WAVE EQUATIONS: UNIQUENESS AND ASYMPTOTICS

Nov. 25, 2011

In this lecture we prove the uniqueness for the wave equations. We also prove some asymptotic decay results.

1. Uniqueness via energy method.

Consider the wave equation in a bounded domain $\Omega \subset \mathbb{R}^n$.

c

$$\Box u \equiv u_{tt} - \Delta u = f \qquad \Omega \times (0, T) \tag{1}$$

$$u = g \qquad \Omega \times \{0\} \text{ and } \partial\Omega \times [0, T] \tag{2}$$

$$u_t = h \qquad \Omega \times \{0\}. \tag{3}$$

It is clear that the uniqueness of this problem is equivalent to that the following equation

$$\Box u \equiv u_{tt} - \Delta u = 0 \qquad \Omega \times (0, T) \tag{4}$$

$$u = 0$$
 $\Omega \times \{0\}$ and $\partial \Omega \times [0, T]$ (5)

$$u_t = 0 \qquad \Omega \times \{0\}. \tag{6}$$

having only 0 solution.

Now we prove this. Multiply the equation by u_t and integrate over $\Omega \times (0,T)$, we have

$$0 = \int_{\Omega \times (0,T)} (u_{tt} - \Delta u) u_t \, dx \, dt$$

$$= \int_{\Omega \times (0,T)} \frac{d}{dt} \left(\frac{1}{2} u_t^2\right) dx \, dt + \int_{\Omega \times (0,T)} -\Delta u \, u_t \, dx \, dt$$

$$= \int_{\Omega \times (0,T)} \frac{d}{dt} \left(\frac{1}{2} u_t^2\right) dx \, dt + \int_{\Omega \times (0,T)} \nabla u \cdot \nabla u_t \, dx \, dt$$

$$= \int_{\Omega \times (0,T)} \frac{d}{dt} \left[\frac{1}{2} (u_t^2 + |\nabla u|^2)\right] dx \, dt$$

$$= \int_{\Omega} \left[\frac{1}{2} (u_t^2 + |\nabla u|^2)\right] (x,T) \, dx - \int_{\Omega} \left[\frac{1}{2} (u_t^2 + |\nabla u|^2)\right] (x,0) \, dx$$

$$= \int_{\Omega} \left[\frac{1}{2} (u_t^2 + |\nabla u|^2)\right] (x,T) \, dx.$$
(7)

This implies u is a constant at time T. But this constant must be 0 according to the boundary value.

Remark 1. If we know the solutions decays at infinity, we can use the same method when Ω is unbounded and obtain the same result.

2. Domain of dependence.

We have seen from the formulas that the value of u(x, t) only depends on the initial values in the ball $B_t(x)$. In other words, if g = h = 0 in $B_r(x)$, then u must vanish in the cone

$$|x| + t \leqslant r. \tag{8}$$

We prove this fact now.

Denote by C_r the above mentioned cone. and for T < r denote by U_T the following domain

$$U_T \equiv \{ (x,t) \in C_r, \ 0 \leqslant t \leqslant T \}.$$

$$\tag{9}$$

Then naturally the boundary of U_T consists of three parts

$$\partial U_T = S_T + S_0 + S_{\text{side}} \tag{10}$$

where

$$S_u = \{(x, t) \in C_r, \ t = u\}, \quad S_{\text{side}} = \partial C_r \cap \bar{U}_T.$$

