WEAK SOLUTIONS

OcMountain Daylight Time. 19, 2011

Dirichlet Principle.

If we multiply the equation by any $v \in C_0^{\infty}(\Omega)$ and integrate, we have

$$0 = \int (\Delta u) v = -\int \nabla u \cdot \nabla v.$$
⁽¹⁾

As a consequence, we have

$$\int |\nabla(u+v)|^2 = \int |\nabla u|^2 + \int |\nabla v|^2 \ge \int |\nabla u|^2.$$
(2)

In other words, u is the minimizer of the function

$$I(u) \equiv \int_{\Omega} |\nabla u|^2 \,\mathrm{d}x. \tag{3}$$

Conversely, if u is a minimizer, then for any $v \in C_0^{\infty}$, and t > 0, we have

$$\int |\nabla(u+t\,v)|^2 \ge \int |\nabla u|^2 \iff t^2 \int |\nabla v|^2 - 2t \int \nabla u \cdot \nabla v \ge 0 \tag{4}$$

which implies

$$\int (\Delta u) v = -\int \nabla u \cdot \nabla v = 0 \tag{5}$$

by taking $t \searrow 0$ and consequently

$$\Delta u = 0 \tag{6}$$

when $u \in C^2$.

Weak solution: first try.

Notice: For I(u) to be well-defined, we only need the existence of ∇u , and we do not need $u \in C^2$. If we drop the requirement of $u \in C^2$, the above argument gives:

$$u = \operatorname{argmin} I(u) \Longleftrightarrow \int \nabla u \cdot \nabla v = 0 \tag{7}$$

for all v with ∇v exists and v = 0 along $\partial \Omega$.

Thus we can define "weak solution" using $\int \nabla u \cdot \nabla v = 0$ instead of $-\Delta u = 0$. The hope is that the existence of thus defined weak solution would be easy to establish, through showing the existence of minimizer for I(u).

Existence of minimizer for I(u).

We use the so-called "direct method", which consists of 3 steps:

- 1. Take a minimizing sequence u_n ;
- 2. Establish that u_n is Cauchy in certain space;
- 3. Show that the limit u is in fact a minimizer.

Let u_n be a minimizing sequence, that is

$$\lim_{n \to \infty} I(u_n) = \inf I(u).$$
(8)

Then one calculates

$$\int |\nabla u_n - \nabla u_m|^2 = \int |\nabla u_n|^2 - 2\nabla u_n \cdot \nabla u_m + |\nabla u_m|^2$$

= $2 \int |\nabla u_n|^2 + 2 \int |\nabla u_m|^2 - \int |\nabla u_n + \nabla u_m|^2$
= $2 I(u_n) + 2 I(u_m) - 4 I\left(\frac{u_n + u_m}{2}\right).$ (9)

Note that we divide $u_n + u_m$ by 2 to make sure the boundary condition is satisfied.

Since

$$4I\left(\frac{u_n + u_m}{2}\right) \ge 4\inf I(u) = \lim \left[2I(u_n) + 2I(u_m)\right],\tag{10}$$

we see that

$$\int |\nabla u_n - \nabla u_m|^2 \to 0 \qquad n, m \to \infty$$
⁽¹¹⁾

or equivalently $\{\nabla u_n\}$ is a Cauchy sequence in the space L^2 of all square integrable functions. Thus there is a limit function $w = \lim \nabla u_n$ which is square integrable.

From the above we conclude:

• The weak solution u should satisfy $\nabla u \in L^2$;

 $W^{1,2}(\Omega).$

Based on the above, we try the following space:

$$V = \{ u \in C^1, \nabla u \in L^2 \}, \qquad \|u\|_V = \|u\|_{C^0} + \|\nabla u\|_{L^2}$$
(12)

However this space is not complete, and we have to switch to

$$W^{1,2}(\Omega) := \{ u \in L^2, \nabla u \in L^2 \}, \qquad \|u\|_{W^{1,2}} := \|u\|_{L^2} + \|\nabla u\|_{L^2}$$
(13)

or equivalently but often more convenient to use:

$$\|u\|_{W^{1,2}} := (\|u\|_{L^2}^2 + \|\nabla u\|_{L^2}^2)^{1/2}.$$
(14)

However this leads to the following problem: If u is not a priori C^1 , how do we talk about ∇u ? The answer is weak derivatives.

Weak derivatives.

The weak derivative for a function u is a function v such that

$$\int_{\Omega} u \,\partial_j \phi = -\int_{\Omega} v \,\phi \tag{15}$$

for all $\phi \in C_0^{\infty}$. We denote v by $\partial_j u$.

