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Abstract Transport equations add a whole new level of modelling to our menu of
mathematical models for spatial spread of populations. They are situated between
individual based models, which act on the microscopic scale and reaction diffusion
equations, which rank on the macro-scale. Transport equations are thus often associ-
ated with a meso scale. These equations use movement characteristics of individual
particles (velocity, turning rate etc.), but they describe a population by a continuous
density.

In this chapter we introduce transport equations as a modelling tool for biologi-
cal populations, where we outline the relations to biological measurements. The link
to individual based random walk models and the relation to diffusion equations are
discussed. In particular the diffusion limit (or parabolic limit) forms the main part
of this chapter. We present the detailed mathematical framework and we discuss
isotropic versus non-isotropic diffusion. Throughout the manuscript we investigate
a large variety of applications including bacterial movement, amoeboid movement,
movement of myxobacteria, and pattern formation through chemotaxis, swarming
or alignment.

We hope to convince the reader that transport equations form a useful alternative
to other models in certain situations. Their full strength arises in situations where
directionality of movement plays an important role.

1 Introduction to movement models

Many biological problems lend themselves well to mathematical models. Often we
use these models to predict the behaviour of a population. We can attempt to predict
only population size using ordinary differential equation models of the population
dynamics, or attempt to predict spatial characteristics of the population through the
use of partial differential equation models. In either case, certain simplifications are
necessary. A key question which must be addressed when dealing with population
models is how to obtain a model for the macroscopic behaviour of a population
based on information about individuals in the population.

1.1 Measurements

As a first example, we consider the case of randomly moving individuals, and dis-
cuss how we may use information about these individuals to derive a model for the
population. First, consider a random variable Xt that represents the location of an
individual at time t. On the population level we consider two statistical measures as
illustrated in Figure 1 (A):

(A) Population measurements:
(A.1) Mean location: X̄t = E(Xt), and
(A.2) Mean quadratic variation: (∑n

i=1(Xt i− X̄t)
2)/(n−1) =V (Xt)
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A B
Fig. 1 A: Schematic of individuals undergoing a random walk; the locations can be used to esti-
mate a mean location and a mean squared displacement. B: Measurement of individual movement
path for speed, turning rate and turning angle distribution.

These two measures represent characteristic values of the population based on
averages of movement of their individuals. In many cases we can also consider
characteristics of the individual particles themselves:

(B) Individual measurements:
(B.1) The mean speed, γ

(B.2) The mean turning rate, µ , and
(B.3) The distribution of newly chosen directions, T (v,v′), where v and v′ are the
new and previous velocities, respectively.

These measures correspond to the situation seen in Figure 1 (B). The final mea-
sure, T (v,v′) is often referred to as a kernel, and can be described as the probability
density of turning into velocity v given previous velocity v′. For a homogeneous
environment, this will typically be a uniform distribution, but for directed environ-
ments, the distribution may not be uniform. For example, for a cancer cell moving
within a brain, it will be more likely to turn into alignment with the fibrous brain
structures than to travel orthogonally. This means that the turning kernel will have a
higher probability in the direction of this fibre.

The aim of this manuscript is to develop mathematical models which are based
on the above observations. In particular, we are interested in the following questions:

Q1: How can we make a mathematical model for these types of measurements?
Q2: How are these models related?

1.2 Random walk on a grid

To derive a first and simple model on the population level, we first consider a random
walker on a one dimensional grid [61, 46]. In this situation, consider an individual
starting at point 0, and having some probability 0< q< 1 of moving to the right, and
some probability 1−q of moving to the left. In this example, we assume that there
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is 0 probability of the random walker staying where it is. We let δ be the spatial step
and τ be the time step. This situation is illustrated in Figure 2 (A).
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Fig. 2 A: Simple random walk with constant jump probabilities q and 1−q. B: Random walk with
variable jump probabilities T±i .

We now consider Xn to be a random variable representing the position of a ran-
dom walker that started at 0 after n discrete steps. After one step the expected value
of X1 is

E(X1) = ∑
y

xp(x = y) = δq+(−δ )(1−q) = δ (2q−1), (1)

where we are summing over the whole domain. Now if we want to compute
E(X2), we simply take

E(X2) = E(X1)+∑
y

xp(x = y) = δ (2q−1)+δq+(−δ )(1−q) = 2δ (2q−1).

We can recursively define the expectation after n steps E(Xn) to be

E(Xn) = δ (2q−1)+E(xn−1) = nδ (2q−1). (2)

We now notice that if q = 1
2 in equation 2, we have that E(Xn) = 0. This makes

sense, as we would expect to find no net displacement when the probabilities for
moving left and right are equal. If however q > 1

2 , then we have a higher probability
of moving to the right, thus we would expect the net movement to be to the right.
We see that in this case E(Xn) > 0, as expected. Conversely, when q < 1

2 , we have
E(Xn)< 0, and see net movement to the left.

We can also consider the variance of our random variable. This is computed using
the following formula:

V (X1) = E(X2
1 )−E(X1)

2. (3)

We have E(X1) as computed in (1), so we easily find that E(X1)
2 = δ 2(2q−1)2.

We next compute
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E(X2
1 ) = ∑

y
x2 p(x = y) = δ

2q+(−δ )2(1−q) = δ
2.

Therefore,

V (X1) = δ
2−δ

2(2q−1)2 = 4δ
2q(1−q),

and by the same argument as for the expectation,

V (Xn) = 4nδ
2q(1−q).

These measurements are for the discrete time situation, where an individual per-
forms n jumps, n ∈ N. How do these compare to the continuous time situation? If
we consider a time step to have length τ , then t = nτ and n = t

τ
. We then define a

mean velocity c and a diffusion coefficient D as:

c =
E(Xt)

t
=

δ

τ
(2q−1), D =

1
2

V (Xt)

t
=

2δ 2

τ
q(1−q). (4)

1.3 A continuous random walk

To derive a mathematical description of the random walk from above, we introduce
p(x, t) as probability density for the location of the random walker. We begin with
a description of the discrete case discussed above. If we want to define an equation
for p(x, t + τ), we are looking for the probability that an individual will be found at
x at time t + τ . We note that the only way for an individual to arrive at position x at
time t + τ , is to come from the grid point to the left, or to the right from time t. We
use the Master equation approach

p(x, t + τ) = qp(x−δ , t)+(1−q)p(x+δ , t), (5)

where q,1− q are the probabilities for a jump to the right/left per unit of time τ ,
respectively. In order to determine the continuous limit of this discrete equation, we
assume that τ and δ are small parameters. Then a formal Taylor expansion becomes

p+ τ pt +
τ2

2
ptt +h.o.t. = q

(
p−δ px +

δ 2

2
pxx−h.o.t.

)
+(1−q)

(
p+δ px +

δ 2

2
pxx +h.o.t.

)
.

Simplifying, we obtain

pt(x, t) =
δ

τ
(1−2q)px(x, t)+

δ 2

2τ
pxx(x, t)+h.o.t.. (6)
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We see that the dominating terms in equation 6 are the standard advection-
diffusion equation

pt(x, t)+ cpx(x, t) = Dpxx(x, t)

with

c =
δ

τ
(1−2q) and D =

δ 2

2τ
.

At this stage we can study different possible limit scenarios for δ ,τ → 0 and
q→ 1/2. We can do this in a number of ways, and we present three choices below.
Of course, there are many more choices of these scalings, but most of them will not
lead to a useful limit equation. In other words, if δ ,τ,q do not scale as indicated
below, then this method is not appropriate.

(a) δ

τ
→ α=constant. Then δ 2

τ
= δ

δ

τ
→ 0, which causes the diffusive term to

vanish, and we are left with a simple transport equation

pt + cpx = 0.

(b) δ 2

τ
→ 2D =constant, then we can consider two cases:

(b.1) if q = 1
2 , then c = 0, and we obtain a pure diffusion equation

pt = Dpxx.

(b.2) If q→ 1
2 in such a way that δ

τ
(1− 2q)→−c, and δ 2

2τ
= D

4q(1−q) → D,
then the scaling results in the advection-diffusion equation

pt + cpx = Dpxx, (7)

where c and D are given by the measurements (4)

c≈ E(Xt)

t
, D≈ 1

2
V (Xt)

t
.

Summary:

• When δ and τ scale in the same way, then we obtain a transport equation. This
case is called drift dominated.

• When δ 2 ∼ τ , we have the diffusion dominated case.
• Only in the case where q− 1

2 ∼ τ do we get both terms, an advection and a
diffusion term (mixed case).
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1.4 Outline of this manuscript

We have seen that population measurements lead us in a very natural way to drift-
diffusion models of the type (7). If individual measurements are available, then the
framework of transport equations becomes available, which we develop in the next
sections. Of course there is a close relation between individual behaviour and popu-
lation behaviour. This is reflected in our theory through the parabolic limit or drift-
diffusion limit.

Above, we related population measurements to population drift and diffusion
terms. Using the parabolic limit, we will be able to relate individual measurements
to population drift and diffusion.

In Section 2 we consider the one-dimensional version of the transport equations.
Individuals can only move up or down a linear feature, so that the movement is
essentially one dimensional. The one-dimensional formulation has the advantage
that most computations can be carried out and even explicit solutions can be found.
We summarize results on invasions and pattern formation as well as applications to
growing and interacting populations, chemotaxis, swarming and alignment.

In Section 3 we formally define transport equations and then define the mathe-
matical setup. We introduce the basic assumptions (T1)-(T4) and we immediately
explore the spectral properties of the turning operator.

Section 4 is devoted to the diffusion limit. Based on biological observations,
we introduce a time and space scaling which, in the limit of macroscopic time and
spaces scales, leads to a diffusion equation. Important is the structure of the resulting
diffusion tensor D, which can be isotropic (D = αI), or anisotropic. We find easy-
to-check conditions for the isotropy of the diffusion tensor. In Section 4 we also
consider examples of bacterial movement, amoeboid movement, myxobacteria and
chemotaxis. Finally, we introduce an important biological concept of persistence,
which leads us back to biological measurements. The persistence, also called mean
cosine, can easily be measured in many situations.

There are interesting further developments for individual movement in oriented
habitats. Unfortunately, we are not able to include all these models and applica-
tions here, hence we chose to give a detailed list of references for further reading in
Section 5.

2 Correlated random walk in one dimension

The one dimensional correlated random walk is an extension of the diffusion ran-
dom walks studied earlier, as it allows for correlation of movement from one time
step to the next; in particular correlation in velocity. These models are easy to under-
stand and they form a basis for the understanding of higher dimensional transport
equations. In fact, many of the abstract methods which we introduce later for trans-
port equations, are simply illustrated in the one-dimensional context. However, the
1-D model is not only a motivating example, it is a valid model for random walk
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on its own and it has been applied to many interesting biological problems. See for
example the review article of Eftimie [10] on animal swarming models.

In the following sections we will introduce the model and various equivalent vari-
ations, we will discuss suitable boundary conditions, and we will write the model in
an abstract framework, which will become important later.

2.1 The Goldstein-Kac model in 1-D

Taylor [57] and Fuerth [15] developed the one dimensional correlated random walk
model in the same year. Goldstein [18] and Kac [40] formulated it as a partial dif-
ferential equation, and this is where we start. Let u±(x, t) denote the densities of
right/left moving particles. The Goldstein-Kac model for correlated random walk is

u+t + γu+x = − µ

2 u++ µ

2 u−

u−t − γu−x = µ

2 u+− µ

2 u−, (8)

where γ denotes the (constant) particle speed and µ/2 > 0 is the rate of switching
directions from plus to minus or vice versa. We can also consider an equivalent
formulation as a one-dimensional transport equation

u+t + γu+x = −µu++ µ

2 (u
++u−)

u−t − γu−x = −µu−+ µ

2 (u
++u−), (9)

where now µ > 0 is the rate of directional changes; new directions are chosen as
plus or minus with equal probability 1/2. The systems (8) and (9) are equivalent,
however the second formulation allows us to consider the system in the transport
equation framework, as well as prepare it for extension to higher dimensions.

