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Intuitively, the solution u to the Poisson equation

△u= f (1)

should have better regularity than the right hand side f . In particular one expects u to be “twice more
differentiable” than f . The validity of this conjecture depends on the function spaces we are looking at.

Note. “Schauder Theory” in fact denotes the similar results for the general linear elliptic PDE

∑

aij(x)
∂u

∂xi ∂xj
+

∑

bi(x)
∂u

∂xi
+ c(x) u(x) =0. (2)

Nevertheless we use it (instead of “C2,α estimates”) as the title of this lecture to make it easy to display on
the web.

1. Counter-examples.
The most “natural” conjecture one would make is f ∈C(Ω)� u ∈C2(Ω). Anyway, it is indeed true in

1D. However it cease to be true when the dimension is bigger than 1.

Example 1. (f ∈L∞ but u � C1,1).

u(x1, x2)= |x1| |x2| log (|x1|+ |x2|). (3)

We compute (in x1, x2 > 0)

∂2u

∂x1
2 =

∂

∂x1

[

x2 log (x1 + x2) +
x1 x2

x1 + x2

]

=
2 x2

x1 +x2
−

x1 x2

(x1 +x2)2
; (4)

∂2u

∂x2
2

=
2 x1

x1 + x2
−

x1 x2

(x1 + x2)2
. (5)

Thus

△u= 2−
2 x1 x2

(x1 +x2)2
(6)

and the RHS is a bounded function.
However, we compute

∂2u

∂x1 ∂x2
= log (x1 + x2) +1−

x1 x2

(x1 + x2)2
� L∞. (7)

Example 2. (f continuous but u � C1,1).

△u= f(x)≡
x2

2− x1
2

2 |x|2

[

n +2

(−log |x|)1/2
+

1

2 (−log |x|)3/2

]

, x∈BR⊂R
n. (8)

f(x) is continuous after setting f(0)= 0.
However, the solution

u(x)= (x1
2− x2

2) (−log |x|)1/2 (9)

has
∂2u

∂x1
2
� ∞ x→ 0. (10)

Therefore u � C1,1.1

1. One can show that there is no classical solution to this problem. Assume otherwise a classical solution v exists, then the

difference u− v is a bounded harmonic function in BR\{0}. One can show that such functions can be extended as a harmonic

function in the whole BR which means ∇2u must be bounded, a contradiction.
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2. C
α regularity.

The right space to work on are the Hölder spaces.

Definition 3. (Hölder continuity) Let f : Ω � R, x0 ∈ Ω, 0 < α < 1. The function f is called Hölder
continuous at x0 with exponent α if

sup
x∈Ω

|f(x)− f(x0)|

|x− x0|α
<∞. (11)

f is called Hölder continuous in Ω if it is Hölder continuous at each x0 ∈ Ω (with the same exponent α),
denoted f ∈Cα(Ω).

When α =1, f is called Lipschitz continuous at x0, denoted f ∈Lip(Ω) or f ∈C0,1(Ω).

Ck,α(Ω̄) contains f ∈Ck(Ω̄) whose kth derivatives are uniformly Hölder continuous with exponent α over
Ω̄, that is

sup
x,y∈Ω̄

|f(x)− f(y)|

|x− y |α
<∞. (12)

Ck,α(Ω) contains f ∈Ck(Ω) whose kth derivatives are uniformly Hölder continuous with exponent α in every
compact subset of Ω.

Example 4. The functions f(x) = |x|α, 0 < α < 1, is Hölder continuous with exponent α at x = 0. It is
Lipschitz continuous when α = 1.

Remark 5. When k =0, we usually use Cα for C0,α since there is no ambiguity for 0 < α < 1.

We can define the seminorm

|f |Cα(Ω̄)≡ sup
x,y∈Ω

|f(x)− f(y)|

|x− y |α
, (13)

and the norms

‖f ‖Cα(Ω̄) = ‖f ‖C0(Ω) + |f |Cα(Ω̄), (14)

‖f ‖Ck,α(Ω̄) =
∑

|α|6k

‖∂αf ‖C0(Ω) +
∑

|α|=k

|∂αf |Cα(Ω̄). (15)

where

‖f ‖C0(Ω̄) = sup
x∈Ω

|f |. (16)

The following property is important. In short, Cα is an algebra.

