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In this lecture we derive the representation formulas for the wave equation in the whole space:

�u≡ utt −△u=0, R
n × (0,∞); u(x, 0)= g(x), ut(x, 0)= h(x). (1)

It turns out that the properties of the solutions depend on the dimension. More specifically, there are three
cases: n= 1, n > 1 even; n > 1 odd. We will discuss in detail the three representative cases: n= 1, 2, 3 (the
order is actually n= 1, 3, 2, for reasons that will be clear soon).

1. n = 1.
We consider the 1D wave equation

utt −uxx = 0,R× (0,∞); u(x, 0)= g(x), ut(x, 0) =h(x). (2)

This equation can be solved via the following change of variables:

ξ= x+ t; η= x− t, (3)

and to make things clearer we set ũ(ξ, η)= u(x, t).

With this change of variable we compute

ut = ũξ ξt + ũη ηt = ũξ − ũη (4)

utt = ũξξ − 2 ũξη + ũηη (5)

ux = ũξ + ũη (6)

uxx = ũξξ + 2 ũξη + ũηη (7)

Therefore

utt − uxx =0� ũξη = 0� ũ(ξ, η)= φ(ξ)+ ψ(η)� u(x, t)= φ(x+ t) + ψ(x− t). (8)

Now using the initial values we have

φ(x)+ ψ(x)= g(x); φ′(x)− ψ ′(x)= h(x) (9)

which yields

u(x, t)=
1

2
[g(x+ t) + g(x− t)] +

1

2

∫

x−t

x+t

h(y) dy. (10)

This is d’Alembert’s formula.

Theorem 1. Assume g ∈C2(R), h∈C1(R), define u by

u(x, t)=
1

2
[g(x+ t) + g(x− t)] +

1

2

∫

x−t

x+t

h(y) dy. (11)

Then

i. u∈C2(R× [0,∞));

ii. utt −uxx = 0 in R× (0,∞);

iii. u takes the correct boundary values:

lim
(x,t)→(x0,0)

t>0

u(x, t) = g(x0); (12)

lim
(x,t)→(x0,0)

t>0

ut(x, t) = h(x0). (13)

Proof. The proof is by direct calculation and is left as an exercise. �
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Remark 2. It is easy to generalize the above theorem to the case

g ∈Ck, h∈Ck−1 � u∈Ck. (14)

But in general u cannot be smoother (in contrast to the heat equation and the Laplace equation). For
example, consider the case h = g ′, then u(x, t) = g(x + t). It is clear that u cannot have better regularity
than g.

Remark 3. One can show that the formula

u(x, t)= φ(x+ t)+ ψ(x− t) (15)

remains true even for distributional solutions of the 1D wave equation.

2. Spherical means and Euler-Poisson-Darboux equation.
The case n > 2 is much more complicated. The idea is to reduce the wave equation to a 1D equation

which can be solved explicitly. The reduction is fulfilled through introducing the following auxiliary functions.

Let u= u(x, t). We define at each x∈R
n,

U(x; r, t) ≡
1

|∂Br |

∫

∂Br(x)

u(w, t) dSw, (16)

G(x; r) ≡
1

|∂Br |

∫

∂Br(x)

g(w) dSw, (17)

H(x; r) ≡
1

|∂Br |

∫

∂Br(x)

h(w) dSw. (18)

Note that when u is continuous, we can recover u from U by taking rց 0.
It turns out that U(x; r, t) as a function of r and t satisfies a 1D equation.

Lemma 4. (Euler-Poisson-Darboux equation) Fix x ∈R
n. Let u(x, t) ∈ Cm, m > 2 solves the wave

equation. Then

U(x; r, t)≡
1

|∂Br |

∫

∂Br(x)

u(w, t) dSw (19)

belongs to Cm(R̄+× [0,∞)), and satisfies

Utt −Urr −
n− 1

r
Ur = 0 R+× (0,∞); U(r, 0)=G(r), Ut(r, 0)=H(r). (20)

Remark 5. Notice that ∂rr −
n − 1

r
∂r is just △ in R

n with radial symmetry.

Proof. Recall that

Ur(x; r, t)=
r

n

1

|Br(x)|

∫

Br(x)

△yu(y, t) dy=
1

nα(n) rn−1

∫

Br(x)

△yu(y, t) dy (21)

This shows U ∈C1, and we can define Ur(x; 0, t) =0 since its limit as rց 0 is 0.
Differentiating w.r.t r again,

Urr(x; r, t) =
d

dr

[

1

nα(n) rn−1

∫

Br(x)

△yu(y, t) dy

]

=
1−n

n

1

|Br |

∫

Br(x)

△yu+
1

|∂Br |

∫

∂Br(x)

△yu. (22)

This shows U ∈C2 and also Urr(x; 0, t) can be defined.

As
1

|Br |

∫

Br(x)

△yu=
1

|B1|

∫

B1(x)

(△yu)(x+ r z) dz, (23)
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It is clear that the regularity of the LHS is the same as the regularity of △yu. Similar argument shows that
the same holds for the term

1

|∂Br |

∫

∂Br(x)

△yu. (24)

Therefore Urr as the same regularity as △yu, which shows U ∈Cm when u∈Cm.
We further have

Utt(x; r, t)=
1

|∂Br |

∫

∂Br(x)

utt =−
1

|∂Br |

∫

∂Br(x)

△yu (25)

using the equation. �

3. n = 3, Kirchhoff’s formula.
Let U ,G,H be the spherical means. We set

Ũ = rU , G̃= rG, H̃ = rH. (26)

Some calculation yields

Ũtt − Ũrr =0 R+× (0,∞); Ũ = G̃ , Ũt = H̃ . (27)

Remark 6. Note that here we used the fact that n= 3.

