POISSON EQUATION IN SOBOLEV SPACES

OcMountain Daylight Time. 26, 2011

Today we discuss the Poisson equation

$$-\Delta u = f \text{ in } \Omega, \qquad u = g \text{ on } \partial \Omega \tag{1}$$

in Sobolev spaces. It's existence, uniqueness, and regularity.

Weak Solution.

Definition 1. $u \in W^{1,2}(\Omega)$ is a weak solution of the Poisson equation

$$\Delta u = f, \quad in \ \Omega, \qquad u = g, \quad on \ \partial\Omega \tag{2}$$

if

$$\int \nabla u \cdot \nabla v + \int f v = 0 \quad \forall v \in W_0^{1,2}(\Omega); \qquad u - g \in W_0^{1,2}(\Omega).$$
(3)

The weak formulation is advantageous in getting quick estimates. For example, when g=0, we have

$$\|u\|_{W^{1,2}} \leqslant C \,\|f\|_{L^2} \tag{4}$$

for some constant C.

To see this, note that when g = 0, $u \in W_0^{1,2}$ can be used as a test function, which gives

$$\int |\nabla u|^2 = -\int f u \leqslant ||f||_{L^2} ||u||_{L^2}.$$
(5)

Applying Poincaré inequality gives the desired estimate.

Existence.

The direct method shows the existence/uniqueness of the solution of PDEs by studying its variational formulation. We sketch this approach by studying the Poisson equation with zero boundary condition:

$$\Delta u = f, \qquad u \in W_0^{1,2}(\Omega). \tag{6}$$

We know that any weak solution to this problem is a minimizer of the functional

$$I(u) = \int_{\Omega} |\nabla u|^2 + \int f u.$$
⁽⁷⁾

We would like to show that the minimizer exists. We apply the so-called "direct method": Assume $f \in L^2$.

1. Writing

$$I(u) \ge \int_{\Omega} |\nabla u|^2 - \varepsilon \int u^2 - \frac{1}{4\varepsilon} \int f^2$$
(8)

and recalling the Poincaré's inequality, we see that I(u) has finite infimum.

2. Let u_n be such that $I(u_n) \searrow \inf_{u \in W_0^{1,2}} I(u)$. We show that there is a subsequence converging to some limit $u_{\infty} \in W_0^{1,2}$. To see this, note that a uniform bound on $I(u_n)$ implies a uniform bound on $\int |\nabla u_n|^2$, since

$$I(u) \ge \|\nabla u\|_{L^{2}}^{2} - \|u\|_{L^{2}} \|f\|_{L^{2}} \ge \|\nabla u\|_{L^{2}}^{2} - C \|\nabla u\|_{L^{2}} = (\|\nabla u\|_{L^{2}} - C) \|\nabla u\|_{L^{2}}.$$
(9)

by Hölder's inequality and Poincaré's inequality.

3. Uniform boundedness of $\|\nabla u_n\|_{L^2}$ implies that u_n is uniformly bounded in $W_0^{1,2}$ and thus has a weakly¹ converging subsequence, still denoted by u_n . We denote the limit by u_∞ .

^{1.} The weak convergence is in $W^{1,2}$. Recall that a sequence $\{u_n\}$ in a Hilbert space H is weakly convergent with weak limit $u_{\infty} \in H$ if $(u_n, v) \longrightarrow (u_{\infty}, v)$ for any $v \in H$.

Furthermore, using compact embedding, we see that when u_n converges to u_∞ weakly in $W^{1,2}$, we can find a subsequence, still denoted u_n , converging to u_∞ strongly in L^2 , at the same time ∇u_n converges to ∇u_∞ weakly in L^2 .

4. The convexity of the functional I(u) then guarantees that

$$I(u_{\infty}) \leq \liminf_{n \nearrow \infty} I(u_n) = \inf_{u \in W_0^{1,2}} I(u) \tag{10}$$

which means u_{∞} is a minimizer.

Uniqueness.

Let u, v be weak solutions to

$$-\Delta u = f \text{ in } \Omega, \qquad u = g \text{ on } \partial \Omega \tag{11}$$

Let w = u - v. Then w is weak solution to

$$-\Delta w = 0 \text{ in } \Omega, \qquad w = 0 \text{ on } \partial \Omega. \tag{12}$$

Note that as $w \notin C^2$, we cannot directly apply the maximum principle for harmonic functions. However proving through the definition of weak solution is as simple. Left as a problem.

Interior Regularity.

