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In this lecture we first apply the maximum principles to study the asymptotic (t ր∞) behavior of the
heat equation. Then we will introduce energy estimates for the heat equation.

1. Asymptotic behavior.
First recall that the solution to the initial value problem in R

n × [0,∞)

ut −△u= 0 t > 0; u = g t =0 (1)

is

u(x, t) =
1

(4 π t)n/2

∫

Rn

e
−

|x−y|2

4t g(y) dy. (2)

Now if g is integrable, we easily estimate

|u(x, t)|6
1

(4π t)n/2

∫

Rn

|g(y)| dy ց 0 as t ր∞. (3)

Note that the convergence is uniform.
Next we consider the following case

ut −△u =0 in Ω× (0,∞); u(x, 0)= f(x); u(x, t) = g(x) on ∂Ω× (0,∞). (4)

As t ր∞, if u→u∞(x), then since u∞ is independent of t, intuitively it should solve

△u∞= 0 in Ω, u = g on ∂Ω. (5)

We present some justification of this intuition in the following.
We first compute

(∂t−△)

(

1

2
ut

2

)

= ut utt − ut △ut −
∑

i=1

n

uxit
2

= ut (ut −△u)t−
∑

i=1

n

uxit
2

= −
∑

i=1

n

uxit
2 6 0. (6)

Therefore by the weak maximum principle,

sup
x∈Ω

ut
2 (7)

is decreasing with time.

Decay of
∫

ut

2.
Next we consider

E(t)≡
1

2

∫

Ω

|∇u|2 dx. (8)

Differentiating it we obtain

Ė (t)=

∫

∇u · ∇ut =−

∫

ut △u =−

∫

ut
2 dx6 0. (9)

where we have used the fact that ut = 0 on ∂Ω at any time t.
Differentiating again, we have

Ë (t) = −
d

dt

∫

ut
2

= −

∫

△(ut
2) dx+ 2

∫

Ω

|∇ut|
2

= −

∫

∂Ω

∂(ut
2)

∂n
dS + 2

∫

Ω

|∇ut|
2

> 0. (10)
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Here the last inequality comes from the fact that ut
2 > 0 in Ω and =0 on ∂Ω, therefore the outer-normal

derivative has to be non-positive.
Thus we have Ė (t)6 0 but is non-decreasing. This implies there is A6 0 such that

lim
tր∞

Ė (t)= A. (11)

Now if A < 0, it is clear that E(t) < 0 for t large enough, a contradiction. Therefore we conclude A = 0.
Recalling

Ė (t)=−

∫

ut
2 dx (12)

we see that
∫

Ω

ut
2 dx� 0 as t ր∞. (13)

Uniform pointwise decay of ut

2.
We can also obtain uniform decay of ut

2.

To do this, we first extend ut
2(x, 0) from Ω to R

n by setting it to be 0 outside Ω. The result is a

nonnegative, continuous (recall that ut
2(x,0)=0 on ∂Ω), compactly supported function. Denote it by l. Now

define

v(x, t)≡

∫

Rn

1

(4 π t)n/2
e
−

|x−y|2

4t l(y) dy. (14)

It is clear that v remains nonnegative and

vt −△v = 0. (15)

Setting w≡ut
2− v, we have

wt −△w 6 0 in Ω× (0,∞); w 6 0 on ∂Ω× (0,∞); w = 0 on Ω×{t = 0}. (16)

Now weak maximum principle yields w 6 0 for all time and thus

ut
2 6 v� 0 as t ր∞ (17)

pointwise.

2. Other estimates.

2.1. Fourier splitting.
In this section we introduce the Fourier spliting method introduced by Maria Schonbek in the late 1980s.

It has proven to be an effective method in getting quantitative asymptotic behaviors for nonlinear equation
involving the heat operator (for example, the Navier-Stokes equations and reaction-diffusion type equations).

The starting point is the energy inequality1

d

dt

∫

u2 dx 6−

∫

|∇u|2 dx. (18)

Recall Plancherel’s theorem
∫

f(x)2 dx=

∫

f̂ (ξ)2 dξ (19)

where f̂ is the Fourier transform of f . Now taking the Fourier transform of the energy inequality, we obtain

d

dt

∫

Rn

û2 dξ 6−C

∫

Rn

|ξ |2 |û |2 dξ 6−C

∫

|ξ|>r

|ξ |2 |û |2 dξ. (20)

Taking r =
(

n

C (t + 1)

)1/2
we obtain (this C is the particular C in the above estimate)

d

dt

∫

Rn

|û |2 dξ 6−
n

t + 1

∫

|ξ|>r

|û |2 dξ =−
n

t + 1

∫

Rn

|û |2 dξ +
n

t +1

∫

|ξ|6r

|û |2 dξ. (21)

1. which is an equality in the case of the heat equation.
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Multiply both sides by (t +1)n, we have

d

dt

[

(t + 1)n

∫

|û |2 dξ

]

6n (t +1)n−1

∫

|ξ|6r

|û |2 dξ. (22)

Now assume that

|û |6 A for all |ξ |6 r. (23)

We obtain

d

dt

[

(t + 1)n

∫

|û |2 dξ

]

6 n (t + 1)n−1 rn α(n)A2 = C−n/2 A2 n
n

2
+1

(t + 1)
n−1−

n

2 . (24)