Another equivalent formulation arises if we look at the total population u = u++
u− and the population flux v = γ(u+−u−):

ut + vx = 0
vt + γ2ux = −µv,

(10)

which is also known as Cattaneo system [39]. This formulation will be more nat-
ural for scientists with experience in continuum mechanics, as the first equation is
a conservation of mass equation, while the second equation can be seen as a mo-
mentum equation, where the flux adapts to the negative population gradient with a
time factor or e−µt . See Joseph and Preziosi [39] for a detailed connection to con-
tinuum mechanics and to media with memory. Here, we stay with the interpretation
of population models.

If we assume the solutions are twice continuously differentiable, we get yet an-
other closely related equation. Indeed, differentiating the first equation of (10) by t
and the second by x we get
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utt + vxt = 0
vxt + γ2uxx = −µvx,

(11)

which can be rearranged into an equation for u alone, making use of (10) in order to
substitute vx =−ut :

1
µ

utt +ut =
γ2

µ
uxx, (12)

which is the telegraph equation. This equation can be derived for the electrical
potential along a transatlantic telegraph cable; a quite astonishing relation for our
original random walk model. In this equation we then clearly see the relation to a
diffusion equation. Just imagine that µ→∞ and we loose the second time derivative
term. At the same time we let γ → ∞ such that

0 < lim
γ→∞,µ→∞

γ2

µ
=: D < ∞.

Then D becomes the diffusion coefficient and the parabolic limit equation reads

ut = Duxx. (13)

We see that the one-dimensional model for correlated random walk is in fact closely
related to transport in media with memory as well as to transatlantic cables. This re-
inforces the universality of mathematical theories, and the fact that often unexpected
relations can be found.

2.2 Boundary conditions

It is an interesting exercise to find appropriate boundary conditions for these models.
Let us focus on the correlated random walk model (8). Since the model equations
are hyperbolic, we need to look at the characteristics. For the first equation, the char-
acteristics are x(t) = x+γt and for the second equation they are x(t) = x−γt. Hence
the variable u+ needs boundary conditions on the left boundary, while no boundary
condition on the right boundary. In Figure 3 we indicate the characteristics with ar-
rows. Formally, we define the domain boundary of Ω = [0, l]× [0, t) as hyperbolic
boundary

∂Ω = δΩ
+∪δΩ

−

with

δΩ
+ := {0}× [0, t)∪ [0, l]×{0}, δΩ

− := [0, l]×{0}∪{L}× [0, t).

Then u+ needs boundary conditions at ∂Ω+ and u− needs boundary conditions at
∂Ω− (see Figure 3).

Both quantities require initial conditions at time t = 0:
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−

δΩ
+

δΩ

Fig. 3 Illustration of the two parts of the hyperbolic boundary of Ω . Arrows indicate the directions
of the characteristics.

u+(x,0) = u+0 (x), u−(x,0) = u−0 (x).

On the sides of the domain we can mimic the classical Dirichlet, von Neumann and
periodic boundary conditions.

• Dirichlet boundary conditions describe a given concentration at the boundaries.
In the hyperbolic case this means a given incoming concentration

u+(0, t) = α1(t), u−(l, t) = α2(t).

In the case of α1 = α2 = 0 we call these the homogeneous Dirichlet boundary
conditions.

• von Neumann boundary conditions describe the flux at the boundary. Hence in
our case

γ(u+(0, t)−u−(0, t)) = β1(t), γ(u+(l, t)−u−(l, t)) = β2(t).

In the no-flux case they become homogeneous von Neumann boundary condi-
tions

u+(0, t) = u−(0, t), u−(l, t) = u+(l, t).

• Periodic boundary conditions are as expected

u+(0, t) = u+(l, t), u−(l, t) = u−(0, t).

The corresponding initial-boundary value problems for the correlated random walk
as well as for the Cataneo equations and for the telegraph equation have been stud-
ied in great detail in [28], including results on existence, uniqueness, and positivity.
One curious result is the fact that the Dirichlet problem regularizes, while the von
Neumann and periodic problems do not regularize. In the Dirichlet problem singu-
larities or jumps are washed out at the boundary, while the von Neumann case they
are reflected and in the periodic case they are transported around the domain.
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2.3 Abstract formulation

The main part of this manuscript provides analysis of a generalization of the one-
dimensional correlated random walk to higher dimensions. We will construct an
abstract framework of function spaces and turning operators, and the one dimen-
sional model will arise as a special case. To prepare this relation, we now formulate
equation (8) as a differential equation in a Banach space. In fact, we use the (equiv-
alent) system (9) and introduce an integral operator T for the last term on the right
hand sides:

T : R2→ R;
(

u+

u−

)
7→ 1

2
(u++u−).

Here it does not look like an integral operator, but the higher dimensional version
will include an integration. In fact here the integration is over the discrete space
V = {+γ,−γ}. The operator norm of this linear operator can be easily computed to
be

‖T ‖1 =
1
2
,

where the operator norm is defined as

‖T ‖1 = sup
‖φ‖1=1

‖T φ‖1.

It will be important later that this norm is less than or equal to 1. The whole right
hand side of the system (9) defines another operator, which we call the turning
operator L :

L : R2→ R2;
(

u+

u−

)
7→
(
−µu++T (u+,u−)
−µu−+T (u+,u−)

)
.

If we write L as a matrix, we get

L =
µ

2

(
−1 1
1 −1

)
we obtain eigenvalues of λ1 = 0 and λ2 =−µ . The zero eigenvalue corresponds to
the fact that the total population size is conserved for equation (9). The correspond-
ing eigenspace is spanned by the vector (1,1)T . Hence the kernel of L is given
as

kerL = 〈
(

1
1

)
〉.

The abstract formulation appears a bit staged, but this will form the framework for
the multi dimensional situation.



12 Thomas Hillen and Amanda Swan

2.4 Explicit solution using Bessel functions

There exists an explicit solution of the correlated random walk model (8) using
Bessel functions. Based on Poincare’s [55] Bessel function solutions for the one-
dimensional telegraph equation (12) on R, Hadeler [21] modified these solutions to
find explicit solutions to the correlated random walk system (8) on R.

Let us recall some basic facts about the modified Bessel functions. For k ∈ N
we denote by Jk the Bessel functions of first kind, and by Ik(x) := ekπiJk(ix) the
modified Bessel functions with purely imaginary argument. For k = 0 and k = 1 we
have the relations

I0(x) = J0(ix) =
∞

∑
k=0

1
(k!)2

( x
2

)2k
and I1(x) =

d
dx

I0(x).

The functions I0(x), I1(x) and I1(x)/x are real analytic and positive for x > 0. For an
initial condition u0 ∈ Lp the solution of u(t,x) = (u+(t,x),u−(t,x)) of (8) on R can
then be written as

u+(t,x) = u+0 (x− γt)e−µt/2 +
∫ x+γt

x−γt
K(t,x,y)u−0 (y)dy

+
∫ x+γt

x−γt
K+(t,x,y)u+0 (y)dy

u−(t,x) = u−0 (x+ γt)e−µt/2 +
∫ x+γt

x−γt
K(t,x,y)u+0 (y)dy

+
∫ x+γt

x−γt
K−(t,x,y)u−0 (y)dy

with integral kernels

K(t,x,y) :=
µe−µt/2

4γ
I0

(
µ

2γ

√
γ2t2− (y− x)2

)

K±(t,x,y) :=
µe−µt/2

4γ

I1

(
µ

2γ

√
γ2t2− (y− x)2

)
√

γ2t2− (y− x)2
(γt∓ (y− x)).

For further reading on where these solutions come from, see [28]. From this
representation we see that solutions are in L∞([0,∞)×R) for initial conditions in
L∞. The integrals are absolutely continuous such that possible discontinuities can
only travel along the characteristics x− γt = c and x+ γt = c.

Additionally, if u0 is k–times differentiable then u is also. In general we conclude:

u0 ∈ L∞(R) =⇒ u ∈ L∞([0,∞)×R)
u0 ∈Ck(R) =⇒ u ∈Ck([0,∞)×R).
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2.5 Correlated random walk models for chemotaxis

Chemotaxis describes the active orientation of individuals, such as cells or bacte-
ria, on gradients of a chemical signal, which is produced by the cells themselves.
In many examples, such as Dictyostelium discoideum (DD) or Escherichia coli, this
process leads to macroscopic cell aggregations. Chemotaxis is a prototype of self or-
ganization, where the resulting pattern is more than the sum of its parts. Keller and
Segel [41] started a systematic modelling in the 1970s and since then a large amount
of literature has been published on chemotaxis. The models have been develped to
accurately describe biological experiments and the models have inspired a gener-
ation of mathematicians working on finite time blow up as well as spatial pattern
formation. For further details we recommend the two review articles by Horstmann
[38] and by Hillen and Painter [33].

We can model chemotactic behaviour via a correlated random walk model. The
action of the chemical signal on the movement mechanics of cells is very different in
eukaryotic cells versus amoeboid cells. In E. coli, for example, the chemical sensing
receptors are internally coupled to the rotation mechanisms of the flagella. If the cell
encounters an increasing signal concentration, it prolongs straight movement and re-
duces reorientations. This in effect leads to oriented movement up a signal gradient
[49, 14]. In our context this corresponds to a change in turning rate µ depending on
the signal strength and its gradient. Amoeboid cells, however, are moving through
tread milling of an internal actin-myosin filament mechanism. Amoeboid cells are
able to detect directions of increased chemical signal and they can actively choose
directions and adapt their speed. In this particular case then, the turning rate as well
as the speed are affected by the signal S [6]. In one dimension, the corresponding
hyperbolic chemotaxis model reads

u+t +(γ(S)u+)x =−µ
+(S,Sx)u++µ

−(S,Sx)u−

u−t − (γ(S)u−)x = µ
+(S,Sx)u+−µ

−(S,Sx)u−

τSt = DSSxx +α(u++u−)−βS,

(14)

where u±(x, t) are as before, the densities of right and left moving particles
respectively. The density of the chemical signal is given by S(x, t), and γ(S) and
µ(S,Sx) are the density dependent speed and turning rate. Notice that here µ is used
without a factor of 1/2, so it is a turning rate (and not a rate of change of direction).
The last equation in (14) describes diffusion, production and decay of the chemo-
tactic signal S(x, t), where DS > 0 is the diffusion coefficient of the signal, α > 0 is
the production rate as produced from the total cell population u++u− and β > 0 is
a constant decay rate. The parameter τ > 0 is used to indicate that signal diffusion
might happen on a faster (or slower) time scale than cell movement.