Boundary value.

One important property of $W^{1,2}(\Omega)$ is that when $\partial\Omega$ is nice (say C^1), then $C(\overline{\Omega}) \cap W^{1,2}(\Omega)$ is dense in it. Combining with the trace inequality:

$$\|u\|_{L^2(\partial\Omega)} \leqslant C \|u\|_{W^{1,2}(\Omega)} \tag{16}$$

for all $u \in C(\overline{\Omega}) \cap W^{1,2}(\Omega)$, we can define boundary values for all $u \in W^{1,2}(\Omega)$.

 $W_0^{1,2}(\Omega).$

An important special subspace of $W^{1,2}(\Omega)$ is

$$W_0^{1,2}(\Omega) := \{ u \in W^{1,2}(\Omega), u = 0 \text{ on } \partial\Omega \}$$
(17)

whose norm is the same as that of $W^{1,2}$.

- $W_0^{1,2}(\Omega)$ is a closed subspace of $W^{1,2}(\Omega)$ and therefore is a Banach space itself.
- $W_0^{1,2} = \overline{C_0^{\infty}(\Omega)}$ where the closure is under the $W^{1,2}$ norm.

Weak solution.

The real definition for weak solution for

$$-\Delta u = 0 \text{ in } \Omega; \qquad u = g \text{ on } \partial \Omega. \tag{18}$$

Definition 1. $u \in W^{1,2}(\Omega)$ is a weak solution if

• $u = g \text{ on } \partial \Omega;$

• For any $v \in W_0^{1,2}(\Omega)$, we have

$$\int \nabla u \cdot \nabla v = 0. \tag{19}$$

Existence of weak solution.

We have shown the following: If u_n is a minimizing sequence of $I(u) := \int |\nabla u|^2$, then there is $w \in L^2$ such that $\nabla u_n \longrightarrow w$ in L^2 , and $\int w^2 \leq \inf I(u)$.

So all we need to do is to show that $w = \nabla u$ for some $u \in W^{1,2}(\Omega)$ with u = g on $\partial \Omega$. It suffices to show $u_n \to u$ in $W^{1,2}(\Omega)$.

To show this we need the following Poincare inequality:

Theorem 2. There is a constant C, depending on the bounded set Ω only, such that for all $u \in W_0^{1,2}(\Omega)$, we have

$$\|u\|_{L^2(\Omega)} \leqslant C \|\nabla u\|_{L^2(\Omega)}.$$
(20)

Proof. Extend u by 0 outside Ω we obtain a $W^{1,2}$ function, still denoted u, defined on the box. Without loss of generality we assume the box is $0 \leq x_i \leq R$. Integrating from $x_n = 0$ we have

$$u(x_1, ..., x_n) = \int_0^{x_n} \partial_{x_n} u(x_1, ..., x_{n-1}, t) \,\mathrm{d}t.$$
(21)

Now we have

$$\int |u|^{2} \leq \int \left(|u(x_{1},...,x_{n})| \int_{0}^{x_{n}} |\nabla u| dt \right) dx_{1} \cdots dx_{n} \\
\leq \int \left(|u(x_{1},...,x_{n})| \int_{0}^{R} |\nabla u| dt \right) dx_{1} \cdots dx_{n} \\
= \int \int_{0}^{R} |u(x_{1},...,x_{n})| |\nabla u(x_{1},...,t)| dt dx_{1} \cdots dx_{n} \\
\leq \left(\int \int_{0}^{R} |u(x_{1},...,x_{n})|^{2} \right)^{1/2} \left(\int \int |\nabla u(x_{1},...,t)| dt dx_{1} \cdots dx_{n} \right)^{1/2} \\
\leq R^{1/2} \left(\int |u|^{2} \right)^{1/2} R^{1/2} \left(\int |\nabla u|^{2} \right)^{1/2}.$$
(22)

and thus obtaining

$$\|u\|_{L^2(\Omega)} \leqslant R \|\nabla u\|_{L^2(\Omega)}.$$
(23)

Remark 3. A more refined (and more general, as it can be applied to unbounded regions) estimate has the constant

$$C = \left(\frac{|\Omega|}{\alpha(n)}\right)^{1/n} \tag{24}$$

where $|\Omega|$ is the volume of Ω and $\alpha(n)$ is the volume of the *n*-dimensional unit ball. See the proof of Theorem 7.2.2 in J. Jost **Partial Differential Equations**.