Integrating this estimate gives

(t + 1)n

∫

|û |2 dξ 6

∫

|û0|
2 dξ + c (t +1)

n

2 (25)

which gives
∫

u2 dx =

∫

|û |2 dξ 6 c (t + 1)−n/2. (26)

Remark 1. It is obvious that the above argument can be easily adapted to the case when the original energy
inequality reads

d

dt

∫

u2 dx 6−C

∫

|∇mu|2 dx. (27)

In this case we take r =
(

n

C (t +1)

)1/2m

and obtain

∫

u2 dx 6 c (t +1)
−

n

2m. (28)

Remark 2. It is clear that the key in the argument is the existence of a constant A such that

|û |6 A for all |ξ |6 r =

(

n

C (t +1)

)1/2

. (29)

For the heat equation this is true since |û | actually decays with time. One can obtain the same bound for
many other equations including conservation laws, Navier-Stokes equations, MHD equations, etc. See for
example Maria Schonbek The Fourier splitting method , Advances in Geometric Analysis and Continuum
Mechanics, (269-274), Internatl. Press, Cambridge, Ma. (1995)2 for obtaining such bound for the n-dimen-
sional scalar conservation law.

3. Energy estimates.
We use integration by parts to show uniqueness for the initial/boundary-value problem

ut−△u = f in ΩT ; u = g on ∂∗ΩT . (30)

We assume Ω⊂Rn is open, bounded, and that ∂Ω is C1. Let T > 0 be fixed.

Theorem 3. (Uniqueness) There exists at most one solution in C1
2(Ω̄T).

Proof. If ũ , u are two different solutions, we set w = u− ũ. Then w solves

wt −△w = 0 in ΩT ; w =0 on ∂∗ΩT . (31)

Now set

e(t)≡

∫

Ω

w2(x, t) dx. (32)

2. Available online at http://math.ucsc.edu/~schonbek/Publications/publications.html.
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It is clear that it suffices to show e(t)≡ 0 for 0 6 t 6T . We compute

d

dt
e(t) =

d

dt

∫

Ω

w2(x, t) dx

=

∫

Ω

d

dt
(w2(x, t)) dx

=

∫

Ω

2w(x, t) wt(x, t) dx

= 2

∫

Ω

w(x, t)△w(x, t) dx (We have used the equation here)

= −2

∫

Ω

|∇w(x, t)|2 dx6 0. (33)

Combined with e(0)= 0, we conclude that

e(t)≡ 0 (34)

for all 06 t 6 T and ends the proof. �

4. Backward uniqueness.
An application of the energy methods is the following backward uniqueness result.

Theorem 4. (Backward uniqueness) Let u and ũ solve the heat equation in ΩT with the same boundary
conditions on ∂Ω× [0, T ] (that is, the initial values may be different). Then if

u(x, T )= ũ(x, T ) x∈Ω (35)

then

u≡ ũ in ΩT . (36)

Remark 5. We know from basic PDE courses (those solving the heat equation via Fourier expansion) that
the inverse heat equation:

ut −△u = 0 in ΩT ; u(x, T ) = g(x) (37)

is ill-posed, in the sense that if

ũt −△ũ = 0 in ΩT ; ũ(x, T ) = g̃(x) (38)

then the difference g̃ − g is magnified by an exponential factor, that is

|u− ũ |(t)∼ eC(T −t) |g − g̃ |. (39)

However, a moment’s inspection of this suggests that if g = g̃ , u= ũ, which is just the backward uniqueness
we are going to prove now.

Proof. Write w = u− ũ. Set

e(t)=

∫

Ω

w2(x, t) dx. (40)

Again it is clear that all we need to do is proving

e(t)≡ 0 06 t 6 T (41)

from e(T )= 0.
Recall that

ė(t)≡
d

dt
e(t)=−2

∫

Ω

|∇w |2 dx. (42)

Differentiating once more, we obtain

ë(t)≡
d2

dt2
e(t)=−4

∫

∇w · ∇wt =−4

∫

∇w · ∇(△w)= 4

∫

(△w)2 dx. (43)
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Now since w = 0 on ∂Ω, we have

∫

Ω

|∇w |2 d =

∫

Ω

∇w · ∇w =−

∫

Ω

w △w 6

(
∫

Ω

w2

)1/2(
∫

Ω

(△w)2
)1/2

. (44)

Therefore

ė(t)2 6 e(t) ë(t). (45)

Now if e(t)≡0, there exists (t1, t2) such that e(t) > 0 in (t1, t2) and e(t2)= 0. We define

f(t)≡ log e(t) t1 6 t < t2. (46)

We calculate

f̈ (t) =
d

dt

(

ė(t)

e(t)

)

=
ë(t)

e(t)
−

ė(t)2

e(t)2
> 0. (47)

Thus f is a convex function, and as a consequence3

f((1−α) t1 + α t)6 (1−α) f(t1)+ α f(t). (50)

for any 0 < α < 1 and t1 < t < t2. This gives

e((1−α) t1 +α t)6 e(t1)
1−α e(t)α. (51)

Letting t ր t2 gives e≡ 0. �

3. Note that f̈ >0 implies ḟ (ξ) > ḟ (η) for any ξ > η. Using the mean value theorem, we have

f(t)− f((1−α) t1 + α t)
(1−α) (t− t1)

>
f((1−α) t1 +α t)− f(t1)

α (t− t1)
(48)

which reduces to

f((1−α) t1 + α t) 6(1−α) f(t1)+ α f(t). (49)
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