As in our derivation from (12) to (13) we can use scaling arguments to compute
a parabolic limit (see [36, 35] for details):

ut = (A(S,Sx)ux−χ(S,Sx)uSx)x . (15)
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It is interesting to see how the diffusivity A and the chemotactic sensitivity χ depend
on speed γ and turning rate µ . The diffusivity is

A(S,Sx) =
γ2(S)

µ+(S,Sx)+µ−(S,Sx)
(16)

while the chemotactic flux is

χ(S,Sx)Sx =−
γ(S)

µ+(S,Sx)+µ−(S,Sx)

(
γ
′(S)Sx +(µ+(S,Sx)−µ

−(S,Sx))
)
. (17)

When χ > 0, we have positive taxis, which supports aggregation. Here we have
two effects which can cause positive chemotactic flow:

1. If γ = γ(S) and γ ′(S) < 0, then particles slow down at high concentrations of S
which leads to aggregation at high concentrations of S. Or, alternatively,

2. If µ+ < µ− for Sx > 0, then the turning rate is reduced when moving up the
gradient of S, which also leads to aggregation.

Specifically, we study two examples.

Example 1 (and homework): Assume γ =const and

µ
±(S,Sx) =

γ

2A
(γ∓ϕ(S)Sx)

+ .

1. Describe a biological situation for the above choice of µ and γ . Does this choice
correspond to the bacterial or amoeboid case? Explain.

2. Compute the diffusivity A and the chemotactic flux χSx.

Example 2: For the second example, we consider the case where τ = D = 0, and
γ(S) = S. Then the last equation of (14) can be solved as S = α

β
(u++ u−) and we

therefore have that the left hand side of the first equation of (14) becomes

u+t +(γ(S)u+)x = u+t +
(

α

β
(u++u−)u+

)
x

= u+t + α

β

(
u+2
)

x
+ α

β
(u+u−)x .

(18)

We see that the first two terms on the right hand side come from Burger’s equation.
The standard form of Burger’s equation is ut +(u2)x = 0, and it is well known that
Burger’s equation has shock solutions [2]. Hence in this case we might expect shock
solutions for the chemotaxis model. In [35] we use the method of viscosity solutions
to further analyse the appearance of sharp gradients in chemotaxis invasion waves
(see Figure 4 (right)).
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Fig. 4 Left: two aggregations evolve from a compactly supported initial condition for a case cor-
responding to Example 1. Right: occurrence of a sharp gradient due to Burger’s equation terms as
in Example 2. In both simulations the initial signal concentration is linearly increasing from left to
right (not shown).

2.6 Reaction random walk systems

The above random walk models have been considered under (local) preservation of
particles. However, these models can also be used to describe growing, shrinking
and interacting populations through reaction random walk systems [22]. If using
diffusion equations, then the most often used assumption is an independence be-
tween species movement and species growth and death, leading to a typical reaction
diffusion equation ut = Duxx + f (u). In the correlated random walk (8) the popu-
lation has been split into right and left moving populations, hence the inclusion of
reaction terms must be done carefully. We follow Hadeler [19, 20, 21] and present
three ideas from the literature:

(i) A straight forward analog of the reaction diffusion modelling was introduced
in [37] leading to the reaction random walk system

u+t + γu+x =
µ

2
(u−−u+)+

1
2

f (u++u−)

u−t − γu−x =
µ

2
(u+−u−)+

1
2

f (u++u−).

The reaction acts symmetricaly between the two classes and newborn particles
choose either direction with the same probability. Holmes [37] showed the ex-
istence of travelling waves for this model, while in [24] and [25] we developed
Turing instabilities and Lyapunov functions, respectively.
(ii) If the reaction is split into growth and death terms, like f (u) = um(u)−
ug(u), where m(u) denotes a birth rate and g(u) a death rate, then the above
splitting is inappropriate, as death of a right moving particle leads to reduction of
left moving particles. Individuals can only be discounted from their own class.
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Hence the reaction random walk model needs to be modified in the form

u+t + γu+x = µ(u−−u+)+
1
2
(u++u−)m(u++u−)−u+ g(u++u−)

u−t − γu−x = µ(u+−u−)+
1
2
(u++u−)m(u++u−)−u− g(u++u−).

(iii) Here we consider the same reaction terms as in (ii) but we additionally as-
sume that the movement direction of newborn particles correlates to the direction
of their mother by a parameter τ ∈ [0,1]. The corresponding model equations are

u+t + γu+x = µ(u−−u+)+(τu++(1− τ)u−)m(u++u−)−u+ g(u++u−)

u−t − γu−x = µ(u+−u−)+((1− τ)u++ τu−)m(u++u−)−u− g(u++u−).

If τ = 1/2 we have case (ii). For τ > 1/2 the daughter particles tend to prefer the
same direction as the mother and for τ < 1/2 they prefer the opposite.

Earlier we derived a Cattaneo system and a telegraph equation (12) from a cor-
related random walk (8). We can do the same transformation for a reaction random
walk model. The corresponding reaction Cattaneo model for the total population
u = u++u− and flux v = γ(u+−u−) then becomes

ut + γvx = f (u)

vt + γux = −h(u)v,

with

f (u) =
{

f (u) in case (i)
um(u)−ug(u) in case (ii) and (iii),

h(u) =

 µ in case (i)
µ +g(u) in case (ii)
µ +(1−2τ)m(u)+g(u) in case (iii).

The boundary conditions transform as

• homogeneous Dirichlet

u(t,0) =−v(t,0), u(t, l) = v(t, l).

• homogeneous von Neumann

v(t,0) = 0, v(t, l) = 0.

• Periodic
u(t,0) = u(t, l), v(t,0) = v(t, l).

To further investigate the relation to a telegraph equation, we focus on the case (i).
The reaction Cattaneo system in this case is
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ut + γvx = f (u)

vt + γux = −µ v.

We assume that solutions are twice continuously differentiable and we differentiate
the first equation with respect to t and the second with respect to x and we eliminate
v to obtain the reaction telegraph equation

utt +(µ− f ′(u))ut = γ
2uxx +µ f (u).

The above transformation applied to cases (ii) and (iii) would not lead to a single
telegraph equation, unless τ = 1/2 and g = 0, which is case (i) (see also [22, 21]).

2.7 Correlated random walk models for swarming

The correlated random walk models have also been used to describe animal align-
ment and swarming. Pfistner [54] and Lutscher and Stevens [43] developed and
analysed a non-local correlated random walk model for alignment and rippling of
myxobacteria. Myxobacteria are rod shaped bacteria that are known to form tightly
aligned swarms which sometimes show spatial rippling. The following model of
Pfisnter [54] and Lutscher and Stevens [43] was able to explain these patterns:

u+t + γu+x = −µ
+u++µ

−u−

u−t − γu−x = µ
+u+−µ

−u−

with turning rates

µ
± = F

(∫ R

−R
α(r)u±(t,x± r)+β (r)u∓(t,x± r)dr

)
. (19)

The turning rates depend non-locally on the surrounding population up to a sampling
radius R > 0. The kernel α(r) describes the influence of individuals that move away
from x, while the β -term describes the contribution of particles that move towards
x. A careful choice of α(r) and β (r) enabled them to model alignment and rippling.

Eftimie et al. [11, 10] generalized this approach and separated the three major in-
teraction modes of local repulsion, intermediate alignment and long range attraction.
A schematic is shown in Figure 5. They assume that the turning rate µ±(y±r ,y

±
al ,y

±
a )

is a function of a repulsive signal y±r , an alignment signal y±al and an attractive signal
y±a . Each of these signals has a non-local form as in (19), where the corresponding
weights αr,αal ,αa and βr,βal ,βa concentrate their weight in the corresponding spa-
tial distances around x, as illustrated in Figure 5. There are many possible choices of
these weight functions, and Eftimie [10] presents a detailed review of relevant pos-
sibilities. Depending on the choice of these weight functions, the model is able to
describe travelling pulses, travelling trains, static pulses, breathers, feathers, ripples
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and many more. The non local model for correlated random walk is a rich source of
interesting patterns and interesting mathematics and a full mathematical analysis is
just beginning. For more details see the excellent review of Eftimie [10].

attraction

repulsion
alignment

Fig. 5 Illustration of the non-local swarming model of Eftimie. The closest area is repulsive, the
intermediate region supports alignment and the far region is attractive.

3 Transport equations

We can extend the ideas introduced in section 2 to higher dimensions in the form
of the transport equation. Transport equations are a powerful tool to derive meso-
scopic models for the spatial spread of populations. With mesoscopic we denote an
intermediate scale, where properties of individual cells are used in the modelling,
however, cells are not represented as individual entities, like in individual based
modelling, rather, they are presented as macroscopic densities. Transport equations
are particularly useful if the movement velocity (= speed · direction) of the indi-
viduals is of importance. The theory of kinetic transport equations developed from
the Boltzmann equation and the thermodynamics of diluted gases (see e.g. [3]) and
has since been developed for biological populations as well [47, 53]. One major
difference between physical and biological applications is the number of conserved
quantities. While in ideal gas theory five quantities are conserved (mass, three mo-
mentum components, energy), in biological populations, we often only conserve
mass. Mathematically the conserved quantities are reflected as linearly independent
functions in the kernel of a so called turning operator. The kernel of the turning
operator in gas theory is five dimensional, while in our applications it is one di-
mensional. The kernel of the turning operator sets the stage for the mathematical
details later. Hence this difference in size of the kernel is, in a nutshell, the main
difference between physical and biological applications. The rest is details, which
we will present as fully as possible in this manuscript.

We need to distinguish two important cases. Case 1: the kernel of the turning
operator contains only constant functions and case 2: the kernel is spanned by a
function that depends on the velocity. Such a function is called Maxwellian in a
physical context [53]. The first case allows for a quite general theory as was devel-
oped in Othmer and Hillen in [30, 48], while the second case is more complicated.
We use the remainder of this manuscript to study case 1,where we explain the math-
ematical setup, derive the parabolic limit, and apply the method to chemotaxis. Case
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2 is covered in the literature [4, 8, 53, 27, 34] and we plan a summary of that case
in a forthcoming textbook [32].

3.1 The mathematical set-up

We begin by parameterizing a population density p(x,v, t) by space x, velocity v and
time t. This allows us to incorporate individual cell movement into the model, an
important feature which distinguishes transport models from macroscopic models.
As we are typically dealing with biological phenomena, we take t ≥ 0 and x ∈ Rn,
with n = 2,3. The case of n = 1 corresponds to the one-dimensional correlated
random walk, which we discussed already in Section 2. The velocities v are taken
from V , where V ⊂ Rn and V = [s1,s2]×Sn−1 or V = sSn−1. The general transport
equation for a population density p(x,v, t) is thus

pt + v ·∇p =−µ p+µ

∫
V

T (v,v′)p(x,v′, t)dv′, (20)

where we omitted the arguments, except in the integral. The terms on the left hand
side describe the particles’ movement in space, while the terms on the right hand
side describe how the particles change direction. The parameter µ is the turning
rate, which describes how often the particles change direction. As such, 1

µ
describes

the mean run length. In other words, 1
µ

represents how long a particle travels on
average in a straight line before it changes direction. The distribution T (v,v′) inside
the integral is called the turning kernel, or turning distribution, and describes the
probability that a cell traveling in the direction of v′ will turn into the direction
of v. As such, the first term on the right hand side describes cells turning out of
velocity v, while the integral term describes cells turning into velocity v from all
other directions v′ ∈ V . Together, these two terms are called the turning operator.
Here we follow the theory as developed by Stroock [56], Othmer et al. [47] and
Hillen and Othmer [30, 48].

Given the compact set V of possible velocities, we work in the function space
L2(V ) and we denote by K ⊂ L2(V ) the cone of non-negative functions. Given by
the right hand side of equation (20) we define an integral operator on L2(V );T :
L2(V )→ L2(V ) as

T φ(v) =
∫

V
T (v,v′)φ(v′)dv′

with adjoint

T ∗
φ(v′) =

∫
V

T (v′,v)φ(v′)dv′.