Thus we need to solve the wave equation in the first quadrant.

Example 7. Consider the wave equation in the first quadrant:

utt − uxx =0, x > 0, t > 0; u(x, 0) = g(x), ut(x, 0)= h(x), u= 0 for x= 0, t > 0. (28)

Let

ũ(x, t)=

{

u(x, t) x> 0
−u(−x, t) x< 0

(29)

and define similarly g̃ , h̃. Then it is clear that ũ solves the wave equation with initial values g̃ , h̃. Thus we
have

ũ(x, t) =
1

2
[g̃(x+ t)+ g̃(x− t)] +

1

2

∫

x−t

x+t

h̃(y) dy. (30)

Therefore the solution to the original problem is

u(x, t) =



















1

2
[g(x+ t) + g(x− t)] +

1

2

∫

x−t

x+t

h(y) dy x> t> 0

1

2
[g(x+ t)− g(t− x)] +

1

2

∫

t−x

t+x

h(y) dy t> x> 0

(31)

Now for our purpose, we only need the case t> r (remember that finally we will let rց0 and recover u from
U). In this case

Ũ (x; r, t)=
1

2

[

G̃(r+ t)− G̃(t− r)
]

+
1

2

∫

t−r

t+r

H̃ (y) dy. (32)

We have

u(x, t) = lim
rց0

Ũ (x; r, t)

r

= G̃
′
(t)+ H̃ (t)

=
∂

∂t

(

t

|∂Bt|

∫

∂Bt(x)

g(w) dSw

)

+
t

|∂Bt|

∫

∂Bt(x)

h(w) dSw. (33)

Further computation yields

u(x, t)=
1

|∂Bt|

∫

∂Bt(x)

[t h(w)+ g(w)+∇g(w) · (w−x)] dSw (34)
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which is Kirchhoff’s formula.

4. n=2, Method of descent and Poisson’s formula.
It is not possible to simplify as we did in the n=3 case. Instead, we use the so-called “method of descent”,

which treats the solution u(x, t) of the 2D wave equation as a solution to the 3D equation. We set

ū (x1, x2, x3, t)≡ u(x1, x2, t). (35)

and define ḡ , h̄ similarly.
Using the Kirchhoff’s formula we have

u(x, t) = ū (x̄ , t)

=
1

|∂Bt(x̄ )

∫

∂Bt(x̄)

t h̄ (w̄)+ ḡ (w̄) +∇x̄ḡ (w̄) · (w̄ − x̄ ) dSw̄. (36)

where x̄ = (x, x3) and Bt(x̄ ) is the ball in R
3.

From definitions of the variaous bar-ed functions, we have

u(x, t) =
1

4 π t2

∫

∂Bt(x̄)

t h(y)+ g(y)+∇yg(y) · (y− x) dSw̄ (37)

where w̄ =
(

y,± t2− |y |2
√

)

.

Finally, let Dt(x) denote the ball in R
2 centered at x with radius t, we have

u(x, t) =
2

4π t2

∫

Dt(x)

t h(y)+ g(y)+∇yg(y) · (y− x)
(

1−
|y −x|2

t2

)1/2
dy

=
1

2

1

|Dt|

∫

Dt(x)

t g(y)+ t2h(y) + t∇g · (y− x)

(t2− |y− x|2)1/2
dy. (38)

This is the Poisson’s formula.

Remark 8. (Huygens’ Principle) We notice that the behavior of the solutions for the 2D and 3D wave
equations are drastically different. In 2D, u(x, t) depends on initial data in the whole ball Dt(x) while in
3D it only depends on the data on the boundary of the ball Bt(x). Or equivalently, in 3D the effect of a
vibration is only felt at the front of its propagation while in 2D it is felt forever after the front passed.1 This
is the so-called Huygens’ principle.

Remark 9. For general n, we define

Ũ (r, t)=

(

1

r
∂r

)k−1

(r2k−1U(x; r, t)) (39)

and define G̃ , H̃ accordingly. Some calculation yields the solution

u(x, t) =
1

γn





(

∂

∂t

)(

1

t

∂

∂t

)

n−3

2

(

tn−2 1

|∂Bt|

∫

∂Bt(x)

g dS

)

+

(

1

t

∂

∂t

)

n−3

2

(

tn−2 1

|∂Bt|

∫

∂Bt(x)

h dS

)



 (40)

for n odd, where γn = 1 · 3 ·
 · (n− 2). Then the method of descent yields

u(x, t)=
1

γn





(

∂

∂t

)(

1

t

∂

∂t

)

n−2

2

(

tn

|Bt|

∫

Bt

g(y) dy

(t2− |y− x|2)1/2

)

+

(

1

t

∂

∂t

)

n−2

2

(

tn

|Bt|

∫

Bt

h(y) dy

(t2− |y− x|2)1/2

)



.

for n even, where γn = 2 · 4 ·
 · (n− 2) ·n.

1. If u(x, t) also depends on data in the whole ball Bt(x) in 3D, we would not be able to clearly hear anything!
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See Evans pp. 75–80 for details.

Remark 10. (Nonhomogeneous problem) For the nonhomogeneous problem

�u= f , u= 0, ut = 0, (41)

we use the Duhamel’s principle, obtaining

u(x, t)=

∫

0

t

u(x, t; s) ds (42)

where u(x, t; s) solves

utt −△u= 0, u(x, s; s)= 0, ut(x, s; s) = f(·, s). (43)

In particular, we have

− n= 1:

u(x, t)=
1

2

∫

0

t ∫

x−s

x+s

f(y, t− s) dy ds. (44)

− n= 3:

u(x, t)=
1

4 π

∫

Bt(x)

f(y, t− |y− x|)

|y− x|
dy. (45)

Here the integrand is called the “retarded potential”.
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