Our goal is the prove the following theorem, which justifies the intuition that u is twice more differentiable than f. By "interior regularity", we mean we do not deal with boundary data, and therefore the L^2 -norm of u is necessary in the RHS.

Theorem 2. Let $u \in W^{1,2}(\Omega)$ be a weak solution of $\Delta u = f$ with $f \in L^2(\Omega)$. For any $\Omega' \subset \subset \Omega$, we have $u \in W^{2,2}(\Omega')$, and

$$\|u\|_{W^{2,2}(\Omega')} \leq C \left(\|u\|_{L^{2}(\Omega)} + \|f\|_{L^{2}(\Omega)}\right).$$
(13)

where the constant depends on the distance between Ω' and $\partial\Omega$. Furthermore, $\Delta u = f$ almost everywhere in Ω .

Remark 3. The difficulty in proving the theorem lies in the fact that we have to show $u \in W^{2,2}$. Once this is known, the estimate is relatively easy to establish.

1. We first show that

$$\|\nabla u\|_{L^{2}(\Omega')}^{2} \leqslant \frac{17}{\delta^{2}} \|u\|_{L^{2}(\Omega)}^{2} + \delta^{2} \|f\|_{L^{2}(\Omega)}^{2}.$$
(14)

without any extra assumptions.

Let $\eta(x)$ be a "cut-off" function defined by

$$\eta(x) = \begin{cases} 1 & x \in \Omega' \\ 1 - \frac{1}{\delta} \operatorname{dist}(x, \Omega') & 0 \leqslant \operatorname{dist}(x, \Omega') \leqslant \delta \\ 0 & \operatorname{dist}(x, \Omega') > \delta \end{cases}$$
(15)

and set the test function

$$v = \eta^2 u \in W_0^{1,2}(\Omega).$$
 (16)

Some calculation yields

$$\int_{\Omega} \eta^2 |\nabla u|^2 + 2 \int_{\Omega} (\eta \, \nabla u) \cdot (u \, \nabla \eta) = -\int_{\Omega} \eta^2 f u.$$
(17)

Using Young's inequality

$$|a b| \leqslant \frac{\varepsilon}{2} a^2 + \frac{1}{2\varepsilon} b^2 \qquad a, b \in \mathbb{R}, \ \varepsilon > 0$$
⁽¹⁸⁾

on the 2nd term on the LHS and on the RHS we have

$$\int_{\Omega} \eta^2 |\nabla u|^2 \leqslant \frac{1}{2} \int_{\Omega} \eta^2 |\nabla u|^2 + 2 \int_{\Omega} u^2 |\nabla \eta|^2 + \frac{1}{2\delta^2} \int \eta^2 u^2 + \frac{\delta^2}{2} \int \eta^2 f^2.$$
(19)

Moving the first term on the RHS to the left, we have

$$\int_{\Omega'} |\nabla u|^2 \leq \left(\frac{16}{\delta^2} + \frac{1}{\delta^2}\right) \int_{\Omega} u^2 + \delta^2 \int_{\Omega} f^2.$$
⁽²⁰⁾

2. Note that $\int |\Delta u|^2 = \int |\nabla^2 u|^2 + \text{boundary terms.}$ if we assume $u \in W^{3,2}$. Thus using Δu as test function we obtain

$$\|\nabla^2 u\|_{L^2(\Omega')}^2 \leqslant \|f\|_{L^2(\Omega)}^2.$$
(21)

Proof. Let $\Omega' \subset \subset \Omega'' \subset \subset \Omega$, with $\operatorname{dist}(\Omega'', \partial \Omega) \ge \delta/4$, $\operatorname{dist}(\Omega', \partial \Omega'') \ge \delta/4$. Now choose $\eta \in C_0^1(\Omega'')$ with $\eta = 1$ on Ω' and $|\nabla \eta| \le 8/\delta$, and set

$$v = \eta^2 \triangle_i^h u \tag{22}$$

where

$$\triangle_i^h u(x) = \frac{u(x+h\,e_i) - u(x)}{h} \tag{23}$$

Then we have

$$\int_{\Omega''} \nabla(\Delta_i^h u) \cdot \nabla v = \int_{\Omega''} \Delta_i^h (\nabla u) \cdot \nabla v$$

$$= -\int_{\Omega''} \nabla u \cdot \nabla(\Delta_i^h v)$$

$$= \int_{\Omega''} f \Delta_i^h v$$

$$\leqslant ||f||_{L^2(\Omega)} ||\nabla v||_{L^2(\Omega'')}.$$
(24)

