PoI1ssoN EQUATION IN SOBOLEV SPACES

OCMOUNTAIN DAYLIGHT TIME. 26, 2011

Today we discuss the Poisson equation
—Au=fin Q, u=g on 0f) (1)
in Sobolev spaces. It’s existence, uniqueness, and regularity.
Weak Solution.

Definition 1. u€ W2(Q) is a weak solution of the Poisson equation
Au=f, in Q, u=g, on Jf) (2)
if
/ Vu-Vv—i—/fv:O Yoe Wy 2(Q); u—geWy3(Q). (3)

The weak formulation is advantageous in getting quick estimates. For example, when g =0, we have

lullwr2<C || f |z (4)
for some constant C.
To see this, note that when ¢=0, u e W01’2 can be used as a test function, which gives

/ |Vu|2=—/fu<HfHLzHuan. (5)

Applying Poincaré inequality gives the desired estimate.

Existence.
The direct method shows the existence/uniqueness of the solution of PDEs by studying its variational
formulation. We sketch this approach by studying the Poisson equation with zero boundary condition:

Au=f,  ueWy(Q). (6)

We know that any weak solution to this problem is a minimizer of the functional

I(u):/Q |Vu|2+/fu. (7)

We would like to show that the minimizer exists. We apply the so-called “direct method”: Assume f & L2

1. Writing
1> [ (vup e [ [r? ()

and recalling the Poincaré’s inequality, we see that I(u) has finite infimum.

2. Let upn be such that I(un) \ inf,cy.2I(u). We show that there is a subsequence converging to

some limit 1o, € VVO1 2. To see this, note that a uniform bound on I (uy,) implies a uniform bound on
[ |Vu,|?, since

I(u) > [|VullZz = l[ull 2l fllz2 > [VullZe = C | Vul 2= (IVull 2 = O) [ Vul| 2. (9)
by Holder’s inequality and Poincaré’s inequality.

3. Uniform boundedness of ||V, || > implies that 1, is uniformly bounded in W, and thus has a weakly®
converging subsequence, still denoted by u,. We denote the limit by uec.

1. The weak convergence is in W12, Recall that a sequence {u,} in a Hilbert space H is weakly convergent with weak
limit oo € H if (Up,v)— (Uoo,v) for any v € H.

Furthermore, using compact embedding, we see that when u,, converges to us, weakly in W12, we can find a subsequence,
still denoted u.,, converging to us strongly in L?, at the same time Vu,, converges to Vueso weakly in L2.
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4. The convexity of the functional I(u) then guarantees that

I(too) <liminfl(u,) = inf I(u) (10)
n /oo ueWwg?
which means uq, is a minimizer.

Uniqueness.
Let u, v be weak solutions to

—Au=fin Q, u=g on Of) (11)
Let w=wu—wv. Then w is weak solution to

—Aw=0in Q, w=0 on 0N. (12)
Note that as w ¢ C?, we cannot directly apply the maximum principle for harmonic functions. However
proving through the definition of weak solution is as simple. Left as a problem.

Interior Regularity.

Our goal is the prove the following theorem, which justifies the intuition that « is twice more differentiable
than f. By “interior regularity”, we mean we do not deal with boundary data, and therefore the L?norm of
u is necessary in the RHS.

Theorem 2. Let u € WH2(Q) be a weak solution of Au= f with f € L3(Q). For any Q' C CQ, we have
ueW?22(Q'), and
ullwz2y < C ([JullLzq) + 1 fllz2@)- (13)

where the constant depends on the distance between ' and 0. Furthermore, Au= f almost everywhere in

Q.
Remark 3. The difficulty in proving the theorem lies in the fact that we have to show u € W2, Once this
is known, the estimate is relatively easy to establish.
1. We first show that
17
||VU||%2(Q/)<§||U|\2L2(Q)+52||f|\2L2(Q)- (14)

without any extra assumptions.
Let n(z) be a “cut-off” function defined by

1 xeQ’
n(x) = 1—%dist(x,Q’) 0 < dist(x, ) <4 (15)
0 dist(z, Q) >4
and set the test function
v:n2u€W01"2(Q). (16)

