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The  not ion of real par t i t ion in t roduced in the article presents a convenient tool for transferring many  
propert ies of the  Lebesgue measure  to a broad class of measure spaces. In part icular ,  wi th  the  help 
of the  not ion in t roduced,  existence is proved for measure-preserving mappings  of several probabil i ty 
spaces onto the  uni t  segment  with the Lebesgue measure. 

We recall tha t  a measure  space is called nonatomic if any measurable  set in it of posit ive measure 
includes a measurable  subset with a lesser but  nonzero measure.  A measure  space is said to be 
pointwise nonatomic if all singletons in it are measurable and have zero measure.  A space (X,.A, #), 
with X a comple te  separable metr ic  space and .A its Borel a-algebra, is referred to as Polish space, 

We denote  the  Borel and Lebesgue algebras on the unit  segment by Bo and Lb respectively. The  
symbol m will s tand  for the  Lebesgue measure. 

T h e o r e m  1 (E. Marczewski (Szpilrajn) [1, 2]). Every pointwise nonatomic probability Polish 
space (X,.A,~t) is isomorphic to the space B = ([0, 1 ] ,Bo ,m) ;  i.e., there exists a mapping T :  X --* 
[0, 1] which is one-to-one to within sets of zero measure  and such that T and T -1 are measure- 
preserving. 

We int roduce  the  notion of real part i t ion.  

DEFINITION 1. A real partition of a probability space (X,~ ,~ t )  is defined to be a part i t ion 

(Dt)te[o,1] of the  space, such tha t  /~(At) = ~(A +) = t for all t E [0, 1], where A t = U Ds and 
s<t  

A+ = U Ds. A real par t i t ion is called nondegenerate if the set Dt is nonempty  for every t E [0, 1]. 
s<_t 

T h e o r e m  2. Every complete nonatomic probability space admits a real partition. 
PROOF. Let X = (X, A, #) be a complete nonatomic probabili ty space. Let S be the set of chains 

in A of the form (Et)teTc[O,1] such that  #(Et) = t and E,  C Et for s < t. In t roduce  in S some natural  

order by pu t t ing  (Elt)teTl < (E2t)teT2 when T1 C T~ and Et 1 = Et 2 for all t i n  T1. By Zorn's lemma, 
there exists a maximal  chain (Et)teTo C [0, 1] in S. 

Demons t ra t e  tha t  To = [0, 1]. Let to E [0, 1] \ To, a = sup{t  E To ] t < to}, and b = inf{t E To ] 
t > to}. Prove tha t  a, b E To. Take an increasing sequence (t,,),,eN C To converging to a, and consider 

the set A = U JEt,,. It is obvious that  A E Jt  and g(A) = a. If t E To and t < a, then there exists 
HEN 

an n such tha t  t < tn. Consequently,  Et C A. But if t E To and t > a, then  all Eta lie in Et; thus, 
A C Et. Since (Et)tETo is maximal ,  we obtain a E To. Analogously, b E To. Assume tha t  a < b; then 
#(Eb \ Ea) = b - a > 0. In this case, owing to the fact tha t  X is nonatomic ,  there exists a subset 
F c E b \ E a s u c h t h a t 0 < # ( F ) < b - a .  H e n c e E ~ C E o U F C E b a n d ~ ( E ~ U F ) = a + # ( F ) < b ,  
which contradicts  the  fact tha t  (Et)teTo is maximal.  Thus,  To = [0, 1]. 

Pu t  A~- = U E~ and A + = N E, .  Since the space is complete  and the inner and outer  measures 
s ~ t  s>t  

of the sets A~- and A + coincide and equal t, it follows tha t  A t and A + are measurable  and have 
measure  t. 

It is obvious tha t  A~ C Etl C A~ C At~ C Et2 C A+t2 for t l  < t2. Consider D, := A + \ A t .  T h e n  

Dr, N Dr2 = ~ .  Demons t ra te  tha t  A~- = U D,.  Given an z0 E A t ,  pu t  to = inf{t  ] zo E Et} and 
s<t 

prove tha t  zo E Dto. If s E]t0, t[, then x0 belongs to Es and At+o. Similarly, z0 ~ ATo, for there  would 
otherwise exist an s < to such tha t  z0 E E~. 
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Consequently, xo e At + \ A~ = Dt o. Thus, A 7 = (.J Do and A + = [.J Do. 
s<t s<f  

To complete the proof, it remains to observe that A o = ~ and A + = X. �9 

DEFINITION 2. We say that a measure space includes a Cantor set if in this space there is a 
subset of zero measure that  has the cardinality of the continuum. 

The following observation was made by S. A. Mal'ugin. 

T h e o r e m  3. Let X = (X,.A, #) be a complete nonatomic measure space. If the cardinality of 
the space X is greater than the cardinality of the continuum, then X contains a Cantor set. 

