Russian: Вещественные разбиения пространств с мерой, Сибирский Математический Журнал 35 (1994), no. 1, 207-209.

English translation: Real Partitions of Measure Spaces, Siberian Mathematical Journal 35 (1994), no. 1, 189-191.


Russian: Понятие вещественного разбиения, приведенное в данной работе, представляется удобным инструментом для перенесения многих свойств меры Лебега на обширный класс пространств с мерой. В частности, с помощью введенного понятия доказывается существование сохраняющего меру отображения некоторых вероятностных пространств на единичный отрезок с мерой Лебега.

English: The notion of real partition, introduced in the paper, presents a convenient tool for transferring many properties of the Lebesgue measure to a broader class of measure spaces. In particular, with the help of the notions introduced, we prove the existence of measure-preserving mappings from some class of probability spaces onto the unit interval with Lebesgue measure.

Informal: The key idea of this paper is the concept of a real partition: given a probability space X, a real partition of X is any partition of X into a disjoint union of measurable sets Dt indexed by real t in [0,1], such that the partial unions A-t and A+t have measure t for every t in [0,1]. Here A-t is the union of Ds for all s from 0 to (but not including) t, while A+t is the union of Ds for all s from 0 to t including t. Intuitively, we split the space into a continuum of disjoint annuli.

We show that every complete nonatomic probability space admits a real partition. Moreover, if there is a null set of cardinality of the continuum, then we can find a real partition (Dt) where each Dt is nonempty. Further, if now we "map" every Dt into the singleton {t}, we obtain a measure-preserving measurable epimorphism of X onto [0,1] with Lebesgue measure. (Recall that it was shown by Szpilrajn that every probability Polish space, in which all singletons have zero measure, is measure-isomorphic to [0,1] with Lebesgue measure.)

Finally, using the developed tools we present a short and simple proof that every nonatomic probability space admits a nonmeasurable set.


Download the paper: Russian, English. A hard copy is available upon request.

Back to the list of papers