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Optimal Design of Noise-Enhanced Binary
Threshold Detector Under AUC Measure

Gencheng Guo, Xinwei Yu, Yindi Jing, and Mrinal Mandal

Abstract—This letter considers the binary threshold system (TS)
based detector for a general binary testing problem. First, the op-
timal binary TS that maximizes the area under the ROC curve
(AUC), where ROC stands for the receiver operating character-
istic, is derived. Then the noise-enhanced effect is investigated. The
optimal noise that can achieve the maximum AUC is derived and
shown to be deterministic. An example is shown to help justify the
derived results.

Index Terms—AUC, noise-enhanced effect, threshold detector,
threshold system.

I. INTRODUCTION

OR a binary detection problem, the optimal likelihood
ratio (LR) test is not always possible due to unknown and
changing parameters, lack of robustness, and high complexity. It
is therefore necessary to resort to simpler suboptimal detectors.
Threshold system (TS) based detector, or threshold detector
(TD), is one such detector. It has been shown to achieve good
detectability and high robustness in addition to its simplicity in
implementation for problems with non-Gaussian noise [1]-[3].
For DC signal detection with known noise, a maximum a-pos-
teriori probability detector for a given binary TS was proposed
in [1]. But the optimal TS design was not addressed. We filled
this gap in [2] by finding the optimal TS under Neyman-Pearson
(NP) criterion. In [3], for an arbitrary known signal detection in
non-Gaussian noise with unknown probability density function
(pdf), we proposed an optimal TD and analyzed its properties.
In this letter, we derive the optimal binary TS that maximizes
the AUC, defined as the area under receiver operating charac-
teristic (ROC) curve. We also investigate the noise-enhanced
effect. The idea is to inject additional independent “noise” into
the observation for better performance [4]-[9]. It is shown in [4]
that when the binary TS in a TD is not optimal, for a given prob-
ability of false alarm (Pr4 ), the probability of detection (Fp)
can be increased by adding independent white Gaussian noise
(WGN). Under Bayesian criterion, it has been shown in [5], [9]
that the optimal noise is deterministic. Under the NP criterion,
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Fig. 1. Noise-enhanced binary TS based detector.

the noise-enhanced effect is investigated and the optimal noise
pdf is derived in [6]-[8]. For a given Pga, by using results in
[6]-[8], the optimal noise pdf that leads to the highest Pp can
be obtained. But the derived optimal noise pdf is implicitly rep-
resented and in general difficult to obtain in closed-form. A nu-
merical method for finding the optimal noise pdf was proposed
in [8]. With the NP criterion, the optimal noise pdf depends on
the desired level of Pga. This further increases computational
cost. In this letter, for a general binary detection problem with
binary TD, we derive the best noise-enhanced effect under the
AUC measure. The optimal noise pdf is derived in a simple
form. The computational cost in finding the optimal noise is very
low. An illustrative example is presented as well.

II. PROBLEM STATEMENT AND AUC MEASURE

We consider the following general binary detection problem:

{Ho X~ fx(xiHo) 2 fo(x) 1)
Hy: X~ fx(x;Hi) 2 fi(x)’

where X € RV, fx(x; H;) abbreviated as f;(x), is the pdf’s of
X under hypotheses H;, for: = 0 or 1.

We will use a binary TD with possible noise-enhanced effect.
Binary TD, other than its low complexity, has been shown to
achieve good detectability and high robustness, especially for
noises with a heavy-tail pdf [1]-[3]. The detector structure is
shown in Fig. 1. First an N-dimension noise V is added to the
original observation X to produce the new observation U for
possible noise-enhanced effect. Note that V' should be indepen-
dent of X. Then U is applied to the binary TS and converted
into a binary signal Y € {0, 1}. Finally a decision H; or Hy is
made.

Let fv(x) be the pdf of the additional noise V. Since U =
X + V., we have

o o) = fofw) = fuw) = [ o=y (xix.
ol ) = ) fola) = [ fis— sy (x)dx

where * denotes convolution. The function of the binary TS can
be expressed as

1 ued

0 otherwise ’

2

where A is a subset in RY. The binary TS model is also gen-
eral, including TS’s in [2]-[6] as 1-dimensional special cases.