Lemma 6. If f1, f2∈Cα(Ω), then f1 f2∈Cα(G), and

|f1 f2|Cα 6

(

sup
Ω

|f1|

)

|f2|Cα +

(

sup
Ω

|f2|

)

|f1|Cα. (17)

Proof. Left as exercise. �

Theorem 7. Let Ω⊂Rd be open and bounded,

u(x)≡

∫

Ω

Φ(x− y) f(y) dy, (18)

where Φ is the fundamental solution. Then

a) If f ∈C0
α(Ω̄), 0 <α < 1, then u∈C2,α(Ω̄), and

‖u‖C2,α(Ω̄) 6 c ‖f ‖Cα(Ω̄). (19)

b) If f ∈L∞(Ω) (α =0 case), then u∈C1,α(Ω̄) for any 0< α < 1, and

‖u‖C1,α(Ω̄) 6 c ‖f ‖L∞(Ω̄). (20)
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c) If f ∈Lip(Ω̄) (α = 1 case) with support contained in Ω̄, then u∈C2,α(Ω̄) for any 0 <α < 1, and

‖u‖C2,α(Ω̄) 6 c ‖f ‖Lip(Ω̄). (21)

Proof.

a) Recall that Φ(x− y)=C log |x− y | for n =2 and Φ(x− y) =C
1

|x − y|n−2 . for n > 3.

1. We first show u∈C1.

Formally differentiating we obtain

∂xi
u=

∫

Ω

(∂xi
Γ(x, y)) f(y) dy =C

∫

Ω

xi − yi

|x− y |n
f(y) dy. (22)

It is easy to check that the integrand is integrable. Therefore by the theorem regarding differ-
entiating with respect to a parameter for Lebesgue integrals, we see that the formal relation

∂xi
u= C

∫

Ω

xi − yi

|x− y |n
f(y) dy (23)

indeed holds.

2. Next we show u ∈ C2,α. In the following we will omit the constant factor C. In this step we
do some preparations.

Again formally differentiating, we obtain

∂xixj
u =

∫
(

δij

|x− y |n
−

n (xi − yi) (xj − yj)

|x− y |n+2

)

f(y) dy. (24)

But this time the integrand is not automatically integrable and therefore this equality is
dubious. To overcome this difficulty, we first work in the weak sense.

By extending f outside Ω to be 0 (resulting in a distribution with compact support), we
can write

∂xi
u=

xi

|x|n
∗f (25)

in the sense of distributions. Thus we have

∂xixj
u=

[

∂xj

(

xi

|x|n

)]

∗f (26)

in the sense of distributions. We compute the distributional derivative ∂xj

(

xi

|x|n

)

now.

Take any φ∈C0
∞(Rn), we know

[

∂xj

(

xi

|x|n

)]

(φ)=−

∫

xi

|x|n
(∂xj

φ)(x) dx =− lim
εց0

∫

Rn\Bε

xi

|x|n
(∂xj

φ) dx. (27)

Now integrate by parts, we have

−

∫

Rn\Bε

xi

|x|n
(∂xj

φ) dx = −

∫

∂Bε

φ(x)
xi

|x|n

(

−
xj

|x|

)

+

∫

Rn\Bε

Sij(x) φ(x) dx

=

∫

|x|=ε

φ(x)
xi xj

εn+1 +

∫

Rn\Bε

Sij(x) φ(x) dx. (28)

where

Sij(x) =
δij

|x− y |n
−

n (xi − yi) (xj − yj)

|x− y |n+2
(29)

is the formal derivative. For the boundary term, we write
∫

|x|=ε

φ(x)
xi xj

εn+1 = φ(0)

∫

|x|=ε

xi xj

εn+1 +

∫

|x|=ε

[φ(x)− φ(0)]
xi xj

εn+1 . (30)
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Note that since φ ∈ C0
∞, φ(x) − φ(0) = O(|x|) = O(ε) which makes the second term an O(ε)

quantity. For the first term, a symmetry argument shows that the integral vanishes when i� j.
When i = j, we use symmetry and the fact that

∫

|x|=ε

∑ xi xi

|x|n+1
=

∫

|x|=ε

1

εn−1
= ωn−1, (31)

where ωn−1 is the surface area of the n− 1 dimensional unit sphere, to conclude that the limit
is c φ(0) for some constant c.

Therefore we have shown that
[

∂xj

(

xi

|x|n

)]

(φ) = lim
εց0

∫

Rn\Bε

Sij(x) φ(x) dx + c δ (32)

As a consequence, we have

∂xixj
u(x)= lim

εց0

∫

Ω\Bε

Sij(x− y) f(y) dy + c f(x). (33)

We now show directly that the second derivative ∂xixj
u is Hölder continuous with power α.

Since f(x)∈Cα, we only need to show that

lim
εց0

[

∫

Ω\Bε(x1)

Sij(x1− y) f(y) dy −

∫

Ω\Bε(x2)

Sij(x2− y) f(y) dy

]

|x1− x2|
−α <∞. (34)

uniformly for x1, x2∈Ω.

3. ∂xixj
u∈Cα.