Some calculation yields

[orvap2 [ @9u-@vn == . (17)

Using Young’s inequality

|ab|<§a2+2—15b2 0, bER, £>0 (18)
on the 2nd term on the LHS and on the RHS we have
1 1 52
[orrvup<s [ vz [ @ 9ap gy fres S [ (19)

Moving the first term on the RHS to the left, we have

/Q, |Vu|2<(§—g+%>/ﬂu2+52/ﬂ 12 (20)
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2. Note that [ |Au|?>= [ |V2u|® + boundary terms. if we assume u € W32 Thus using Au as test
function we obtain

[V2ul|Z20n < || f11320)- (21)

Proof. Let ' C cQ”C cQ, with dist(Q2”,00) > §/4, dist(Q/,00") = §/4.
Now choose 7€ C§(Q”) with n=1 on Q" and |V7n|<8/§, and set

v=n?A (22)
where
Ay () = 2z LD Zi) —u(2) (23)
Then we have
/ V(AM) - Vo = ANV u)- Vo
S " Sz//
= - Vu-V(A)
gl//
= / f A?v
S "
< ez IV llzz@n. (24)
Recalling
v=n>Aly (25)
We have
V(AP -V (n? Alu) < fll2 @) IV (02 Af)|| 2ar). (26)

Qr

The terms can be expanded to obtain

/// ,]72 |V(A?U)|2 < ||f||L2(Q) ||V(772 A?U)HL2(QN) — 2/9” (77 VA?’U,) . (A,]LI’LL Vn)
1 1
< 2||f||%2(9)+§||V(772A?U)||%2(Q~)+Z/QN |77VA?U|2+8/QN V2| Abul? (27)

This gives
3

1
Z/Q,, |77VA?U|2<2||f||%2(sz)+§||V(772A?u)||%2(m)+8/ [V )2 | Alu)?. (28)

To proceed further, we need to study the two terms % 1V (n? A?U)H%z(ﬂn) and 8 [ |Vn|?|Aul?
1
— 3 ||V(772 A?U)”%z(ﬂu). We have

IV (7 D) 2o IV () ATl 22+ 2 10* [V Al |72

(sup [V (n*)]) |88 ul|Fz+ 2|0V Aful||Zs. (29)

N IN
NN

Where we have used the fact that 72 <.
— 8 |Vn[?|Alul?. We have

/ Va2 | ARl < (sup [V ?) / ARl = (sup [V [2) | AP 2. (30)
Thus we have
1 1
5/9“ InVAM[2<2 ||f||%2<n)+z(suplv(n2)|) | Alul|Z2+ 8 (sup [Vn|?) |AFu]7 s (31)

The following lemma then guarantees the existence of V2u and also gives the desired estimate.

Lemma. Let

Muz“(“h‘z)_“(l’), h#0 (32)
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with e; being the ith unit vector of R™. Let Q' C CQ and |h| < dist(Q',0Q). Then
1. If ue L*(Q) and there is K < oo such that
A 2n < K (33)
then ue WH2(Q') and
1020 2y < K. (34)

2. Conversely, if u€ WH2(Q'), then Alue L*(Q') with

HA?UHLz(Q’)g ||8m1u |L2(Q’)- (35)

Proof.
1. We first show that Au converges as distributions in D’(Q’) to the distributional derivative of u. Check

[ @ty fu(s:%) — = [u(up) (36)

by Lebesgue’s dominated convergence theorem.
We have

@) =lim [ (Ak) <Al ulzsan Ielle< K lpllis Vo € CR(E). (37

Now recall that C§°(Q) is dense in L?(QY’), (0,,u) can be identified with a bounded linear operator
on L2 which means it can be identified with a function in L?()’).2

2. Since C is dense in W2, we only need to consider the case when v € C°N W2, In this case we have

R
A?U(I):l/ Og (1, ooy i1, Ti + S, i1, .00, Tpy) dS. (38)
h Jo
This gives
h
|A€LU($)|2§%/ |0 (1, ey i1, i+ 8, g1, ey ) [P ds (39)
0

due to Holder’s inequality. Now integrate over )’ and exchange the order of integration on the RHS
we obtain the result. O

With the help of this lemma (part b) ) we have

1 1
3 [ InTAt <21 s+ (up V() 10ralfa+ 8 (sup (991 [0, (10)
which is a uniform bound on
|88Vl < [ Invalup (a1)
Q//
Now part a) of the lemma yields 9,,Vu € L*(Q") and also the desired estimate. O

When f has better regularity, we can differentiate the equation first and obtain the following interior
regularity result.