Y:T(u):{
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Hy
The decision-making is given by 7'(u) E 17, which can be com-

H
pletely characterized by the critical function [6]:

1: T(u)>n
¢pun)=qv: Tw)=nq, 3)
0: T <y
where v € [0,1]. For ¢ = 0, 1 define
x| otwmfiu-xdu @)
RN
We have
o) = [ dlon bt iy
= [ MR, 5)
Poat) = [ ) fo (o Ho)d
= l v (x)Fy(x,n)dx. (6)
JrnN
Note that if V = 0 (no added noise), we have U = X, thus
PD(,'?) :Fl(On)vaA(n) :FO(OU) (7)

One widely used criterion in signal detection is NP criterion.
With NP criterion, the optimal TS design depends on the given
level of Pga. In general, the optimization of 7'(u) is compu-
tationally costly and sensitive to Pra value [2], [10]. Similar
problems exist in finding the best noise pdf for the noise-en-
hanced effect.

In this letter, we use AUC as the performance measure, which
is defined as the area enclosed by the curve ( Py, . Pp) together
with the lines Pp = 0 and Pra = 1. It is shown to be a valid
measure of detection capacity [11], [12]. With the AUC mea-
sure, the optimal TS and the optimal noise pdf are independent
of the Pra level, thus can lead to low computational load and
practical and robust designs.

When both Pp(n) and Pra (7)) are continuous piecewise dif-
ferentiable functions, AUC can be calculated through either

- p
ave=- | Po(m 2P 4, ®)
oo an
or
1 1 [~ OPp(n)
AUC = = 4 = P
ve=gt 2/_00( el =5,
OPra(n) Y
Pp(n) “on dn. )

The latter follows from Green’s formula. When the functions
involved are not continuous, however, the two formulas are
not equivalent anymore. In such cases, (8) often leads to incor-
rect answers. Nevertheless, one can verify through smoothing
that (9) still gives the correct answer even for discontinuous
Pp(n), Pra(n), due to the total cancellation of the ill-defined
terms [13]. In the following we will use (9) whenever analytic
calculation of AUC is needed.

In this letter, for the detection problem in (1), using the TD
in Fig. 1, we solve the following two problems: 1) find the
AUC-maximizing binary TS, when there is no added noise en-
hancement; and 2) find the AUC-maximizing noise pdf, for a
given TS.
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III. AUC-MAXIMIZING BINARY TS
Theorem 1: When no noise is added, the AUC-maximizing
binary TS is

x € Aope = {x 1 f1(x) > fo(x)}

1
Y =T0) = {0 elsewhere (10)
Proof: From (2) and (3), we have
0 n>lor(0D<np<l,ug A
dlum)=<v (n=lLueAdor(np=0uég¢.A).
1 5<0or(0<yp<l,ue A
an
Define p; = qu.A Ji(u)du,i = 0,1. Using (11) in (7) gives
(Pra, Pp)
(0,0) n>1
(vpo,vp1) n=1
=14 (Po.p1) 0<ny<l.
(v+po(l—v)v+p(l-v)) n=0
(1,1) n <0
(12)

Since # € [0,1], the ROC of this TD is the combination of
the segment from (0,0) to (pg,p1) and the segment from
{(po,p1) to (1,1). The AUC is thus the area of the triangle
A(0,0)(po,p1)(1,1) plus 1/2, which is

1 1
AUC= 5+ 501 =) = 5= 3 [ (160 = fueolix
The AUC-maximizing A+ and TS are thus as in (10). [ |

Remark 1: We can obtain the same AUC using (9). Formula
(8), however, does not produce the correct result.

IV. OPTIMAL NOISE-ENHANCED EFFECT

In this section, we derive the optimal noise pdf fv (v) that
maximizes the AUC for a given binary TS. Define

oy,
mx,y) 2 [ Rl 0y
JR n

IFy(y,m)
— | Fi(x,n)————=dn. (13
JRCTE (13

Using (5) and (6) in (9), we have the AUC calculation in (14):

mm—l+1/(éw(>%mmw)

([ i)

—/(%N<> A )ix )
(L o).
“5+3 fu L o)

X(Am@m—%—lm
—Aﬂ@:ﬁ%%Jd>h®

T % /RN /[F;N fv(x)fv(y)H(x,y)dxdy.
(14)

N | =
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The noise pdf optimization is thus equivalent to

agmax [ [ WOON®Hxy)ixdy  (15)
fv(x) RN
s.t. / fv(x)ydx =1, fv(x)>0. (16)
RN
The conditions in (16) apply since fv(x) is a pdf.
Theorem 2: For a given binary TS in (2), define
x) £ / [fi(u=x) = fo(u—x)ldu.  (17)
JA
Let Xop; be the maximum point of G(x), i.e.,
Xopt = arg max G(x). (18)
The optimal noise pdf that maximizes the AUC is
SV e (%) = 0(x — Xopt ) (19)

where 6( - ) is the Dirac delta function.

Proof: See the Appendix. ]

This theorem says that the optimal added V is deterministic,
whose value is the Xt defined in (18). This is equivalent to
conducting an optimal mean shift on the observation. Once the
structure of the optimal pdf'is found, the determination of the op-
timal value is straightforward. Note that x,,,; may not be unique
because in general there may exist multiple values of x that give
the same maximum G(x). Using any one or any randomization
of these Xqpt’s will result in the same maximum AUC. When a
randomization is used, an alternatively interpretation is that the
optimum detection can be achieved by adding a random noise.

From the proof of Theorem 2, for a deterministic added noise
v, we have, from (14) and (29), AUC = [1 4+ G(v)]/2. We can
thus determine whether noise-enhanced effect exists by com-
paring G(v) with G(0).

Corollary 1: (Existence of noise-enhanced effect)

1) For v € R™, if G(v) > G(0), the AUC of the TD can be

improved by adding the constant v.

2) If the TS in the TD is optimal in the AUC sense, the AUC
of the TD cannot be increased via adding noise.

Proof: The first part of the corollary can be seen directly
from the AUC formula. Now we prove the second part. It is
shown in Theorem 2 that the best noise is deterministic. With
the optimal TS design in Theorem 1, G/(0) is the maximum of
G(v), thus AUC can no long be improved by any v. [

We now discuss how to find x,,,¢ in (18), the global maximum
point of G(x). First, candidate x..’s should satisfy G'(x.) = 0
and G”’(x.) < 0. Thus we first find x..’s that satisfy the two
conditions, then X, is one of the x.’s resulting in the largest
value of G(x). This can be done efficiently using standard nu-
merical algorithms such as Newton’s method.

In [6], [7], under NP criterion, for a given test, the optimal
noise pdf was proved to be a combination of at most two delta
functions. Although the noise pdf structure was found, the exact
optimal pdf is difficult to find. In this work, we adopt the AUC
measure and derive the optimal noise pdf in a semi-closed form,
the calculation of which is significantly simpler. Under the NP
criterion, the optimal noise pdf changes with n and Ppa, hence
the design can be sensitive to them. AUC leads to an optimal
noise independent of 77 and Pra, and intuitively can be more
robust. It is noteworthy that for a given Pra and under perfect
design, the proposed scheme may be inferior in Pp to those in

[6], [7] since the goal here is to maximize the AUC not the Pp
for a particular Pga .

V. AN EXAMPLE

We now use an example to illustrate the results in Sections I11
and IV. We consider a one-dimensional mean-shift Gaussian
mixture detection. Let

folz) = %./V(:L‘; p,a?) + %N(.L —p, %),
)

1 . 1 .
Fie) = SN (apt 5,0%) 4 SN (=t 5,0,
where A (x; p. 0?) is Gaussian distribution with mean p and
variance 0. We set 1 = 3,0 = 1, s = 0.5. The optimal binary
TS, denoted as TS, can be derived using Theorem 1 to be

TS, : :{1 JIE[Tl,TQ]U[Tg,OO)‘
opt 0 elsewhere '

(20)
where 1y = —2.75, o = 0.25, and 73 = 3.25.
First we consider the TD with TS,.¢. From (20), the

resulting G(x) is expressed as (21), where Q(z) =
S/ (V2m) exp(—(2*)/(2)).

1< .
Gopt(w) = 3 P
=1
X [Q(1i —35—x)— Q{1 —3 —a)
+Q(ri+25—2)-Q(n+3—-n)]. (21
SO et — D+ dGOsn). @)
/ Fi(x, ) é )
= Fl(X 1)(,()( )+F1(X O)d()( )
= c1(x) + vdi(x)do(y) — (1 = v)er(X)eo(y)  (23)
' OF1(y.n)
/RFO(X7 W)Tdﬂ
= —co(x) — vdi(y)do(x) + (1 — v)er(¥)eo(x)
(24)
K(x,y) £ v[dy(x)do(y) — d1(y)do(x)]
+ (1 = v)[ea(y)eo(x) — e1(x)co(y)] (25)

After numerical calculation, it follows that @, = 0. This jus-
tifies the second part of Corollary 1 that noise-enhanced effect
cannot occur if the TD is optimal.

Next, we consider the TD with a suboptimal TS, denoted as
TS,0pt, given by

Y — { 1 >0 .
0 elsewhere

(26)

Similarly, we can obtain the G(x) as in (27), which leads to two
optimal solutions: T,y = —3.25 Of Zope = 2.75. They both
result in a higher G = 0.0988 than G(0) = 0.0024. Based on
the first part of Corollary 1, the noise-enhanced effect appears:

G(r) = 5Q(~35 - )
+Q(25—-—2)-Q(-3—-2)-QB—-x)] 27

We compare the AUCs of the five cases: 1) using TSqpt,
2) using T'S,0pt, 3) using T'S,,opt and adding Vo, = —3.25,
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Fig. 2.

ROC:s of different detector designs.

4) using TS,qpt and adding the optimal zero-mean WGN:
fv(z) = N(z;0,0?), and 5) using TS,,0pc and adding the
optimal noise under NP criterion for Pra = (.1. For Case 4,
with added WGN, we have

Jolz) = %

1 1
filz) = 5]\/’(37; 35,14 0%) + 5./\[(.77; —2.5,1+ 0%).

1
N(x:;3,1+0%) + 5]\/(@'; -3,140?),

The optimal o can be shown to be:

Topt = argmax /Ox[]‘l (z) — folz)]dz = 2.81.

For Case 5, we have fy,  (v) = 6(v + 3.86).

The ROC and AUC results are shown in Fig. 2. We can see
that with TS,,,¢, the AUC is 0.5975 which is larger than that
with T'S,,pt, which is 0.5015. This justifies Theorem 1. When
TS,0pt is used, noise-enhanced effect happens by adding V.
The AUC of using T'S,.op¢ and V¢ is 0.5494, which is lower
than that of T'S¢. This is because the structure of T'S,,qp¢ is
not optimal. With T'S,,,,¢, adding the best deterministic Vi, is
better than adding the best WGN, whose AUC is 0.5202. This
justifies Theorem 2. Finally, under NP criterion [6], VOT;F de-
pends on the Pra value. The achieved Pp using V3! is higher
than that using V;, at the specific Ppy value. However, the
latter achieves a higher AUC.

VI. CONCLUSION

We investigated the general binary detection problem using
a binary threshold system based detector. The AUC is adopted
as the performance measure for its simplicity and robustness.
First the AUC-maximizing TS was derived. We then considered
noise-enhanced effect and showed that the AUC-maximizing
noise is deterministic. Performance of the proposed design was
shown via an example and compared with other designs.

APPENDIX
PROOF OF THEOREM 2

For¢ = 0,1, define

a0 2 [ RCEESIIANE / | il
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We have ¢g(x) 4+ do(x) = ¢1(x) + di(x) = 1. Using (11) in

(4) gives
0 n>1
ve; (x) n=1
Fi(x,n) =< ci(x) 0<n<l.
ci(x)+vdi(x) n=0
1 n<0

We then have the results in (22)—(24).
Now using (23) and (24) in (13), we have

H(x,y) = /

JueAd

[fi(u—x)— fo(u—x)]du+ K(x,y), (28)

where K(x,y) is defined in (25). It can be shown straight-
forwardly that K (x,y) is skew-symmetric, i.e., K(x,y) =
—K(y,x). Because the integral of the skew-symmetric terms
is zero, we have

[ ] sveneiteysdy = | feeocix,
. RN . RN . RN

(29)
with G(x) defined in (17). By using Holder’s inequality,

[ e < 1w 1Gx)

oo = max G(x)

with equality when fv_, (x) = §(x — Xopt) With Xop¢ in (18).
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