The integral kernel T and the integral operator T set the stage for the theory. In
the context of biological applications, we make the following general assumptions.
We will now list these general assumptions, with a detailed explanation of each as-
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sumption following.

Basic Assumptions:

(T1) T (v,v′)≥ 0,
∫

V T (v,v′)dv = 1, and
∫

V
∫

V T 2(v,v′)dv′dv < ∞.
(T2) There is a function u0 ∈K \{0}, a ρ > 0 and an N > 0 such that for all
(v,v′) ∈V ×V , either

(a) u0(v)≤ T N(v′,v)≤ ρu0(v), or
(b) u0(v)≤ T N(v,v′)≤ ρu0(v),

where the N-th iterate of T is

T N(v′,v) =
∫

V
. . .
∫

V
T (v′,w) . . .T (wN−1,v)dw1 . . .dwN−1.

(T3) ‖T ‖〈1〉⊥ < 1, where L2(V ) = 〈1〉⊕〈1〉⊥.
(T4)

∫
V T (v,v′)dv′ = 1.

Assumption (T1): Assumption (T1) implies that T (·,v′) is a non-negative probabil-
ity density on V . The fact that T ∈ L2(V ×V ) implies that T and T ∗ are Hilbert-
Shmidt operators, defined as follows ([23]):

Definition 1. An integral operator T f (v) =
∫

T (v,v′) f (v′)dv′ with T ∈ L2(V ×V )
is called a Hilbert-Schmidt operator.

Hilbert-Schmidt operators have some compactness properties:

Theorem 1. ([23]) Hilbert-Schmidt operators are bounded and compact.

Furthermore, (T1) implies that T and T ∗ are positive operators.

Assumption (T2): We will show that assumption (T2a) ensures that T ∗ is u0-
positive in the sense of Krasnosleskii [42], while (T2b) ensures that T is u0-positive.
One of these is sufficient. Krasnoselskii defines u0-positivity as follows.

Definition 2. Let X be a Banach space, K the non-negative cone and L : X → X
linear. Then

(a) L is positive if L : K →K .
(b) Let L be positive. L is u0-bounded from below if there is a fixed u0 ∈K \{0}
such that ∀φ ∈K \{0} ∃N > 0,α > 0 with

αu0 ≤ LN
φ .

(c) Let L be positive. L is u0-bounded from above if there is a fixed u0 ∈K \{0}
such that ∀ψ ∈K \{0} ∃N > 0,β > 0 with

LN
ψ ≤ βu0.

(d) L is u0-positive if conditions (b) and (c) are both satisfied.
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(e) K is reproducing if for all φ ∈ X there exist φ+,φ− ∈ K such that φ =
φ+−φ−.

Using this definition, we can prove the following Lemma:

Lemma 1. Assumption (T2a) implies that T ∗ is u0-positive, while (T2b) implies
that T is u0 positive.

Proof. Consider φ ∈K . We compute the iterate

T ∗N
φ =

∫
V

T (v′,w1) · · ·T (wN1 ,v)φ(v
′)dw1 . . .dwN+1dv′

=
∫

V
T N(v′,v)φ(v′)dv′

≥
∫

V
u0(v)φ(v′)dv′ = u0(v)

∫
V

φ(v′)dv′ = αu0(v).

The last inequality is a direct consequence of (T2a). Similarly, we have

T ∗N
φ ≤

∫
V

ρu0(v)φ(v′)dv′ = ρ

∫
V

φ(v)dvu0(v) = βu0(v).

The second statement has a very similar proof. ut

Condition (T2) has an interesting biological meaning. It is not assumed that the
kernel T is positive. In fact, it is allowed for T to have support that is smaller than V ,
but some iterate of T must cover V . For example if individuals are able to turn for up
to 45 degrees per turn, then they are able to reach any direction after 4 turns. In that
case T 4 would be u0 positive. See Figure 6 for an illustrative explanation. Using (T2)
we are more general than most of the publications on transport equations in biology.
It is almost always assumed that T > 0, but here we can relax that assumption.

4

2

T
2

T
3

T
3

T(v,v’) T
1

T

v’
v’

T
4

T

Fig. 6 Illustration of the iterates of a turning operator. On the left we indicate the support of a
turning kernel that allows directional changes of up to 45◦. On the right we indicate the range of
the iterates T 1,T 2,T 3,T 4. After four turns, all directions are possible.

The u0 positivity is already sufficient to have a Krein-Rutman property:
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Theorem 2. (Krasnoselskii, [42], Theorems 2.10, 2.11)
Let K be a reproducing non-negative cone in X. Let L be u0-positive. Let ϕ0 ∈K
be an eigenfunction of L. Then

(i) Lϕ0 = λ0ϕ0 and λ0 is a simple, leading eigenvalue,
(ii) ϕ0 is unique in K up to scalar multiples, and
(iii) |λ0|> |λ | for all other eigenvalues λ .

In our case we have

T ∗1 =
∫

V
T (v′,v)1dv′ = 1

by (T1). Hence ϕ0 = 1 ∈K is the leading non-negative eigenfunction of T ∗

with eigenvalue λ0 = 1. All of the other eigenvalues are such that |λ | < 1. We also
have

T 1 =
∫

V
T (v,v′)dv′ = 1

by (T4).This means that we also have that ϕ0 = 1 is the leading non-negative eigen-
function of T .

Assumption (T3): Note that in Krasnoselskii’s theorem above it is assumed that
there exists an eigenfunction in K . This is not always the case, and assumption
(T3) ensures the existence of a spectral gap between the leading eigenvector ϕ0 = 1
and the remainder of the spectrum. We will show later that if T is a normal operator
(or if T ∗ is normal), then (T2) implies (T3).

Assumption (T4): Condition (T4) looks as natural as the second condition in (T1).
It has, however a very different meaning. The meaning of (T4) is that the eigenvalue
equation ∫

V
T (v,v′)φ(v′)dv′ = λφ(v)

has a constant solution φ(v) = 1 with eigenvalue λ = 1. This is a very special
case that allows us to develop a full theory and to do the macroscopic scalings done
later in this chapter. If the leading eigenfunction ϕ0(v) is not constant the methods
will change slightly, and particular care must be given to the resulting non-isotropic
diffusion equations, which is discussed elsewhere [34, 32]. Both cases are equally
important in terms of applications.

3.2 The turning operator

The turning operator describes the whole right hand side of (20) and is given by
L : L2(V )→ L2(V ):
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L p(v) =−µ p(v)+µT p(v)

with adjoint

L ∗p(v) =−µ p(v)+µT ∗p(v).

We can now write down a result about the spectrum of the turning operator.

Lemma 2. Assume (T1)-(T4). Then 0 is a simple eigenvalue of L ∗ and L with
leading eigenfunction ϕ0 = 1. All other eigenvalues λ satisfy −2µ <Reλ < 0. All
other eigenfunctions have integral zero.

Proof. Both T and T ∗ have a spectral radius of 1, which implies that µT has a
spectral radius of µ . We therefore have

−2µ < Reλ < 0.

If ϕ 6= ϕ0 is another eigenfunction, then ϕ ∈ 〈1〉⊥ which implies

0 =
∫

V
ϕ(v)1dv =

∫
V

ϕ(v)dv.

ut

Condition (T3) allows us to introduce another constant, called µ2, which will give
us information about the dissipativity of the turning operator. Consider ψ ∈ 〈1〉⊥
then

∫
V

ψL ψdv = −µ

∫
V

ψ
2dv+µ

∫
V

ψT ψdv

≤ −µ(1−‖T ‖〈1〉⊥)
∫

V
ψ

2dv

= −µ2‖ψ‖2
2

with µ2 = µ(1−‖T ‖〈1〉⊥) and ‖T ‖〈1〉⊥ < 1.

3.3 Normal operators

In this section we discuss what it means for an operator to be normal, and explore
some of the consequences of this characteristic.

Definition 3. An operator A is defined to be normal if AA∗ = A∗A.

Theorem 3. ([5] p. 55 et. seq.) If A is normal, then there exists a complete orthog-
onal set of eigenfunctions. A has a spectral representation A = ∑λ jPj where λ j are
the eigenvalues and Pj the spectral projections.
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If T is normal, then we can choose an orthonormal basis φn with ‖φn‖= 1.

Lemma 3. If T is normal, then (T3) follows from (T1) and (T2).

Proof. Consider the operator norm of T on 〈1〉⊥:

‖T ‖〈1〉⊥ = sup
φ∈〈1〉⊥
‖φ‖2=1

‖T φ‖2

= sup
φ

‖T
∞

∑
n=1

αnφn‖2

= sup
φ

‖
∞

∑
n=2

αnλnφn‖2

= sup
φ

(
∞

∑
n=2
|αnλn|2

) 1
2

< sup
φ

(
∞

∑
n=2
|αn|2

) 1
2

= ‖φ‖2 = 1.

ut

In our case we need to check if T is normal:

T T ∗
φ = T

(∫
V

T (v,v′)φ(v′)dv′
)

=
∫

V

∫
V

T (v,v′′)T (v′,v′′)φ(v′)dv′dv′′

T ∗T φ =
∫

V

∫
V

T (v′′,v)T (v′′,v′)φ(v′)dv′dv′′.

In order for our operator to be normal, we thus obtain the necessary symmetry
condition ∫

V
T (v,v′′)T (v′,v′′)dv′′ =

∫
V

T (v′′,v)T (v′′,v′)dv′′.

This is satisfied, for example, when T is a symmetric kernel of the form T (v,v′)=
T (v′,v),∀(v,v′) ∈V 2.

3.4 Important Examples

We now consider two important examples, and investigate how the theory discussed
so far applies.
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3.4.1 Example 1: Pearson walk

For the first example, we will choose our space of directions to be a sphere of con-
stant radius, i.e. V = sSn−1. This means that our particles can choose any direction,
and will travel with constant speed. We will choose the simplest turning kernel,
which is constant and normalized: T (v,v′) = 1

|V | .
We will now check (using X) if our four basic assumptions are satisfied for this

simple choice of V and T , which in turn allows us to apply any of the theory that we
develop later.

(T1) T ≥ 0 X,
∫

V T dv = 1 X,
∫

V
∫

V T 2dvdv′ = 1 X, and so the conditions
of assumption (T1) are met.
(T2) Not only do we have that T ≥ 0, but we actually have the stronger condition
T > 0. This implies that T is u0-positive. X
(T3) We have

T ∗
φ =

∫
V

1
|V |

φ(v′)dv′ = T φ =
∫

V

1
|V |

φ(v)dv.

We can thus conclude that T is self adjoint and henceforth it is normal. Then by
Lemma 3, we can conclude that (T3) is satisfied. X
(T4)

∫
V T dv′ = 1. X

The Pearson walk satisfies all assumptions (T1)-(T4), and it will form our proto-
type for the theory and scaling developed later.

3.4.2 Example 2: movement on fibre networks

There are many examples that arise naturally in biology where the particles in ques-
tion, whether they be animals or cells, make their turning decisions based on their
environment. For example, glioma cells diffusing in the brain will use the white
matter tracts as highways for their movement [9, 17, 16, 60]. We also see this phe-
nomenon in ecology, where wolves will use paths that are cut in the forest for oil
exploration to hunt more efficiently [44, 45]. We thus consider in this example these
types of situations, where the turning kernel is given by an underlying anisotropy of
the environment. We use unit vectors θ ∈ Sn−1 to describe the anisotropies of the
environment through a directional distribution q(x,θ) with∫

Sn−1
q(x,θ)dθ = 1 and q(x,θ)≥ 0.

