
can also be motivated in terms of heat propagation in media with memory (Gurtin
and Pipkin 3*), where the influence of the past decays exponentially. This property
is important for biological species, since memory and adaptation effects play a role
in many sensory processes. In 4! we showed that the Cattaneo law appears as a
gradient flux of an exponentially weighted Dirichlet integral.

The derivation of Cattaneo’s model (refcattaneo), as presented in the next sec-
tion, gives a new understanding of the role of the Cattaneo system in biological
applications. Moreover, the relevant parameters are now related to the individual
movement behavior of the underlying species.

5.2. A Minimization Principle

We consider a transport equation which corresponds to a velocity jump process
with fixed speed, but variable direction (Pearson walk “®). In this case V = sS™~1
with s > 0 and we denote w = |V| = s""'wy, where wy = |[S"7!|. The turn
angle distribution is assumed to be constant T'(v,v') = % As presented in 4!,
the method developed here can be generalized to more general kernel T' and more
general velocity sets V. Here we illustrate the method on this particular case and
we will apply it to a model for chemosensitive movement.

The initial value problem for the linear transport equation reads

ptv-Vp = u(’”{—p), (5.37)
p(0,z,v) = @o(z,v). (5.38)

We will use the L?-norm to carry out the moment closure. Hence, in this context
it is natural to work in L2 spaces. For other applications the L!-theory is preferred,
since the total particle number is preserved by the linear transport equation (see
e.g. ¢ for neutron transport). In ! we proved the following H-Theorem:
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Theorem 4 p
Gl g+ ([ o pte.opa0) <o (5.39)
Vv

The velocity-moments of p are denoted by m®, where m© is defined by (1.6) and
the higher moments of p are denoted by

mi(t,z) = /vip(t,m,v)dv, i=1,...,n (5.40)
v

mi(t,x) = /vivjp(t,x,v) dv, ,ji=1,...,n. (5.41)
v

Note that m® is scalar, m’ is a vector and m% is a 2-tensor. We stress the usual
summation convention on repeated indices.

To derive the equations for the first two moments m® and m® we integrate (5.37)
over V to obtain the conservation law

ml + 9;m? = 0. (5.42)
Multiplication of (5.37) with v* and integration gives
mi 4+ 8;m = —um?. (5.43)

To close this system of two moment equations (5.42) and (5.43) we want to re-
place m¥(p). We derive a function umin(t, z,v) which minimizes the L?(V) norm
||u(t,z,.)||3 under the constraint that umi, has the same first moments m® and m?
as p has. We showed in (5.39) that the negative of this norm is an entropy in the
sense of thermodynamics. Once we have such a function up;, we replace m¥ (p) by
m¥ (Umin)-

We introduce Lagrangian multipliers Ag € IR and A; € R for i = 1,...,n and
minimize

H(u) ::%/ uwldv — Ao (/ udv—m())—Ai (/ viudv—mi>.
v v v

We obtain an explicit representation of the minimizer (see 4! for details)

1 )
Umin (£, Z,v) = ” (mo (t,z) + s% (v;m*(t, :1:))) . (5.44)
Remark:
1. Tt turns out that umin is the projection of p onto the linear subspace (1,v*,...,v") C
L*(V)

2. If we minimize the functional

H,(u) := %/V(u—a)de—Ao (/Vudv—mo) . (/Vv"udv—mi),
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for some arbitrary a € IR with the same constraints as above we arrive at the
same minimizer (5.44). For fixed a € R the norm ||u(t, z,.) — a|2 is a measure
of the oscillation around the level a. Hence, uy,;, minimizes oscillations with
respect to every given level.

3. The extremum upni, is indeed a minimum, since the second variation of H is
0?H(u)=1>0.

To finally derive the moment closure we consider the second moment of the
minimizer %Umjn:

m (umin) = /Uivjumin(taxa“)d“
v

= = [ v'imPdv+ — vivlvy, dvm®
w 1% wSs 1%

52

= —m°I 5.45
-l (5.45)
because the tensor [, v*v7v; dv vanishes due to symmetry of V.

We have chosen umi, such that m®(u) = m®(p) and mé(u) = mt(p). Now we
close the system of the first two moments (5.42), (5.43) by assuming that m¥ (u) ~
mi(p). Then, replacing m% in (5.43) together with (5.42) gives a linear Cattaneo
system

MY +0;MI = 0,
A | (5.46)
M} +Z0;M° = —ubMy,
with initial conditions
M°(0,.) =m°(0,.), M?¥0,.) =m(0,.). (5.47)

We introduce capital letters to distinguish between the moments (m°, m?) of p and
the solutions (M?, M?) of the Cattaneo system (5.46). Of course, if m% (u) # m¥ (p)
then (M°, M%) # (m°,m?). The error, which occurs in this approximation can be
controlled. For that we define

re=m’—M° and ¢':=m'— M

and an energy .
n .
es(r,q) := 2 /Rn r? + 2 g'gide. (5.48)

Then we proved in 4!

Theorem 5 )

s
es(r(t,.),q(t,.)) < nbiﬂ IVam® |72 (0,11xmm) (5.49)

with an approporiate constant b, > 0.
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5.3. A Chemotaxis Model with Density Control

In *® we studied a diffusion based model for chemosensitive movement where at
high population densities the chemotaxis is turned off and pure diffusion dominates.
Solutions exist globally and now blow-up occurs. The model of Hillen and Painter
43 can be constructed from a transport equation via a corresponding Cattaneo
approximation. We consider a turning rate of the form

u(S,8,8) = o (1= S BMO)X(9)5S)

where 3(m?) is a density dependent sensitivity. The function 3 is assumed to have
a zero at some m° > 0 and B(m) > 0 for 0 < m < m° With turning kernel
T(v,v") := w tu(S, 6, S) the moment closure procedure leads to a Cattaneo model
for chemosensitive movement with density control

M,? + 6j M =0
Mj+Z8:M° = —pg(1— ZB(M°)x(S)S:) M + B(MO)x(S) M 8;S.
(5.50)
This model has been used in 2? to describe pattern formation in cellular slime molds
and in bacteria. Moreover, a numerical scheme has been developed to solve (5.50).

5.4. Higher Order Moment Closure

The higher order moment closure requires severe bookkeeping of all the relevant
tensor indices. Hence, we prefer to refer to 4! for details.

The H-Theorem (Theorem 4) of the previous section can be generalized to
turning kernel T which satisfy the general assumptions (7'1) — (7'4), defined above.
The higher order moment closure can be derived in the framework of Lagrangian
multipliers. It turns out that the steady states of the two moment closure (Cattaneo
system) and of the three moment closure are determined by an elliptic equation (i.e.
steady states of a corresponding diffusion problem). We conjecture that this is the
case for all higher order moment closures.
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