Inspection of Sij reveals that for any 0 <R1 <R2:
∫

R16|y|6R2

Sij(x− y) dy =0. (35)

To make things simple, we extend f to be 0 outside Ω. The resulting function is in C0
α(Rn) 2.

We have
∫

Rn\Bε

Sij(x− y)f(y) dy =

∫

Rn\Bε

Sij(x− y) [f(y)− f(x)] dy. (36)

Note that since f ∈Cα, the integrand is integrable now, which means u∈C2 has been proved.
To show u∈C2,α we need more refined analysis of the integral. First note that in writing

the quantity as

lim
εց0

∫

Rn\Bε

Sij(x− y) [f(y)− f(x)] dy (37)

the singularity has been removed and we can take the limit and write

∂xixj
u(x)=

∫

Rn

Sij(x− y) [f(y)− f(x)] dy. (38)

For any x1, x2∈Ω, setting δ = 2 |x1− x2|, we have

∂xixj
u(x1)− ∂xixj

u(x2) =

∫

Rn

Sij(x1− y) [f(y)− f(x1)]−Sij(x2− y) [f(y)− f(x2)]

=

∫

Bδ(x1)

+

∫

Rn\Bδ(x1)

≡A +B. (39)

For A, we bound |f(y)− f(x1)|6‖f ‖Cα |y−x1|
α and |f(y)− f(x2)|6‖f ‖Cα |y−x2|

α, and get

|A|6 C ‖f ‖Cα δα = C ‖f ‖Cα |x1− x2|
α. (40)

2. Let f̃ be the extended function. Then one notices that
∣

∣ f̃ (x) − f̃ (y)
∣

∣ = |f(x) − f(y)| when x, y ∈ Ω, vanishes when x,

y � Ω, and equals |f(x)− f(y′)| when x∈Ω and y � Ω, where y ′ is the intersection of ∂Ω and the line connecting x, y.
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For B, we have

B =

∫

Rn\Bδ(x1)

Sij(x1− y) [f(y)− f(x1)]−Sij(x2− y) [f(y)− f(x2)]

=

∫

Rn\Bδ(x1)

Sij(x1− y) [f(x2)− f(x1)] dy

+

∫

Rn\Bδ(x1)

[Sij(x1− y)−Sij(x2− y)] [f(y)− f(x2)] dy

≡ B1 + B2. (41)

It is easy to see that B1 = 0. For B2, we estimate3

|Sij(x1− y)−Sij(x2− y)|6 |∇Sij(x3− y)| |x1− x2|6C
|x1−x2|

|x3− y |n+1 (42)

for some x3 lying on the line segment connecting x1, x2. We have

|B2| 6 C ‖f ‖Cα

∫

Rn\Bδ(x1)

|x1− x2|

|x3− y |n+1
|y −x2|α

6 C ‖f ‖Cα |x1− x2|

∫

Rn\Bδ(x1)

|x1− y |α−(n+1) dy

= C ‖f ‖Cα |x1− x2| |x1− x2|
α−1

= C ‖f ‖Cα |x1− x2|α. (43)

where we have used the fact that |xi − y | are all comparable (i =1, 2, 3) for y � Bδ(x1).

b) We prove the stronger statement ∂xi
u is Log-Lipschitz, that is

|∂xi
u(x1)− ∂xi

u(x2)|6 C sup |f | |x1− x2| log (|x1−x2|−1). (44)

It is easy to get

|∂xi
u(x1)− ∂xi

u(x2)|6 sup
Ω

|f |

∫

Ω

∣

∣

∣

∣

(x1− y)i

|x1− y |n
−

(x2− y)i

|x2− y |n

∣

∣

∣

∣

dy. (45)

We extend f by 0 and break the integral to
∫

Bδ(x1)
+

∫

Rn\Bδ(x1)
with δ = 2 |x1 − x2|. For the first

term we obtain a bound C supΩ |f | |x1− x2|, for the second we use

∣

∣

∣

∣

(x1− y)i

|x1− y |n
−

(x2− y)i

|x2− y |n

∣

∣

∣

∣

6C
|x1−x2|

|x3− y |n
(46)

with a uniform C. Now note that for R big enough,
∫

Rn\Bδ
=

∫

BR\Bδ(x1)
6

∫

BR\Bδ/2(x3)
. The

integration can be carried out explicitly and yields the bound

C |x1− x2| (logR− log |x1− x2|). (47)

Thus ends the proof (the details are left as exercise).

c) This part is the same as b). Omitted. �

Remark 8. The techniques involved in the above proof is standard in the theory of singular integrals and
are applied extensively in equations arising from fluid mechanics, mathematical biology, etc.

Remark 9. One may notice that when f ∈ L∞, one cannot reach ∂xi
u ∈ Lip (that is ∂xixj

u ∈ L∞). The

reason is that the operator ