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Dirichlet Principle.

If we multiply the equation by any v ∈C0
∞(Ω) and integrate, we have

0=

∫

(△u) v =−

∫

∇u · ∇v. (1)

As a consequence, we have
∫

|∇(u + v)|2 =

∫

|∇u|2 +

∫

|∇v |2 >

∫

|∇u|2. (2)

In other words, u is the minimizer of the function

I(u)≡

∫

Ω

|∇u|2 dx. (3)

Conversely, if u is a minimizer, then for any v ∈C0
∞, and t > 0, we have

∫

|∇(u+ t v)|2 >

∫

|∇u|2 � t2
∫

|∇v |2− 2 t

∫

∇u · ∇v > 0 (4)

which implies
∫

(△u) v =−

∫

∇u · ∇v =0 (5)

by taking t ց 0 and consequently

△u = 0 (6)

when u∈C2.

Weak solution: first try.

Notice: For I(u) to be well-defined, we only need the existence of ∇u, and we do not need u∈C2. If we
drop the requirement of u∈C2, the above argument gives:

u = argmin I(u)� ∫

∇u · ∇v =0 (7)

for all v with ∇v exists and v = 0 along ∂Ω.
Thus we can define “weak solution” using

∫

∇u ·∇v=0 instead of −△u=0. The hope is that the existence
of thus defined weak solution would be easy to establish, through showing the existence of minimizer for I(u).

Existence of minimizer for I(u).
We use the so-called “direct method”, which consists of 3 steps:

1. Take a minimizing sequence un;

2. Establish that un is Cauchy in certain space;

3. Show that the limit u is in fact a minimizer.

Let un be a minimizing sequence, that is

lim
n→∞

I(un)= inf I(u). (8)

Then one calculates
∫

|∇un−∇um|2 =

∫

|∇un|
2− 2∇un · ∇um + |∇um|2

= 2

∫

|∇un|
2 +2

∫

|∇um|2−

∫

|∇un +∇um|2

= 2 I(un)+ 2 I(um)− 4 I
(

un + um

2

)

. (9)
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Note that we divide un + um by 2 to make sure the boundary condition is satisfied.
Since

4 I
(

un + um

2

)

> 4 inf I(u)= lim [2 I(un) +2 I(um)], (10)

we see that
∫

|∇un −∇um|2→ 0 n, m→∞ (11)

or equivalently {∇un} is a Cauchy sequence in the space L2 of all square integrable functions. Thus there
is a limit function w = lim∇un which is square integrable.

From the above we conclude:

• The weak solution u should satisfy ∇u∈L2;

W
1,2(Ω).
Based on the above, we try the following space:

V = {u∈C1,∇u∈L2}, ‖u‖V = ‖u‖C0 + ‖∇u‖L2 (12)

However this space is not complete, and we have to switch to

W 1,2(Ω): ={u∈L2,∇u∈L2}, ‖u‖W 1,26 ‖u‖L2 + ‖∇u‖L2 (13)

or equivalently but often more convenient to use:

‖u‖W 1,2: =(‖u‖L2
2 + ‖∇u‖L2

2 )1/2. (14)

However this leads to the following problem: If u is not a priori C1, how do we talk about ∇u? The answer
is weak derivatives.

Weak derivatives.

The weak derivative for a function u is a function v such that
∫

Ω

u∂jφ =−

∫

Ω

v φ (15)

for all φ∈C0
∞. We denote v by ∂ju.

Boundary value.

One important property of W 1,2(Ω) is that when ∂Ω is nice (say C1), then C(Ω̄)∩W 1,2(Ω) is dense in
it. Combining with the trace inequality:

‖u‖L2(∂Ω) 6 C ‖u‖W 1,2(Ω) (16)

for all u∈C(Ω̄)∩W 1,2(Ω), we can define boundary values for all u∈W 1,2(Ω).

W
0

1,2(Ω).
An important special subspace of W 1,2(Ω) is

W0
1,2(Ω)6 {u∈W 1,2(Ω), u= 0 on ∂Ω} (17)

whose norm is the same as that of W 1,2.

• W0
1,2(Ω) is a closed subspace of W 1,2(Ω) and therefore is a Banach space itself.

• W0
1,2 =C0

∞(Ω) where the closure is under the W 1,2 norm.

Weak solution.

The real definition for weak solution for

−△u =0 in Ω; u= g on ∂Ω. (18)

Definition 1. u∈W 1,2(Ω) is a weak solution if

• u = g on ∂Ω;
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• For any v ∈W0
1,2(Ω), we have

∫

∇u · ∇v = 0. (19)

Existence of weak solution.

We have shown the following: If un is a minimizing sequence of I(u)6 ∫

|∇u|2, then there is w ∈ L2

such that ∇un� w in L2, and
∫

w2 6 inf I(u).
So all we need to do is to show that w =∇u for some u∈W 1,2(Ω) with u= g on ∂Ω. It suffices to show

un→u in W 1,2(Ω).
To show this we need the following Poincare inequality:

Theorem 2. There is a constant C, depending on the bounded set Ω only, such that for all u ∈ W0
1,2(Ω),

we have

‖u‖L2(Ω) 6 C ‖∇u‖L2(Ω). (20)

Proof. Extend u by 0 outside Ω we obtain a W 1,2 function, still denoted u, defined on the box. Without
loss of generality we assume the box is 0 6 xi 6R. Integrating from xn = 0 we have

u(x1,	 , xn)=

∫

0

xn

∂xn
u(x1,	 , xn−1, t) dt. (21)

Now we have
∫

|u|2 6

∫
(

|u(x1,	 , xn)|

∫

0

xn

|∇u| dt

)

dx1
 dxn

6

∫

(

|u(x1,	 , xn)|

∫

0

R

|∇u| dt

)

dx1
 dxn

=

∫ ∫

0

R

|u(x1,	 , xn)| |∇u(x1,	 , t)| dt dx1
 dxn

6

(

∫ ∫

0

R

|u(x1,	 , xn)|2

)1/2(
∫ ∫

|∇u(x1,	 , t)| dt dx1
 dxn

)1/2

6 R1/2

(
∫

|u|2
)1/2

R1/2

(
∫

|∇u|2
)1/2

. (22)

and thus obtaining

‖u‖L2(Ω) 6 R ‖∇u‖L2(Ω). (23)

�

Remark 3. A more refined (and more general, as it can be applied to unbounded regions) estimate has the
constant

C =

(

|Ω|

α(n)

)1/n

(24)

where |Ω| is the volume of Ω and α(n) is the volume of the n-dimensional unit ball. See the proof of Theorem
7.2.2 in J. Jost Partial Differential Equations.
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