MATH 527 LECTURE 15 EXERCISES AND PROBLEMS

Exercises.

Problems.

Problem 1. Prove that if $G(x) = \frac{1}{(4\pi)^{-n/2}} e^{-|x|^2/4}$, then $\hat{G}(\xi) = e^{-|\xi|^2}$.

 $\ensuremath{\mathbf{Problem 2.}}$ Show that, if we define the Fourier transform as that in wiki

$$\hat{u}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i \xi \cdot x} u(x) \,\mathrm{d}x,\tag{1}$$

we will get the same fundamental solution $\Phi(x,t).$

Problem 3. Let u be given by

$$u(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t) g(y) \, \mathrm{d}y = \frac{1}{(4\pi t)^{n/2}} \int_{\mathbb{R}^n} e^{-\frac{|x-y|^2}{4t}} g(y) \, \mathrm{d}y, \qquad t > 0,$$
(2)

Show – by direct calculation of u_t and $\triangle u$ – that

$$u_t - \Delta u = 0 \tag{3}$$

for t > 0.

Problem 4. Consider the equation in $(x, t) \in \mathbb{R}^n \times \mathbb{R}^+$

$$u_t - \boldsymbol{b} \cdot \nabla u = \nu \, \triangle u \tag{4}$$

where \boldsymbol{b} is a constant vector. Derive its fundamental solution.

Problem*.

Problem. Consider the equation in $(x, t) \in \mathbb{R} \times \mathbb{R}^+$

$$u_t - c \, u_x = \nu \, u_{x \, x} \tag{5}$$

where c is a constant.

- a) Derive its fundamental solution $\Phi(x, t)$.
- b) Consider the initial value problem with forcing

$$-c u_x = \nu u_{xx} + f(x,t) \tag{6}$$

with IV u(x,0) = g(x). Prove that

$$u(x,t) = \int_0^t \int_{\mathbb{R}^n} \Phi(x-y,t-s) f(y,s) \, \mathrm{d}y \, \mathrm{d}s + \int_{\mathbb{R}^n} \Phi(x-y,t) g(y) \, \mathrm{d}y \tag{7}$$

indeed solves the problem (assume whatever regularity you need for g and f).

 u_t