In the context of glioma growth, q(x,θ) denotes the distribution of nerve fibre direc-
tions in each location x [51]. In the example of wolf movement the function q would
provide information of preferred movement directions due to roads or seismic lines
[34]. We assume that individuals favour directions that are given by the environ-
ment, and, for simplicity, we consider unit speed |v| = 1,V = Sn−1. We also make
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the simplifying assumption that it does not matter which direction an individual was
previously travelling, essentially neglecting inertia. Then T (v,v′,x) = q(x,v). The
assumption (T1)-(T4) relate to the v dependence only, hence in the following we
ignore the x dependence in q, noting, however, that q, in general, would depend on
x.

(T1) q ≥ 0 X,
∫

V T (v,v′)dv =
∫

V q(v)dv = 1, Xand
∫

V
∫

V q2(v)dvdv′ = |V | ·∫
V q2(v)dv < ∞, henceforth q ∈ L2(Sn−1). X

(T2) We first compute the iterates:

T N(v′,v) =
∫

V
· · ·
∫

V
T (v′,w1) · · ·T (wN−1v)dw1 · · ·dwN−1

=
∫

V
· · ·
∫

V
q(v′)q(w1) · · ·q(wN−1)dw1 · · ·dwN−1

= q(v′).

Condition (T2a) therefore becomes:

u0(v)≤ q(v′)≤ ρu0(v),

which is satisfied only if q > 0.
The condition (T2b) becomes:

u0(v)≤ q(v)≤ ρu0(v),

and so we have a weaker condition, only requiring that q be u0 positive.
(T3) Is T normal? T would be normal if∫

V
q(v)q(v′)dv′′ =

∫
V

q(v′′)q(v′′)dv′′

which is equivalent to the condition

|V |q(v)q(v′) = ‖q‖2
2.

We see that this is true if q =const., bringing us back to the Pearson case. In
general then, T (v,v′) = q(v) is not normal. We must therefore do some more
work in order to verify (T3). We can compute ‖T ‖〈1〉⊥ directly:

‖T ‖〈1〉⊥ = sup
φ∈〈1〉⊥
‖φ‖=1

∣∣∣∣∣∣∣∣∫V
q(v)φ(v′)dv′

∣∣∣∣∣∣∣∣
= sup

∣∣∣∣∣∣∣∣q(v)∫V
φ(v′)dv′

∣∣∣∣∣∣∣∣
= 0.
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Therefore on 〈1〉⊥ the operator T is the zero operator. This satisfies assumption
(T3), but it also shows that the splitting of L2(V ) = 〈1〉 ⊕ 〈1〉⊥ is not a good
choice here. Indeed, we will later see that we should choose L2(V ) = 〈q〉⊕〈q〉⊥.
Finally, we check condition (T4).∫

V
T (v,v′)dv′ = q(v)|V |= 1,

which is only true for q(v) =const.

So for this example, if T (v,v′) = q(v) is not constant, then it fails (T4) and (T3)
is problematic.

3.4.3 Example 3 (homework) Symmetric kernels

Check if symmetric kernels of the form a), b) or c) satisfy the assumptions (T1)-
(T4):

a) T (v,v′) = t(|v− v′|)
b) T (v,v′) = t(v− v′)

c) T (v,v′) = t(v′).

3.5 Main spectral result

In this section, we summarize the results thus far into one main theorem and provide
a proof of the missing pieces.

Theorem 4. [30] Assume (T1)-(T4). Then

1) 0 is a simple leading eigenvalue of L with unique eigenfunction ϕ0 = 1,
2) All other eigenvalues λ are such that −2µ < Reλ ≤ −µ2 < 0 and all other
eigenfunctions have zero mass.
3) L2(V ) = 〈1〉⊕〈1〉⊥ and for all ψ ∈ 〈1〉⊥:∫

V
ψL ψdv≤−µ2‖ψ‖2

2, where µ2 = µ

(
1−‖T ‖〈1〉⊥

)
,

4) ‖L ‖ has a lower and upper estimate

µ2 ≤ ‖L ‖L (L2(V ),L2(V )) ≤ 2µ,

5) L〈1〉⊥ has a linear inverse F (pseudo-inverse) with

1
2µ
≤ ‖F‖〈1〉⊥ ≤

1
µ2

.
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Proof. We have already verified parts 1)–3) earlier in this section, thus we now
prove 4) and 5). To verify 4):

‖L ‖L (L2(V ),L2(V )) = sup
φ∈L2(V )
‖φ‖=1

‖L φ‖2

≤ sup
φ=α+φ⊥

‖L α‖2︸ ︷︷ ︸
=0

+‖L φ
⊥‖2


= sup

φ⊥∈〈1〉⊥
‖L φ

⊥‖2

= sup
φ⊥∈〈1〉⊥

‖−µφ
⊥+µT φ

⊥‖2

≤ sup
φ∈〈1〉⊥

µ‖φ⊥‖2 +µ‖T φ
⊥‖2

≤ sup
φ⊥∈〈1〉⊥

2µ‖φ⊥‖2

and ∀φ ∈ 〈1〉⊥, ‖φ‖2 = 1 we have

µ2‖φ‖2
2 ≤−

∫
φL φdv

≤
Hölder

‖φ‖2 · ‖L φ‖2 ≤ ‖L ‖L (L2(V ),L2(V )),

which implies µ2 ≤ ‖L ‖ ≤ 2µ .

Part 5) follows directly from F =
(
L |〈1〉⊥

)−1
. For example, if Fφ = z and

φ ,z ∈ 〈1〉⊥, then L z = φ and

‖φ‖= ‖L z‖

⇒ µ2‖z‖ ≤ ‖φ‖ ≤ 2µ‖z‖

⇒ 1
2µ
‖φ‖ ≤ ‖z‖ ≤ 1

µ2
‖φ‖

⇒ 1
2µ
‖φ‖ ≤ ‖Fφ‖ ≤ 1

µ2
‖φ‖.

ut
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3.6 Existence and uniqueness

Since the transport equation as formulated in (20) is linear, we immediately get
existence and uniqueness of solutions as follows. We denote the shift operator A :=
−(v ·∇) with domain of definition

D(A) = {φ ∈ L2(Rn×V ) : φ(.,v) ∈ H1(Rn)}.

The shift operator is skew-adjoint and, according to Stone’s theorem ([7, 52]) it
generates a strongly continuous unitary group on L2(Rn×V ). The right hand side
of (20) is given by the bounded operator L , hence it is a bounded perturbation of
the shift group. Consequently, (20) also generates a strongly continuous solution
group on L2(Rn×V ). Moreover. given initial conditions u0 ∈ D(A), then a unique
global solution exists in

C1([0,∞),L2(Rn×V ))∩C([0,∞),D(A)).

4 The formal diffusion limit

The computation of the diffusion limit, as presented here, is one of the standard
methods for the analysis of transport equations. The equation type of a transport
equation is hyperbolic, as it is based on pieces of ballistic motion, interspersed with
directional changes. As the frequency of these changes becomes large, and the speed
is large, then the movement looks, on a macroscopic scale, like diffusion (see Figure
7). Mathematically, this macroscopic limit can be obtained via a formal asymptotic
expansion with a small parameter ε . This parameter ε relates the ratio of the mi-
croscopic spatial scale to a macroscopic spatial scale. We will see that the above
assumptions (T1)-(T4) allow us to obtain a well defined and uniformly parabolic
limit equation, where the diffusivity is given by the turning kernel T . Before we
present the scaling method in Section 4.2, we discuss realistic scaling arguments for
E. coli bacteria in Section 4.1

4.1 Scalings

We now consider the movement of E. coli bacteria as an example of different time
and spatial scales [1, 14] . E. coli move by rotating their flagella, which are attached
to the outside membrane of the bacterium. If most flagella rotate counterclockwise,
they tend to align and propel the bacterium forward in a straight line. If many flag-
ella rotate clockwise, then the alignment of the flagella is lost, they point in very
different directions, which leads to a rotation of the cell. The clockwise - counter-
clockwise rotation of the flagella is controlled by an internal chemical signalling
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hours

µ m cmmm

seconds minutes

Fig. 7 Illustration of the relevant scalings for E. coli movement. While the time scales vary from
seconds to minutes to hours, the spatial scale changes of the order of µm to mm to cm.

pathway, which is influenced by external signals [14]. As seen through a micro-
scope, the bacteria fulfill a typical run and tumble movement, where longer periods
of straight movement are interspersed by short moments of reorientations. On an
individual scale, E. coli turn about once per second. Hence a mean turning rate µ

satisfies 1
µ
∼ 1

s . From the point of view of the cell, we call this the timescale of
turning τturn =O(1). If observed over 50-100 turns, the trajectories appear directed,
and a net displacement can easily be measured. We call this the intermediate drift
time scale τdrift ∼ O

( 1
ε

)
, and ε ∼ 10−2. If we allow for 2500-10000 turns, then the

trajectories look like diffusion and random movement. Hence we introduce a third
time scale of τdiff ∼O

(
1
ε2

)
. Just by the scale of observation, we identify three time

scales, a time scale of turning τturn, a drift time scale τdrift and a diffusion time scale
τdiff.

Mathematically, we identify the three scales through nondimensionalization.
This serves to remove dimension from the problem, thus simplifying the model.
In many situations, this will also reduce the number of parameters which we are
dealing with, and it often allows us to identify large and small parameter combina-
tions. In the case of transport equations, as introduced in the previous section, we
introduce

ṽ = v
s : where s is the characteristic speed. In case of E. coli it is about 10-20 µm

s ,
x̃ = x

L : where L is the characteristic length scale. For E. coli bacterial colonies
are of the order of 1mm-1cm, and
t̃ = t

σ
: where σ is the macroscopic time scale of observation. In the bacterial case

it is about 1-10h.

If we apply these scalings, then the transport equation becomes

1
σ

∂ p
∂ t̃

+
s
L

ṽ ·∇x̃ p =−µ p+µ

∫
V

T pdv′.

Using the values which we identified for E. coli, we find

σ ≈ 1−10 hours = 3600−36000 seconds ∼ 104s,

and
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s
L
≈

10 µm
s

10−3m
=

10 ·10−6 m
s

10−3m
= 10−2 1

s
.

When ε = 10−2, we then have 1
σ
∼ ε2 and s

L ∼ ε . If we remove the ∼, then we
obtain the resulting scaled transport equation:

ε
2 pt + εv ·∇p = L p. (21)

4.2 The formal diffusion limit

To compute the formal diffusion limit, we will begin by studying a regular pertur-
bation, or Hilbert expansion of p with respect to ε . This gives us

p(x,v, t) = p0(x,v, t)+ ε p1(x,v, t)+ ε
2 p2(x,v, t)+h.o.t. (22)

We will begin by substituting this expansion into equation (21) and match orders
of ε .

Order ε0:
L p0 = 0,

which implies that p0 is in the kernel of L , hence

p0(t,x,v) = p̄(x, t),

which is independent of v. We get this from the first result of Theorem 4.

Order ε1:
v ·∇p0 = L p1. (23)

This equation can be solved for p1 if v ·∇p0 ∈ 〈1〉⊥, so we need to check if this
solvability condition is satisfied. Computing the following inner product of v ·∇p0
and 1 we find:

∫
V

v ·∇p0dv = ∇


∫

V
vdv︸ ︷︷ ︸

=0 due to
symmetry of V

p̄

= 0.

