MATH 527 LECTURE 14 EXERCISES AND PROBLEMS

Exercises.

Problems.

Problem 1. Let

$$f(x) = |x|^s, \qquad s \in \mathbb{R}.$$
(1)

Consider the domains

$$\Omega = B_R, \quad \Omega' = \mathbb{R}^n \backslash B_R. \tag{2}$$

For which values of p, n, s is $f \in W^{1, p}(\Omega)$ or $W^{1, p}(\Omega')$? How about $W^{k, p}(\Omega), W^{k, p}(\Omega')$?

Problem 2. Prove that any minimizer of the functional

$$I(u) = \int_{\Omega} |\nabla u|^2 + \int f u.$$
(3)

is a weak solution for

$$-\Delta u = f \text{ in } \Omega, \qquad u = g \text{ on } \partial \Omega. \tag{4}$$

Then give a detailed proof of the existence of weak solutions using direct method. You can assume the existence of a function $w \in W^{1,2}(\Omega)$ whose trace on $\partial \Omega$ is exactly g.

Problem 3. Write down a proof of the higher regularity result.

Theorem. Let $u \in W^{1,2}(\Omega)$ be a weak solution of $\Delta u = f$. If $f \in W^{k,2}(\Omega)$, then $u \in W^{k+2,2}(\Omega')$ for any $\Omega' \subset \subset \Omega$, and

$$\|u\|_{W^{k+2,2}(\Omega')} \leqslant C \left(\|u\|_{L^2(\Omega)} + \|f\|_{W^{k,2}(\Omega)} \right).$$
(5)

Here the constant depends on $d, h, dist(\Omega', \Omega)$.

Problem 4. Let u, v be weak solutions to the same Poisson equation

$$-\Delta u = f \text{ in } \Omega, \qquad u = g \text{ on } \partial \Omega. \tag{6}$$

Show that w = u - v solves (as a weak solution)

$$-\Delta w = 0 \text{ in } \Omega, \qquad u = 0 \text{ on } \partial \Omega.$$
 (7)

Then use definition of weak solution to prove w = 0.

Problem*.

Problem. Use the L^2 version of the Calderon-Zygmund inequality:

$$\|\nabla^2 w\|_{L^2(\Omega)} \leqslant \|f\|_{L^2(\Omega)} \tag{8}$$

where w is the Newton potential of f, to prove the inner regularity estimate on a ball: for any weak solution u of $\Delta u = f$, we have

$$\|u\|_{W^{2,2}(B_r)} \leqslant C \left(\|u\|_{L^2(B_R)} + \|f\|_{L^2(B_R)}\right). \tag{9}$$

Where r < R. For simplicity, you do not need to worry about the regularity of u, that is, work as if $u \in C^{\infty}$. Hint: Follow these steps.

1. For any $v \in C_0^{\infty}(B_R)$, $v = \int \Gamma(x, y) (\Delta v)(y) dy$. That is, v is the Newton potential of its Laplacian.

2. Use a cut-off function η whose support is in $B_{r'}$ with r < r' < R, apply C-Z inequality on $v = \eta u$ to obtain

$$\|\nabla^2 u\|_{L^2(B_r)} \leqslant C \left(\|u\|_{L^2(B_{r'})} + \|f\|_{L^2(B_{r'})} + \|\nabla u\|_{L^2(B_{r'})} \right).$$
(10)

3. Use another cut-off function ξ whose support is in B_R , to obtain

$$\|\nabla u\|_{L^{2}(B_{r'})} \leq C \left(\|u\|_{L^{2}(B_{R})} + \|f\|_{L^{2}(B_{R})}\right).$$
(11)