Theorem 4. Let u€ WH2(Q) be a weak solution of Au= f. If f € W*2(Q), then u € WFt22(Q') for any
Q'ccQ, and

[ullwr+z20y <C (llullLz) + | Fllwe ) (42)
Here the constant depends on d, h,dist(Q2', Q).

Boundary regularity.

2. Riesz representation theorem.
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We consider the Poisson equation with Dirichlet boundary condition:
Au=f in Q; u=g on Jf) (43)

where g can be extended to a function on the whole 2. Our purpose is to establish the following result:

Theorem 5. Let u be a weak solution with u— g€ Wy 2(Q). If f € WE2(Q), g€ WFT22(Q), and Q be of
class C*+2 then

ue Wkt2:2(Q), (44)

and we have the estimate
ullwes2200) <C (I fllwrz) + N9 llwer22))- (45)
The constant C' depends on ).
Proof. We only give an outline here.
1. First note that since g € W*+22(Q), we can replace u by u — g and reduce the problem to
Au=f, ueWy?). (46)
2. We first establish W12 bound:
lullwr2<C(gllwr2+I1fllz2)- (47)

To see this, use v =u — g as the test function. We obtain

[ vuv-a|-| [1u-9) (15)

therefore

[ wap| [ uva+| [ra-o| <t [1wers [ wapad [ree [u-gr o

Apply Poincaré’s inequality to the last term and choosing € to be small enough, we obtain the desired
estimate.

3. For any Q' C CQ, we can estimate [, [Opul><C ([ v+ [ f?) <C(|gllwr.2 4 f||z2). Therefore
it suffices to establish the desired estimate in a neighborhood of the bondary 0f2.

4. We illustrate the basic idea by assuming part of the boundary is in z,, =0. We try to show the W22
bound for v in a small half-ball Bf; = BrN {x,, >0}. Note that once this is done, the boundary, which
is compact, can be covered by finitely many such balls.

First note that d,,u is well defined in Bf; and belongs to L?(Bf;). Now let 1 be a cut-off function
in C§°(BR). For all j#£n, Ajihu is well-defined and we can use the test function A%(n? Ahu) as we
did when proving the interior regularity, and obtain the desired bound for all 9, . u except Oy, u.

Now notice that the equation implies

n—1
8xnznu = f - Z 817111” (50)
=1

and therefore this term enjoys the same bound as other double derivatives.

5. For general 2, we need to first cover 92 by small balls, and then do a change of variable on each of
the balls to “straighten” that part of the boundary. After doing this, however, the equation does not
have the simple form

Au=f (51)

anymore and proving the estimate becomes as difficult as proving similar estimates for the general
case. |

Remark 6. It turns out that when the boundary is smooth, one can actually extend the regularity to Q.
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Theorem. Let Q CR™ be a bounded domain of class C*°, and let g€ C*°(99), f € C°(Q). Then the Dirichlet
problem

Au=f in u=g on JQ, (52)
possesses a unique solution u which is C°°(Q).
The key to the proof is the embedding W*-?(Q) c C™(Q) for 0 <m <k — %.
LP Regularity.

Theorem 7. Let 1< p<oo, f€ LP(Q), and let w be the Newton potential of f. Then we W2P(Q), Aw=f
almost everywhere in 2, and

V2w o) < C(n, ) 1 f | r(0)- (53)
Using this theorem, we can obtain the following interior regularity result.

Theorem 8. Let ue W12(Q) be a weak solution of Au= f, f € LP(Q), 1<p<oo. Then ue W2?(Q') for
any Q' C CQ, and

lullwzrny < C (ullLe@) + 11 fllLe@)- (54)
Here C=C(n,p,Q, Q).