Hence equation (23) can be solved as p1 = F (v ·∇p0) = F (v ·∇ p̄),

Order ε2:
p0t + v ·∇p1 = L p2. (24)
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This case is a bit more complicated to solve than the first two cases. Here we have
two options for how to proceed; a) integrate, or b) use the solvability condition. In
the case studied here, a) and b) are equivalent, however, in other more general cases
we would choose option a) and integrate (see Section 4.6) .

If we integrate equation (24), we obtain∫
V

p0t + v ·∇p1dv = 0,

since the right hand side integrates to 0. Plugging in the results from the order 0
and order 1 matching, this becomes∫

V
p̄t(x, t)dv+

∫
V

v ·∇F (v ·∇ p̄(x, t))dv = 0.

Since p̄t does not depend on v, we can simplify the first term. Also, since ∇

is a spatial derivative, and the integral is over the velocity space, we can take the
derivative out of the integral in the second term. This equation thus becomes

|V |p̄t(x, t)+∇ ·
∫

V
vF vdv ·∇ p̄(x, t).

We can simplify this to

p̄t = ∇ ·D∇p̄ (25)

where the diffusion tensor D is defined to be

D =− 1
|V |

∫
V

vF v⊥dv =− 1
|V |

∫
V

v⊗F vdv.

Where we use two equivalent forms to denote an exterior product. We can write this
in index notation as well

∇ ·D∇ =
n

∑
i, j=1

∂iDi j
∂ j, with Di j =− 1

|V |

∫
V

viF v jdv.

The components in the diffusion tensor D give the relative rates of diffusion in
different directions. This process thus allows for the directional rate of spread to
vary. If D is a constant multiple of the identity matrix of appropriate dimension,
then the resulting diffusion is called isotropic. Alternatively, if the rates of spread
do in fact vary with direction, we have anisotropic diffusion.

4.2.1 Example: Pearson walk

We can once again consider the Pearson walk as an example. Recall from before that
for this example we choose V = sSn−1 and T (v,v′) = 1

|V | . We first must compute the
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inverse operator F . Given φ ∈ 〈1〉⊥, we wish to find z ∈ 〈1〉⊥ such that L z = φ .
We will use the fact that z ∈ 〈1〉⊥ implies

∫
V z(v)dv = 0.

Now if we apply the operator L , we have that L z = φ is equivalent with

−µz(v)+µ

∫
V

1
|V |

z(v′)dv′︸ ︷︷ ︸
=0

= φ(v),

and so z(v) =− 1
µ

φ(v). Hence

F =− 1
µ

as multiplication operator.

Then for this example, we find that the diffusion tensor is

D =
1

µ|V |

∫
V

vvTdv.

In order to have an explicit form for D, we must then compute∫
V

vvTdv, with V = sSn−1.

For example, in 2-dimensions: V = sS1, and v = s
(

cosφ

sinφ

)
. We can then explicitly

compute

vvT = s2
(

cos2 φ cosφ sinφ

cosφ sinφ sin2
φ

)
,

and so

D =
s2

|V |

∫ 2π

0

(
cos2 φ cosφ sinφ

cosφ sinφ sin2
φ

)
sdφ .

We can then solve by integrating component wise. If we consider this tensor in
3 dimensions, then we have double integrals of trigonometric functions to solve.
This is still possible, but tedious. In higher dimensions the integral becomes more
and more cumbersome. In the proof of the next Lemma we propose a clever use of
the divergence theorem to compute the above integral in any dimension. As shown
by Hillen in [26], this method can be generalized to higher dimensions and higher
velocity moments.

Lemma 4. Let V = sSn−1,ω0 = |Sn−1|, then |V |= sn−1ω0 and∫
V

vvTdv =
ω0sn+1

n
I,

where I is the n-dimensional identity matrix.
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Proof. Since
∫

V
vvTdv is a tensor, we use two test vectors a,b ∈ Rn and use tensor

notation, i.e. summation over repeated indices

aibi =
n

∑
i=1

aibi

then

aT
∫

V
vvTdv b =

∫
V

aiviv jb jdv

= s
∫

V

vi

|v|
(aiv jb j)dv

=︸︷︷︸
divergence

theorem

s
∫

Bs(0)
divvi(aiv jb j)dv

= s
∫

Bs(0)
aibidv

= s|Bs(0)|aibi

We can compute |Bs(0)| as follows

|Bs(0)|= sn|B1(0)|= sn
∫

B1(0)
dv =

sn

n

∫
B1(0)

divvvdv.

If we apply the divergence theorem again this becomes

sn

n

∫
Sn−1

σ ·σdσ =
sn

n
|Sn−1|= sn

n
ω0,

where ω0 ≡ |Sn−1|. Then

aT
∫

V
vvTdv b = aT sn

n
|Sn−1|b =

sn+1

n
ω0aTb

for all vectors a,b ∈ Rn. We therefore obtain∫
V

vvTdv =
ω0sn+1

n
I.

ut

Remarks:

1. For general symmetric V , there exists κ > 0 such that
∫

V
vvTdv = κI.

2. In [26] explicit formulas for all higher velocity moments
∫

V viv j · · ·vkdv were
computed.

Now returning to our discussion of the Pearson walk example. We can explicitly
compute the diffusion tensor using the above discussion, i.e.
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D =
1

µ|V |

∫
V

vvTdv =
1

µ|V |
ω0sn+1

n
I,

and since |V |= sn−1ω0, this simplifies to

D =
s2

µn
I.

This diffusion tensor corresponds to isotropic diffusion, and so the use of the
tensor is not necessary, and we can simply use a diffusion coefficient. This gives the
isotropic diffusion equation

p̄t =
s2

µn
4 p̄.

4.3 Ellipticity of the diffusion tensor

The above limit construction leads to a diffusion-like equation (25) and the first
question is under which condition is the operator ∇ ·D∇ uniformly parabolic. We
will see that here the condition (T3) and the corresponding constant µ2 are impor-
tant.

Lemma 5. Assume (T1)-(T4). The diffusion tensor D is uniformly elliptic, i.e.

∃κ > 0 such that ϕ ·Dϕ ≥ κ|ϕ|2.

Proof. Let ϕ ∈ Rn and compute

ϕ ·Dϕ =− 1
|V |

∫
V
(ϕ · v)F (ϕ · v)dv.

Since ϕ ·v ∈ 〈1〉⊥, we can apply F i.e. there exists z = F (ϕ ·v) and L z = ϕ ·v.
Then

ϕ ·Dϕ = − 1
|V |

∫
V

L z(v)z(v)dv

≥ µ2

|V |
‖z(v)‖2

2 from our spectral result

=
µ2

|V |

∫
V

∣∣∣∣F (
ϕ

|ϕ|
· v
)∣∣∣∣2 dv|ϕ|2

≥ c0
µ2

|V |
|ϕ|2

with
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c0 = min
|ϕ|=1

∫
V
|F (ϕ · v)|2dv > 0.

Note that indeed c0 > 0 since ‖F‖〈1〉⊥ > 1
2µ

. Furthermore, the integral∫
V |F (ϕ · v)|2dv does not depend on the choice of ϕ , since V is symmetric. ut

Theorem 5. [52, 12] Assume (T1)-(T4). The differential operator ∇ ·D∇ generates
an analytic semigroup on L2(Rn). For p(0, .,v) ∈ L2(Rn) and p̄0(x) =

∫
p(0,x,v)dv

there exists a unique global solution p̄(x, t) of

p̄t = ∇ ·D∇p̄

with the following properties:

(i) p̄ ∈C([0,∞),L2(Rn))

(ii)
∂ p̄
∂ t
∈C∞((0,∞)×Rn)

(iii) ‖ p̄(., t)‖∞ is a decreasing function of t.

Corollary 1. (Regularity, [58]) For each m ∈ N and each 0 < ϑ < ∞ there exists a
constant C0 =C0(m,ϑ ,‖ p̄0(., t)‖2)such that

‖p̄‖Cm((ϑ ,∞)×Rn) ≤C0.

4.4 Graphical representations of the diffusion tensor

There are two intuitive ways to graphically represent a diffusion tensor: ellipsoids
and peanuts. Let D denote a three dimensional diffusion tensor.

1. The fundamental solution of the standard diffusion equation in Rn, i.e.

ut = ∇ ·D∇u

is the multidimensional Gaussian distribution, of the form

G(x, x̃) =C exp
(
−(x− x̃)T D−1(x− x̃)

)
.

with an appropriate normalization constant C. This function describes the proba-
bility density of finding a random walker at a distance w = x− x̃ from a starting
point x̃. Hence the level sets of wT D−1w describe locations of equal probability,
which is the diffusion ellipsoid:

Ec := {w ∈ Rn : wT D−1w = c}
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If the value of the constant is changed, we will obtain different ellipsoids, though
all will be similar in the geometric sense. As such, the constant is often chosen
to be equal to 1.

2. The function from Sn−1 → R defined as θ 7→ θ T Dθ gives the apparent diffu-
sion coefficient in direction θ , and also the mean squared displacement in that
direction and it is called the peanut.

These objects are, in fact not the same. While the probability level sets are ellipsoids,
the apparent diffusion coefficient is typically peanut shaped, as can be seen for our
examples in Figure 8.

We chose examples of diffusion tensors in diagonal form. If they are not in diag-
onal form, then the ellipsoids or peanuts are rotated relative to the coordinate axis.
The diffusion ellipsoid for a diagonal diffusion matrix D = diag(λ1,λ2,λ3) is

E1 =

{
w ∈ Rn :

(
w1√
λ1

)2

+

(
w2√
λ2

)2

+

(
w3√
λ3

)2

= 1

}
,

which is clearly an ellipsoid. The peanut in this case is the map

θ 7→ λ1θ
2
1 +λ2θ

2
2 +λ3θ

2
3 .

In Figure 8 we consider

D1 :=

 5 0 0
0 3 0
0 0 1

 , D2 =

 8 0 0
0 1 0
0 0 0.2

 .

Having peanuts and ellipsoids, there is a nice way to visualize the condition of
ellipticity of D.

Definition 4. D is uniformly elliptic, if there exists a constant κ > 0 such that

θ
T ·Dθ > κ|θ |2, (26)

for all vectors θ ∈ Rn.

Lemma 6. 1. The diffusion tensor D is uniformly elliptic, iff the peanut of D con-
tains a ball.

2. The diffusion tensor D is uniformly elliptic, iff the ellipsoid of D contains a ball.

Proof. Let us consider the peanut case first. The map θ → κ|θ |2 can be written as
θ → κθ T Iθ with the identity matrix I. Hence it is also a peanut. A very special
peanut, in fact, since it is a ball of radius κ . Then condition (26) says that the peanut
of D contains the peanut of κI.

Related to the diffusion ellipsoid, we need to work a little more.

”=⇒” Assume D is uniformly elliptic, and consider v with vT D−1v = 1. Without
restriction, we can study the level set of level 1. We claim:
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Fig. 8 Left: Diffusion ellipsoid. Right: The corresponding peanut for the apparent diffusion in
direction θ . Top row: example D1, bottom row, example D2.

Claim 1: |v|>
√

κ .
To prove Claim 1. we need to show two more statements:
Claim 2: inf|φ |=1 ‖Dφ‖ ≥ κ .
Assume Claim 2 is not true. Then there exists φ0 with |φ0|= 1 such that ‖Dφ0‖<
κ . However,

κ = κ|φ0|2 ≤ φ0Dφ0 ≤ |φ0|‖Dφ0‖< κ,

which is a contradiction. Hence Claim 2 is true.
Claim 3: ‖D−1‖op ≤ 1

κ
.