Recalling

$$v = \eta^2 \,\triangle_i^h u \tag{25}$$

We have

$$\int_{\Omega''} \nabla(\triangle_i^h u) \cdot \nabla(\eta^2 \triangle_i^h u) \leqslant \|f\|_{L^2(\Omega)} \|\nabla(\eta^2 \triangle_i^h u)\|_{L^2(\Omega'')}.$$
(26)

The terms can be expanded to obtain

$$\int_{\Omega''} \eta^2 |\nabla(\triangle_i^h u)|^2 \leqslant \|f\|_{L^2(\Omega)} \|\nabla(\eta^2 \triangle_i^h u)\|_{L^2(\Omega'')} - 2 \int_{\Omega''} (\eta \nabla \triangle_i^h u) \cdot (\triangle_i^h u \nabla \eta) \\
\leqslant 2 \|f\|_{L^2(\Omega)}^2 + \frac{1}{8} \|\nabla(\eta^2 \triangle_i^h u)\|_{L^2(\Omega'')}^2 + \frac{1}{4} \int_{\Omega''} |\eta \nabla \triangle_i^h u|^2 + 8 \int_{\Omega''} |\nabla \eta|^2 |\triangle_i^h u|^2.$$
(27)

This gives

 $- \frac{1}{8} \| \nabla$

$$\frac{3}{4} \int_{\Omega''} |\eta \, \nabla \triangle_i^h u|^2 \leq 2 \, \|f\|_{L^2(\Omega)}^2 + \frac{1}{8} \, \|\nabla (\eta^2 \, \triangle_i^h u)\|_{L^2(\Omega'')}^2 + 8 \int \, |\nabla \eta|^2 \, |\triangle_i^h u|^2. \tag{28}$$

To proceed further, we need to study the two terms $\frac{1}{8} \|\nabla(\eta^2 \triangle_i^h u)\|_{L^2(\Omega'')}^2$ and $8 \int \|\nabla \eta\|^2 |\triangle_i^h u|^2$.

$$\begin{aligned} & (\eta^{2} \bigtriangleup_{i}^{h} u) \|_{L^{2}(\Omega'')}^{2}. \text{ We have} \\ & \| \nabla (\eta^{2} \bigtriangleup_{i}^{h} u) \|_{L^{2}(\Omega'')}^{2} \leqslant 2 \| (\nabla (\eta^{2})) |\bigtriangleup_{i}^{h} u\|_{L^{2}}^{2} + 2 \| \eta^{2} |\nabla \bigtriangleup_{i}^{h} u\| \|_{L^{2}}^{2} \\ & \leqslant 2 \left(\sup |\nabla (\eta^{2})| \right) \|\bigtriangleup_{i}^{h} u\|_{L^{2}}^{2} + 2 \| \eta |\nabla \bigtriangleup_{i}^{h} u\| \|_{L^{2}}^{2}. \end{aligned}$$
(29)

Where we have used the fact that $\eta^2 \leq \eta$.

$$- 8\int |\nabla \eta|^2 |\Delta_i^h u|^2$$
. We have

$$\int |\nabla \eta|^2 |\Delta_i^h u|^2 \leq (\sup |\nabla \eta|^2) \int |\Delta_i^h u|^2 = (\sup |\nabla \eta|^2) \|\Delta_i^h u\|_{L^2}^2.$$
(30)

Thus we have

$$\frac{1}{2} \int_{\Omega''} |\eta \, \nabla \triangle_i^h u|^2 \leq 2 \, \|f\|_{L^2(\Omega)}^2 + \frac{1}{4} \left(\sup |\nabla(\eta^2)| \right) \|\triangle_i^h u\|_{L^2}^2 + 8 \left(\sup |\nabla\eta|^2 \right) \|\triangle_i^h u\|_{L^2}^2. \tag{31}$$

The following lemma then guarantees the existence of $\nabla^2 u$ and also gives the desired estimate.

Lemma. Let

$$\Delta_i^h u \equiv \frac{u(x+h\,e_i) - u(x)}{h}, \qquad h \neq 0 \tag{32}$$

with e_i being the *i*th unit vector of \mathbb{R}^n . Let $\Omega' \subset \subset \Omega$ and $|h| < \operatorname{dist}(\Omega', \partial \Omega)$. Then

1. If $u \in L^2(\Omega)$ and there is $K < \infty$ such that

$$\|\triangle_i^h u\|_{L^2(\Omega')} \leqslant K \tag{33}$$

then $u \in W^{1,2}(\Omega')$ and

$$\|\partial_{x_i} u\|_{L^2(\Omega')} \leqslant K. \tag{34}$$

2. Conversely, if $u \in W^{1,2}(\Omega')$, then $\triangle_i^h u \in L^2(\Omega')$ with

$$\|\Delta_i^h u\|_{L^2(\Omega')} \leqslant \|\partial_{x_i} u\|_{L^2(\Omega')}.$$
(35)

Proof.