$$\tag{11}$$

Now we compute

$$\begin{aligned} 0 &= \int_{U_T} (u_{tt} - \Delta u) u_t \, dx \, dt \\ &= \int_{U_T} u_{tt} \, u_t - \Delta u \, u_t \, dx \, dt \\ &= \int_{U_T} \partial_t \left(\frac{1}{2} \, u_t^2 \right) - \nabla \cdot (\nabla u \, u_t) + \nabla u \cdot \nabla u_t \, dx \, dt \\ &= \int_{U_T} \partial_t \left(\frac{1}{2} \, u_t^2 + \frac{1}{2} \, |\nabla u|^2 \right) - \nabla \cdot (\nabla u \, u_t) \, dx \, dt \\ &= \int_{U_T} \nabla_{t,x} \cdot \left(\begin{array}{c} \frac{1}{2} \, u_t^2 + \frac{1}{2} \, |\nabla u|^2 \\ -\nabla u \, u_t \end{array} \right) \, dx \, dt \\ &= \int_{\partial U_T} n_{t,x} \cdot \left(\begin{array}{c} \frac{1}{2} \, u_t^2 + \frac{1}{2} \, |\nabla u|^2 \\ -\nabla u \, u_t \end{array} \right) \, dS \\ &= \int_{S_T} \frac{1}{2} \, u_t^2 + \frac{1}{2} \, |\nabla u|^2 - \int_{S_0} \frac{1}{2} \, u_t^2 + \frac{1}{2} \, |\nabla u|^2 \\ &+ \int_{S_{\text{side}}} \left(\begin{array}{c} n_t \\ n_x \end{array} \right) \cdot \left(\begin{array}{c} \frac{1}{2} \, u_t^2 + \frac{1}{2} \, |\nabla u|^2 \\ -\nabla u \, u_t \end{array} \right) \, dS \\ &= \int_{S_T} \frac{1}{2} \, u_t^2 + \frac{1}{2} \, |\nabla u|^2 - \int_{S_0} \frac{1}{2} \, u_t^2 + \frac{1}{2} \, |\nabla u|^2 \\ &+ \int_{S_{\text{side}}} \frac{n_t}{2} \, u_t^2 + \frac{n_t}{2} \, |\nabla u|^2 - n_x \cdot \nabla u \, u_t \, dS. \end{aligned} \tag{12}$$

For the last term, we notice that the equation for S_{side} is |x| + t = r which means $n_t = |n_x|$ and consequently

$$\frac{n_t}{2}u_t^2 + \frac{n_t}{2}|\nabla u|^2 - n_x \cdot \nabla u \, u_t \ge 0. \tag{13}$$

Thus we have shown that

$$\int_{S_T} \frac{1}{2} u_t^2 + \frac{1}{2} |\nabla u|^2 \leq \int_{S_0} \frac{1}{2} u_t^2 + \frac{1}{2} |\nabla u|^2$$
(14)

for all T < r and the conclusion follows.

3. Decay of the solution.

We prove the following.

Proposition 2. Let u solve

$$u_{tt} - \Delta u = 0 \qquad in \ \mathbb{R}^3 \times (0, \infty) \tag{15}$$

$$u = g \quad u_t = h \qquad on \ \mathbb{R}^3 \times \{t = 0\} \tag{16}$$

where g, h are smooth and have compact support. Then there is a constant C such that

$$|u(x,t)| \leqslant C/t \tag{17}$$

for all (x,t).

Proof. Recall the Kirchhoff formula:

$$u(x,t) = \frac{1}{4\pi t^2} \int_{\partial B_t(x)} t h(w) + g(w) + \nabla g(w) \cdot (w-x) \, \mathrm{d}S_w.$$
(18)

Since $h,g,\nabla g$ vanishes outside their respective supports, we can write

$$u(x,t) = \frac{1}{4\pi t^2} \int_{\partial B_t(x) \cap A} t \, h(w) + g(w) + \nabla g(w) \cdot (w-x) \, \mathrm{d}S_w \tag{19}$$

where A is the union of the three supports. Now the conclusion easily follows after we notice that the area of $\partial B_t(x) \cap A$ is bounded by a constant independent of t.

Remark 3. The above estimate behaves badly when t is small. But this is easily remedied by noticing that when t is small, the area of $\partial B_t(x) \cap A$ scales as t^2 and therefore u is uniformly bounded. Integrating this observation into the estimate gives

$$|u(x,t)| \leqslant C \, (1+t)^{-1}. \tag{20}$$