SOBOLEV SPACES

OcMountain Daylight Time. 21, 2011

Definition and Properties.

• Sobolev spaces $W^{k,p}(\Omega)$:

$$W^{k,p}(\Omega) = \left(\sum_{|\alpha| \leqslant k} \|D^{\alpha}u\|_{L^p}^p\right)^{1/p}.$$
(1)

 $W_0^{k,p}(\Omega)$ is the closure of $C_0^{\infty}(\Omega)$ in $W^{k,p}(\Omega)$

• Approximation properties:

- $C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$;
- $C^{\infty}(\overline{\Omega}) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$ when $\partial\Omega$ is compact, locally Lipschitz, and Ω lies (locally) on one side of $\partial\Omega$.

Extensions and Traces.

• Extensions.

If Ω is bounded and $\partial\Omega$ is C^k , then there is an extension operator $E: W^{k,p}(\Omega) \mapsto W^{k,p}(\mathbb{R}^n)$ which is linear, bounded, and Eu = u in Ω ;

• Trace.

If Ω is bounded and $\partial\Omega$ is C^k , then there is a bounded linear operator $T: W^{k,p}(\Omega) \mapsto W^{k-1,p}(\partial\Omega)$ which satisfies $Tu = u|_{\partial\Omega}$ when $u \in C^{k-1}(\overline{\Omega}) \cap W^{k,p}(\Omega)$.

Relations between Spaces.

The trick the understand embedding inequalities as

$$\|u\|_{L^q} \leqslant C \, \|u\|_{W^{1,p}} \tag{2}$$

or interpolation inequalities as

$$\|Du\|_{L^{p}} \leqslant C \|u\|_{L^{q}}^{\alpha} \|D^{2}u\|_{L^{r}}^{\beta}$$
(3)

is through scaling. That is, consider a "bump" function u with height h and width l. For such functions $D^k u \sim h/l^k$ and all Sobolev norms can be represented by powers of h and l.

For example, to see what relation q, p must satisfy in the embedding inequality, we compute

$$\|u\|_{L^{q}} \sim h \, l^{n/q}; \qquad \|u\|_{L^{p}} \sim h \, l^{n/p}; \qquad \|Du\|_{L^{p}} \sim h \, l^{n/p-1}. \tag{4}$$

So the embedding inequality roughly says

$$h \, l^{n/q} \leqslant C \left[h \, l^{n/p} + h \, l^{n/p-1} \right] \tag{5}$$

or equivalently

$$l^{n/q} \leqslant C \left[l^{n/p} + l^{n/p-1} \right]. \tag{6}$$

Letting $l \nearrow \infty$ we conclude that $q \ge p$, while letting $l \searrow 0$ we conclude $\frac{n}{q} \ge \frac{n}{p} - 1$ or equivalently $\frac{1}{q} \ge \frac{1}{p} - \frac{1}{n}$. So we expect

$$\|u\|_{L^q} \leqslant C \, \|u\|_{W^{1,p}} \tag{7}$$

to hold when $q \ge p$ and $\frac{1}{q} \ge \frac{1}{p} - \frac{1}{n}$.

Remark 1. If we further assume Ω to be bounded, then $l \nearrow \infty$ won't happen and we expect the embedding to be true whenever $q \leq q_c$ where q_c is given by $\frac{1}{q_c} = \frac{1}{p} - \frac{1}{n}$.

Remark 2. Scaling argument may fail when L^{∞} is involved. For example

$$\|u\|_{L^{\infty}} \leqslant \|u\|_{W^{1,n}} \tag{8}$$

is not true.

Remark 3. When $q < q_c$, we expect the embedding to be compact. That is, bounded sequences in $W^{1,p}$ will have convergent subsequence in L^q .

Remark 4. Such rough understanding should be enough for our future application of Sobolev spaces in this class. For more details see my 527 notes in 2009.