1. We first show that $\triangle_i^h u$ converges as distributions in $\mathcal{D}'(\Omega')$ to the distributional derivative of u. Check

$$\int_{\Omega'} \left(\triangle_i^h u \right) \varphi = -\int u \left(\triangle_i^{-h} \varphi \right) \longrightarrow -\int u \left(\partial_{x_i} \varphi \right) \tag{36}$$

by Lebesgue's dominated convergence theorem.

We have

$$(\partial_{x_i} u)(\varphi) = \lim \int_{\Omega'} (\Delta_i^h u) \, \varphi \leqslant \|\Delta_i^h u\|_{L^2(\Omega')} \, \|\varphi\|_{L^2} \leqslant K \, \|\varphi\|_{L^2}, \qquad \forall \varphi \in C_0^\infty(\Omega'). \tag{37}$$

Now recall that $C_0^{\infty}(\Omega')$ is dense in $L^2(\Omega')$, $(\partial_{x_i}u)$ can be identified with a bounded linear operator on L^2 , which means it can be identified with a function in $L^2(\Omega')$.²

2. Since C^{∞} is dense in $W^{1,2}$, we only need to consider the case when $u \in C^{\infty} \cap W^{1,2}$. In this case we have

$$\Delta_i^h u(x) = \frac{1}{h} \int_0^h \partial_{x_i} u(x_1, \dots, x_{i-1}, x_i + s, x_{i+1}, \dots, x_n) \,\mathrm{d}s.$$
(38)

This gives

$$|\Delta_i^h u(x)|^2 \leq \frac{1}{h} \int_0^h |\partial_{x_i} u(x_1, \dots, x_{i-1}, x_i + s, x_{i+1}, \dots, x_n)|^2 \,\mathrm{d}s \tag{39}$$

due to Hölder's inequality. Now integrate over Ω' and exchange the order of integration on the RHS we obtain the result.

With the help of this lemma (part b)) we have

$$\frac{1}{2} \int_{\Omega''} |\eta \nabla \triangle_i^h u|^2 \leq 2 \|f\|_{L^2(\Omega)}^2 + \frac{1}{4} \left(\sup |\nabla(\eta^2)| \right) \|\partial_{x_i} u\|_{L^2}^2 + 8 \left(\sup |\nabla\eta|^2 \right) \|\partial_{x_i} u\|_{L^2}^2.$$
(40)

which is a uniform bound on

$$\|\triangle_i^h \nabla u\|_{L^2(\Omega'')} \leqslant \int_{\Omega''} |\eta \, \nabla \triangle_i^h u|^2.$$
(41)

Now part a) of the lemma yields $\partial_{x_i} \nabla u \in L^2(\Omega'')$ and also the desired estimate.

When f has better regularity, we can differentiate the equation first and obtain the following interior regularity result.

Theorem 4. Let $u \in W^{1,2}(\Omega)$ be a weak solution of $\Delta u = f$. If $f \in W^{k,2}(\Omega)$, then $u \in W^{k+2,2}(\Omega')$ for any $\Omega' \subset \subset \Omega$, and

$$\|u\|_{W^{k+2,2}(\Omega')} \leq C \left(\|u\|_{L^{2}(\Omega)} + \|f\|_{W^{k,2}(\Omega)} \right).$$
(42)

Here the constant depends on $d, h, \operatorname{dist}(\Omega', \Omega)$.

Boundary regularity.

^{2.} Riesz representation theorem.

We consider the Poisson equation with Dirichlet boundary condition:

$$\Delta u = f \qquad \text{in } \Omega; \qquad u = g \quad \text{on } \partial \Omega \tag{43}$$

where g can be extended to a function on the whole Ω . Our purpose is to establish the following result:

Theorem 5. Let u be a weak solution with $u - g \in W_0^{1,2}(\Omega)$. If $f \in W^{k,2}(\Omega)$, $g \in W^{k+2,2}(\Omega)$, and Ω be of class C^{k+2} , then

$$u \in W^{k+2,2}(\Omega),\tag{44}$$

and we have the estimate

$$\|u\|_{W^{k+2,2}(\Omega)} \leq C \left(\|f\|_{W^{k,2}(\Omega)} + \|g\|_{W^{k+2,2}(\Omega)} \right).$$
(45)

The constant C depends on Ω .

Proof. We only give an outline here.

1. First note that since $g \in W^{k+2,2}(\Omega)$, we can replace u by u - g and reduce the problem to

$$\Delta u = f, \qquad u \in W_0^{1,2}(\Omega). \tag{46}$$

2. We first establish $W^{1,2}$ bound:

$$|u||_{W^{1,2}} \leqslant C \left(||g||_{W^{1,2}} + ||f||_{L^2} \right).$$
(47)

To see this, use v = u - g as the test function. We obtain

$$\int \nabla u \cdot \nabla (u - g) \bigg| = \bigg| \int f(u - g) \bigg|$$
(48)

therefore

$$\int |\nabla u|^2 \leq \left| \int \nabla u \cdot \nabla g \right| + \left| \int f\left(u - g\right) \right| \leq \frac{1}{4} \int |\nabla u|^2 + \int |\nabla g|^2 + \frac{1}{\varepsilon} \int f^2 + \varepsilon \int |u - g|^2.$$
(49)

Apply Poincaré's inequality to the last term and choosing ε to be small enough, we obtain the desired estimate.

- 3. For any $\Omega' \subset \subset \Omega$, we can estimate $\int_{\Omega'} |\partial_{x_i x_j} u|^2 \leq C (\int u^2 + \int f^2) \leq C (||g||_{W^{1,2}} + ||f||_{L^2})$. Therefore it suffices to establish the desired estimate in a neighborhood of the bondary $\partial \Omega$.
- 4. We illustrate the basic idea by assuming part of the boundary is in $x_n = 0$. We try to show the $W^{2,2}$ bound for u in a small half-ball $B_R^+ \equiv B_R \cap \{x_n > 0\}$. Note that once this is done, the boundary, which is compact, can be covered by finitely many such balls.

First note that $\partial_{x_i}u$ is well defined in B_R^+ and belongs to $L^2(B_R^+)$. Now let η be a cut-off function in $C_0^{\infty}(B_R)$. For all $j \neq n$, $\Delta_j^{\pm h}u$ is well-defined and we can use the test function $\Delta_j^h(\eta^2 \Delta_j^h u)$ as we did when proving the interior regularity, and obtain the desired bound for all $\partial_{x_ix_j}u$ except $\partial_{x_nx_n}u$.

Now notice that the equation implies

$$\partial_{x_n x_n} u = f - \sum_{i=1}^{n-1} \partial_{x_i x_i} u \tag{50}$$

and therefore this term enjoys the same bound as other double derivatives.

5. For general Ω , we need to first cover $\partial \Omega$ by small balls, and then do a change of variable on each of the balls to "straighten" that part of the boundary. After doing this, however, the equation does not have the simple form

$$\triangle u = f \tag{51}$$

anymore and proving the estimate becomes as difficult as proving similar estimates for the general case. $\hfill \square$

Remark 6. It turns out that when the boundary is smooth, one can actually extend the regularity to Ω .

Theorem. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain of class C^{∞} , and let $g \in C^{\infty}(\partial \Omega)$, $f \in C^{\infty}(\Omega)$. Then the Dirichlet problem

$$\Delta u = f \quad in \ \Omega; \qquad u = g \quad on \ \partial\Omega, \tag{52}$$

possesses a unique solution u which is $C^{\infty}(\overline{\Omega})$.

The key to the proof is the embedding $W^{k,p}(\Omega) \subset C^m(\bar{\Omega})$ for $0 \leq m < k - \frac{d}{p}$.

L^p Regularity.

Theorem 7. Let $1 , <math>f \in L^p(\Omega)$, and let w be the Newton potential of f. Then $w \in W^{2,p}(\Omega)$, $\Delta w = f$ almost everywhere in Ω , and

$$\|\nabla^2 w\|_{L^p(\Omega)} \leqslant C(n,p) \|f\|_{L^p(\Omega)}.$$
(53)

Using this theorem, we can obtain the following interior regularity result.

Theorem 8. Let $u \in W^{1,2}(\Omega)$ be a weak solution of $\Delta u = f$, $f \in L^p(\Omega)$, $1 . Then <math>u \in W^{2,p}(\Omega')$ for any $\Omega' \subset \subset \Omega$, and

$$||u||_{W^{2,p}(\Omega')} \leq C \left(||u||_{L^{p}(\Omega)} + ||f||_{L^{p}(\Omega)} \right).$$
(54)

Here $C = C(n, p, \Omega', \Omega)$.