Claim 2 implies that κ‖φ‖ ≤ ‖Dφ‖, for all φ ∈ Rn. Let z := Dφ , such that φ =
D−1z. Then

κ‖D−1z‖ ≤ ‖z‖ =⇒ ‖D−1z‖
|z|

≤ 1
κ
.

Hence Claim 3 is true.
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Finally, to prove Claim 1 we estimate:

1 = vT D−1v≤ ‖D−1‖op‖v‖2 ≤ 1
κ
|v|2

Hence |v| ≥
√

κ and the ellipsoid E1 contains a ball of radius
√

κ .
”⇐=” If the ellipsoid contains a ball of radius r, then it is non degenerate and
it has n main axis ei, with lengths αi, i = 1, . . . ,n. These can be arranged such
that 0 < r ≤ α1 ≤ α2 ≤ ·· · ≤ αn. The main axis vectors are eigenvectors or
generalized eigenvectors of D−1 with eigenvalues α2

i , i = 1, . . . ,n. Then D has
the same eigenvectors and generalized eigenvectors with eigenvalues λi = α

−2
i ,

i = 1, . . . ,n. Then θ T Dθ ≥ κ|θ |2 for

κ := min
{

1
α2

i
, ı = 1, . . . ,n

}
=

1
α2

n
.

ut

We show an illustration for the case of example D1 in Figure 9.

Fig. 9 Left: The peanut of D1 contains a ball. Right: The ellipsoid of case 1 contains a ball of
radius 1.

4.4.1 An anisotropic random walk

In order to get an approximation of the overall behaviour of a population in a random
walk, we consider an individual based model in which each individual performs a
random walk. We then show a frequency plot of where each individual ends up.
We show that the frequency plot closely matches the solution of the corresponding
diffusion model.
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1-dimendional simulations

As a first simulation, we can perform a random walk in one-dimension. It’s im-
portant to note that in one dimension, there is no such thing as anisotropy since
there is only one direction along which particles can diffuse. Additionally, the one
dimensional diffusion equation does not permit a diffusion tensor, and instead can
only have a diffusion coefficient. For the one dimensional random walk, we begin
with 1000 particles at the origin. At each time step, a random decision is made with
equal probability of moving to the left, moving to the right, or staying where it is.
Figure 10A shows the results of such a simulation after 2000 time steps. There is
a higher concentration of individuals near the starting point (x = 0), however for
a single simulation, the results are very noisy. As such, it is better to consider an
average frequency plot over many runs. Figure 10B shows the frequency plot that
results when the average frequency over 1000 runs is computed. This is the solid
line in the plot. We then use the variance of the points in this distribution to plot
the corresponding Gaussian curve. This curve is the dotted line. It is clear from this
that the distribution of particles after a one-dimensional random walk very closely
approximates a Gaussian distribution.

Fig. 10 A: Frequency plot of the population after 2000 iterations of a random walk. Notice that
the highest number of individuals are found near the starting point (x = 0). B: Plot showing the
average frequency plot over 1000 runs of a population after 2000 iterations (solid line), and the
corresponding Gaussian curve (dotted line).

2-dimensional simulations

As discussed above, when we are in higher dimensions, we can replace our dif-
fusion coefficient with a matrix. When this matrix is a constant multiple of the iden-
tity, particles are spreading out with equal rates in all directions, corresponding to
isotropic diffusion. When this matrix is not a constant multiple of the identity, par-
ticles spread at different rates in different directions. This is anisotropic diffusion.
To get a better idea about what anisotropic diffusion looks like, we can compare the
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results of an isotropic random walk to those of an anisotropic random walk, both in
two dimensions.

For an isotropic random walk in two dimensions, we started 1000 individuals at
the origin and again let them spread out following some given set of rules. To de-
termine each individual’s next step, a random angle was generated and a constant
step size was assigned. The distribution of these individuals after 100 time steps is
shown in the left column of the top row of Figure 11. We see that the distribution
looks approximately circular with the highest concentration found where the parti-
cles began (at (0,0)). A frequency plot of this data would be noisy, just as in one
dimension, so for the frequency plot we considered the average over 150 runs. The
result is shown in the right hand column of the top row of Figure 11. This frequency
plot shows a roughly Gaussian distribution, as was seen in one dimension.

Simulation of an anisotropic random walk in two dimensions followed a similar
procedure with one notable difference. Instead of choosing a fixed step size, individ-
uals could move further in certain directions. We began with 1000 individuals at the
origin, just as we did in the isotropic case, and once again allowed 100 iterations. A
random angle was generated for each individual, however the step size depended on
this angle. A dominant direction was chosen along which individuals could move
further, corresponding to the dominant eigenvector of the diffusion tensor. The step
size was then determined by the diffusion ellipsoid. In this case, the dominant di-
rection was chosen to be the positive and negative y-axis. Not surprisingly then,
the resulting distribution showed an ellipsoidal shape with the highest concentration
found at the origin. More spread occurred in the chosen dominant direction. Such
a distribution can be seen in the first column of the second row of figure 11. The
frequency plot for the average distribution over 150 runs is shown in the right hand
column of the second row of figure 11.

An exercise such as this allows us to visualize anisotropic diffusion. When these
individuals have a preference for diffusing in a given direction, we see that we end
up with a distribution that is “stretched” in that direction. For biological situations,
such as cancer cells travelling on white matter tracts in the brain, this means we
would expect to see the cells travel more along this particular direction than in per-
pendicular directions. This results in irregular shapes of spread as is commonly seen
in cancer models. As such, anisotropy of diffusion tensors provide us a valuable tool
for making more accurate and useful models.

4.5 Anisotropic vs. isotropic diffusion

Now depending on the form of the diffusion tensor D, we can obtain either anisotropic
or isotropic diffusion. As mentioned before, We call the diffusion isotropic if D=αI
for some α > 0; otherwise diffusion is called anisotropic. For isotropic diffusion the
rate of spread is equivalent in all directions. The resulting distributions are spherical
in nature. Anisotropic diffusion, however, occurs when the rate of diffusion varies
in different directions. This can arise from many biological problems where ani-
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Fig. 11 Top row: A. Plot showing the distribution of 1000 particles after 100 iterations of an
isotropic random walk. B. Frequency plot showing the average frequency over 150 runs of an the
isotropic random walk as described in part A. Bottom row: A. Plot showing the distribution of
1000 particles after 100 iterations of an anisotropic random walk. B. Frequency plot showing the
average frequency over 150 runs of an the anisotropic random walk as described in part A.

mals have certain preferred directions of motion. The rates of spread in these direc-
tions are effectively higher, and the resulting distributions are ellipsoidal in nature,
aligned with the dominant direction of spread.

In this section we will derive criteria on the turning kernel T and on the turning
operator L that ensure that the corresponding parabolic limit is isotropic. For this
we introduce the expected velocity

v̄(v) :=
∫

V
T (v,v′)v′dv′ (27)

For the Pearson walk, with V = sSn−1, and T (v,v′) = 1
|V |we find an expected

velocity of

v̄(v) =
∫

V

1
|V |

v′dv′ = 0.

More generally, if T has the form T (v), then v̄(v) = 0 as well.
Also, if we integrate the expected velocity, then we get zero by condition (T1):
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V

v̄(v)dv =
∫

V

∫
V

T (v,v′)v′dv′dv = 0.

To decide if the diffusion limit is isotropic or anisotropic we compare three state-
ments:

(St1) There exists an orthonormal basis {e1, . . . ,en} ⊂ Rn such that the coor-
dinate mappings φi : V → R,φi(v) = vi are eigenfunctions of L with common
eigenvalue λ ∈ (−2µ,0), for all i = 1, . . . ,n.
(St2) The expected velocity is parallel to v, i.e.

v̄(v)‖ v and γ :=
v̄(v) · v

v2

is the adjoint persistence with γ ∈ (−1,1).
(St3) There exists a diffusion coefficient d > 0 such that D = dI (isotropic).

Theorem 6. Assume (T1)-(T4) and that V is symmetric w.r.t. SO(n), where SO(n) is
the special orthogonal group of size n. Then we have the inclusions

(St1) ⇔ (St2) ⇒ (St3).

The constants λ ,γ,d are related as

γ =
λ +µ

µ
, d =− KV

|V |λ
=

KV

|V |µ(1− γ)
,

where KV is given by ∫
vvT dv = KV I.

Moreover, if there is a matrix M such that v̄(v) = Mv for all v ∈ V then all three
statements are equivalent.

Proof. (St1)⇔ (St2):

(St1) ⇔ L vi = λvi, ∀i
⇔ −µvi +µ(v̄(v))i = λvi

⇔ (v̄(v))i = γvi, γ =
λ +µ

µ

⇔ (St2)

(St1) ⇒ (St3): The coordinate mappings φi are eigenfunctions of L and φi ∈
〈1〉⊥. Hence φi are also eigenfunctions for F with eigenvalue λ−1 for each i =
1, . . . ,n. Then
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ekDe j = −
1
|V |

∫
V

vkF v jdv

= − 1
|V |

1
λ

∫
V

vkv jdv

= − KV

|V |λ
δk j

(St3)⇒ (St1) see Hillen and Othmer [30] ut

4.5.1 Examples

Example 1, Pearson walk: As seen earlier, for the Pearson walk we have v̄(v) = 0
and consequently also γ = 0. Still, statement (St2) is true and we find isotropic
diffusion with diffusion coefficient

d =
KV

|V |µ
=

s2

nµ
.

Example 2, Symmetric T . Now we again assume V = sSn−1 but now T is symmet-
ric of the form T (v,v′) = t(|v− v′|). The expected velocity

v̄(v) =
∫

V
T (v,v′)v′dv′ =

∫
V

t(|v− v′|)v′dv′,

which is not entirely trivial to compute. To do this, we consider a given v ∈ V .
Since V = sSn−1 is a ball of radiaus s, the level sets

Γa := {v′ ∈V : |v− v′|= a}

are circles on Sn−1 surrounding v, for a ∈ (−1,1). Then on Γa we have t(|v− v′|) =
t(a). Then we can split our integral

∫
V

t(|v− v′|)v′dv′ =
∫ 1

−1

∫
Γa

t(|v− v′|)v′dv′da

=
∫ 1

−1
t(a)

∫
Γa

v′dv′

=
∫ 1

−1
t(a)c1 v

= c2 v

where we use the fact that the symmetric integral
∫

Γa
v′dv′ is in direction v and c1,c2

are appropriate constants (note c1 can be negative). Hence v̄(v) is parallel to v, and
statement (St2) holds. Hence the diffusion limit is isotropic.
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Example 3, nonisotropic. For this example, we will consider a constant kernel T ,
perturbed by a second order correction term

T (v,v′) =
1
|V |

+ vTM v, with M ∈ Rn×n and V = sSn−1.

Then we have

D =
s2

nµ

(
I+
|V |s2

n
M

(
I− |V |s

2

n
M

)−1
)
,

which is non- isotropic (see details in [30]).

Example 4, chemotaxis.
For our last example, we will define T to be

T (v,v′) =
1
|V |

+ εQ(v,v′,S)∇S

which, as we will derive in the next section, gives a chemotaxis model with

D =
s2

nµ
and χ(S) =

1
|V |

∫
V

∫
V

vQ(v,v′,S)dv′dv.

For many more examples, see [48].