PROOF. Without  loss of generality, we assume that X is a probability space; otherwise we can 
take a subset of finite measure. In this case, by Theorem 2, there exists a real partit ion (Dt)te[o3]; 
moreover, #(Dr) = 0 for all t E [0, 1]. If the cardinality of each of the Dt's were less than the 
cardinality of the continuum, then the cardinality of the space X would be less than the cardinality 
of the continuum, which fact would contradict the hypothesis. Thus, there exists to such that the 
cardinality of the continual subset Dr0 is not less than the cardinality of the continuum. Since the 
measure is complete, every continual subset Dto is a Cantor set in X.  �9 

By using Theorem 2, we can essentially widen the class of spaces in Theorem 1 by replacing 
isomorphy with a weaker condition. 

T h e o r e m  4. For every complete nonatomic probability space that includes a Cantor set, there 
exists a measure-preserving epimorphism of the space onto the unit segment with the Lebesgue 
measure. 

PROOF. Let X - (X, ~ , # )  be a complete nonatomic probability space and let a set C of zero 
measure have the cardinality of the continuum. Our aim is to construct an epimorphism ~ : X --~ l ,  
where I---- ([0, 1], Lb, m). 

Let C = {C,}te[0j ]. Consider the space ( ) ( ,~ , /~) ,  where)~" = X \ C ,  ~ =  { A \ C  [ A e .A}, 
and /2 = p[~. It is a complete nonatomic probability space; therefore, by Theorem 2, it admits a 

real partition, i.e., a partition (Dt)te[0,1] such that /~(A~-) = /~(.4+) = t, where .4~- = [.J /gs and 
s< t  

.4+ = [.J Ds. Put  Dt = Dt U{Ct} ,  A t  := ~J D s, and A + := [.J Do. The completeness of X and 
s<_t s< t  s<_t 

the equality ~u(C) = 0 yield measurability of A t and A+; moreover, # ( A t )  = #(A +) = t. Thereby, 
(Dr)re[o j] presents a nondegenerate real partition of X. 

We define the epimorphism ~v : X --* [0, 1] by the rule ~[D, = t. In this event, ~,(At)  = [0, t) 
and ~v(A +) = [0,t]. Since the segments of the forms [0, t) and [0, t], with the measure equal to t by 
definition, generate the Borel a-algebra with the Lebesgue measure, the mapping r preserves the 
Lebesgue measure of Borel subsets in [0, 1]. From the completeness of the space X,  it follows that ~v 
also preserves the measure of Lebesgue subsets. �9 

As an illustration of Theorem 4, we present a simple proof for the following assertion: 

T h e o r e m  5. In every nonatomic probability space there is a nonmeasurable set. 

This fact occurs implicitly in the article [3]. 

PROOF. Suppose that  there exists a nonatomic probability space X = (X, 7~(X),#).  The fact 
that  the space X is nonatomic implies that X is pointwise nonatomic. Since a pointwise nonat0mic 
measure cannot be defined on the algebra of all subsets of a set whose cardinality is less or equal 
to the cardinality of the continuum (see [3, 4]), we conclude that the cardinality of the space X is 
greater than the cardinality of the continuum. Now Theorems 3 and 4 guarantee existence for an 
epimorphism ~ :  X --~ I = ([0, 1], Lb, m); moreover, the sets Dt = ~v - ]  (t) form a nondegenerate  real 
parti t ion of the space X. Denote this partition by ~. Consider the a-algebras 

S = ~ - l ( L b ) =  {~ - I (A)  [ A e Lb}, ~[:)----~O--I(p[0, l])-- {~-I(A) [ A c [0, 1]}. 
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Take the quotient algebras by the partition ~ (the notion of the quotient algebra by a partition can 
be found, for instance, in [5]). It is obvious that the space (X~, S~, #~) is isomorphic to I. Observe 
that S~ C ~P~ = P(X~) = (~(X))~. Consequently, the space (X~,7~(Xf),#~) is pointwise nonatomic 
(since ,~ C P(X~)) and has the cardinality of the continuum. The contradiction obtained proves the 
theorem. �9 

References 

1. E. Marczewski (Szpilrajn), "Sur les ensembles et les fonctions absolument mesurables," C. R. Soc. 
Sci. Varsovie, 30, 39-67 (1937). 

2. K. R. Parthasarathy, Introduction to Probability and Measure [Russian translation], Mir, Moscow 
(1983). 

8. S. Ulam, "Zur Masstheorie in der allgemeinen Mengenlehre," Fund. Math., 16, 140-150 (1930). 
4. K. Kuratowski and h. Mostowski, Theory of Sets [Russian translation], Mir, Moscow (1970). 
5. A. A. SamorodnitskiY, Measure Theory [in Russian], Leningrad Univ., Leningrad (1990). 

TRANSLATED BY G. V. DYATLOV 

191 