4.6 Chemotaxis

In the case of chemotaxis, the turning rate and the turning kernel might depend on
the signal S(x, t). We study these as perturbations ( see [48]). Note that we cannot
use v for the signal concentration, since it is used for the velocities. Hence here we
use S.

T (v,v′,S(·)) = T0(v,v′)+ ε
kT1(v,v′,S(·)),

µ(v,S(·)) = µ0 + ε
`
µ1(v,S(·)),

and study the four pairwise combinations when k, ` = 0,1. We assume that T0
satisfies (T1)-(T4), and that for T1 we have

T1 ∈ L2,
∫

V
T1(v,v′,S(·))dv = 0,

|T1(v,v′,S)| ≤ T0(v,v′,S).

Consider then the example generated when
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T (v,v′,S(·)) = T0(v,v′)+ εα(S)(v ·∇S)

which says it is more likely to choose a new direction in the direction of ∇S.
Then

L ϕ(v) = −µϕ(v)+µ

∫
V

T (v,v′)ϕ(v′)dv′+ εµα(S)
∫

V
(v ·∇S)ϕ(v′)dv′

= L0ϕ(v)+ εµα(S)(v ·∇S)ϕ̄(x, t),

= L0ϕ + εL1ϕ

where ϕ̄ =
∫

V ϕdv, and L1ϕ = µα(S)(v ·∇S)ϕ̄(x, t). Because of the perturbed
structure of the right hand side, we cannot directy apply the theory from above.
Instead, we again compare orders of ε . The scaled transport equation is now

ε
2 pt + εv ·∇p = L0 p+ εL1 p

ε0:
0 = L0 p0⇒ p0 = p0(x, t)

ε1:
v ·∇p0 = L0 p1 +L1 p0

which is equivalent with

v ·∇p0(x, t)−µα(S)(v ·∇S)p̄0 = L0 p1.

Since p̄0 =
∫

V p0(x, t)dv = |V |p0 we can write this as

v ·∇p0−µα(S)(v ·∇S)|V |p0 = L0 p1.

To solve for p1, we need to check that the left hand side is in the correct space so
that we may invert our operator. We thus check the solvability condition∫

V
vdv ·∇p0−µα(S)|V |

∫
V

vdv ·∇Sp0 = 0,

which is true due to the symmetry of V . Then

p1 = F0

(
v ·∇p0−µ|V |α(S)(v ·∇S)p0

)
,

where F0 is the pseudo inverse of the unperturbed part L0.
ε2:

p0t + v ·∇p1 = L0 p2 +µα(S)(v ·∇S)p̄1

We integrate this last equation to obtain
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|V |p0t +
∫

V
v ·∇F0 (v ·∇p0−µ|V |α(S)(v ·∇S)p0)dv

= 0+µα(S)
∫

V
v ·∇Sdv︸ ︷︷ ︸
=0

p̄1.

Hence

|V |p0t +∇ ·
∫

V
vF0vdv ·∇p0−µ|V |∇ ·

∫
V

vF0vdv ·α(S)∇Sp0 = 0.

We arrive at a (possibly anisotropic) chemotaxis equation

p0t = ∇(D∇p0−µ|V |α(S)p0D∇S)

where
D =− 1

|V |

∫
V

vF0vdv.

Notice that the diffusion tensor D appears in both terms, this means that the chemo-
taxis term carries the same anisotropy as the diffusion term, as it should, since the
cells move in a given (possibly anisotropic) environment and both movement terms
should be affected by anisotropy.

Finally, if we consider the Pearson walk with T0(v,v′) = 1
|V | and D = s2

nµ
I, then

we obtain the classical (isotropic) chemotaxis model

p0t = ∇(d∇p0−χ(S)p0∇S)

with d = s2

nµ
and χ(S) = |V |α(S)s2

n .

4.6.1 Other cases

We considered an order ε perturbation of T in detail in the previous section. We
can also consider order one perturbations, and perturbations of µ . Doing this we
get into technical challenges that we skip in this manuscript. For details we refer to
[48]. Here we simply list the corresponding examples.

Examples:

1. In case of bacterial movement, bacteria tend to turn more often if they move
down a gradient and less often if they move up a gradient. This can be expressed
through a perturbed turning rate

µ(S) = µ0(1− εb(S)(v ·∇S)). (28)
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If we combine this with the Pearson walk for T = 1/|V |, then we obtain a chemo-
taxis model

p0,t = ∇(d∇p0−χ(S)p0∇S),

with

χ(S) =
s2

n
b(S).

The function b(S) describes the signal sensing mechanism of the cells. Here we
see how this term enters the chemotaxis model.

2. Amoeba are able to modify their turning rate as well as actively choose a
favourable direction. This can be modelled by using a perturbed turning rate as
above (28) as well as a perturbed turning kernel as we did above. In a special
case we consider

T (v,v′,S) =
1
|V |

(
1+ εa(S)(v ·S)

)
.

Then we obtain a chemotaxis model with chemotactic sensitivity

χ(S) =
s2

n
(a(S)+b(S)),

hence both effects combine in a linear way.
3. If myxobacteria encounter a stream of myxobacteria moving in a given direction

b, then they also turn into that direction. This can be expressed through a special
kernel of

T (v,v′) = κ(v ·b)(v′ ·b).

In addition we consider the perturbed turning rate (28). The parabolic limit is of
chemotaxis form

p0,t = ∇(D∇p0−V (p0,S)∇S)

with nonisotropic diffusion

D =
s2

µ0n

(
I+
|V |s2

n
κbbT

(
I− |V |s

2

n
κbbT

)−1
)
.

Unfortunately, we have not been able to give a biological interpretation of this
diffusion tensor.

4. It is also possible to include volume constraints into the transport equation frame-
work. For example choosing

µ(S) = µ0

(
1− εb(S)(v ·∇S)β (

∫
pdv)

)
,

where β is a decreasing function. Then

p0,t = ∇(d∇p0− p0β (p0)χ(S)∇S),
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which is the volume filling chemotaxis model as introduced by Hillen and Painter
[28].

4.7 Persistence

An important biological quantity is the persistence. It is an indicator for the particles
to keep their heading when doing a turn. A particle which never changes direction,
i.e. performs a ballistic motion would have persistence 1, while a Brownian particle
has persistence 0. The persistence in the context of transport models is easily de-
fined. Consider a given incoming velocity v′. Then the expected outgoing velocity
is

v̂(v′) :=
∫

V
T (v,v′)vdv

and the average outgoing speed is

ŝ :=
∫

V
T (v,v′)‖v‖dv.

The index of persistence ψα is defined as

ψα(v′) =
v̂ · v′

ŝs′
where s′ = ‖v′‖.

Hence the parameter γ , which we introduced in Theorem 6 is the persistence of
the adjoint turning operator, or the adjoint persistence.

Exercise: It is an interesting exercise to find out under which conditions is
γ = ψα . This is certainly true for a symmetric kernel, but is it also true for nor-
mal kernels?

4.7.1 Example

Assume that turning depends only on the relative angle

θ := arccos
(

v · v′

‖v‖‖v′‖

)
.

Then T (v,v′) = h(θ(v,v′)) = h(θ − θ ′),h(−θ) = h(θ). For example, in 2-
dimensions, with s = 1, we have v =

(
cosθ

sinθ

)
and for normalization we need∫

V
T (v,v′)dv =

∫ 2π

0
h(θ −θ

′)dθ = 1.

This is equivalent to
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∫ 2π−θ ′

−θ ′
h(α)dα = 2

∫
π

0
h(α)dα = 1.

The expected outgoing velocity is

v̂(θ ′) =
∫

h(θ −θ
′)

(
cosθ

sinθ

)
dθ , and with α := θ −θ

′

=
∫

h(α)

(
cos(α +θ ′)

sin(α +θ ′)

)
dα

=
∫

h(α)

(
cosα cosθ ′− sinα sinθ ′

sinα cosθ ′+ cosα sinθ ′

)
dα

=


cosθ ′

∫
h(α)cosαdα− sinθ ′

∫
h(α)sinα︸ ︷︷ ︸

=0

dα

cosα ′
∫

h(α)sinα︸ ︷︷ ︸
=0

dα + sinθ ′
∫

h(α)cosαdα


=
∫

h(α)cosαdα

(
cosθ ′

sinθ ′

)
.

Then the persistence is given as

ψα = v̂(θ ′) · v′ =
∫

h(α)cosαdα(cosθ
′ · sinθ

′)

(
cosθ ′

sinθ ′

)
=
∫

h(α)cosαdα,

where we can see why the persistence is sometimes called the mean cosine.

It is similar in 3-dimensions, where we normalize as:

2π

∫
π

0
h(θ)sinθdθ = 1

and the persistence turns out to be (we skip the details):

ψα = 2π

∫
π

0
h(θ)cosθ sinθdθ

Again this is a mean cosine using the correct θ component of the 2-dimensional
surface element in 3-D: sinθdθ .

Persistence indices are easy to measure based on the above formulas, i.e. one follows
individual particle tracks and computes the mean cosine for all the turns. It has
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been found that slime mold Dictyostelium discoideum has a persistence of about
ψα = 0.7, whereas the persistence of E. coli bacteria is about ψα = 0.33.

4.8 Summary and Conclusions

In this section we considered the parabolic limit of transport equations in the case
of constant equilibrium distribution. The general conditions (T1)-(T4) allowed us to
develop a full theory including classifications into isotropic and anisotropic diffu-
sion and including standard chemotaxis models. However, some important examples
such as T (v,v′) = q(v) are not included, and the question of what to do with these
cases remains. We are currently preparing a textbook [32] where the constant and
the non-constant cases are treated together. Unfortunately, this review material is
not yet available for these CIME lecture notes. Instead, we recommend the follow-
ing original publications for extended theory and applications to glioma growth and
wolf movement.

5 Further reading for transport equations in oriented habitats

Transport equations for movement in oriented habitats falls outside the theory de-
veloped here. In fact, as we have seen in example 3.4.2, these models do not sat-
isfy condition (T4), and also condition (T3) is problematic. Hence the mathematical
framework needs to be changed accordingly. The key is a split of the L2(V ) space
into the kernel of L and it’s orthogonal complement. We are unable to develop this
theory here, hence we just refer to the pertinent literature for further reading on the-
ory and applications. While these applications were not discussed here, the material
of this chapter should provide the reader with the tools that they need to understand
the further readings.

• In [27, 50] we introduced a transport equation model for the migrative move-
ment of mesenchymal cells in collagen tissues. Careful modelling and simula-
tions revealed effects to network formations and finger-like invasions of cancer
metastasis.

• In [31] the theory is formally extended to the case of oriented habitats. We not
only consider the parabolic scaling, but we also discuss alternative scaling meth-
ods such as the hyperbolic scaling and the moment closure method, and we dis-
cuss their relations. One example in [31] is an application to wolf movement
along seismic lines.

• In [51, 13] the transport equation framework is developed for application to brain
tumor spread (glioma, glioblastoma multiforme). We make extensive use of a
new MRI imaging technique called diffusion tensor imaging (DTI). The non-
isotropic diffusion limit of a transport model allows us to include DTI imaging
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into a glioma spread model. The above manuscripts contain the modelling details
and we are currently working on model validation with clinical data.

• In [29] we develop a fully measure-valued solution theory for the transport equa-
tions. Measure valued solutions arise naturally in highly aligned tissues and the
classical L1 or L2 theories for transport equations are no longer sufficient. We
were able to use this framework to identify non classical pointwise steady states,
which explain observed network structures.

• in [59] we give a full analysis of the one-dimensional transport model for move-
ment in oriented habitats.
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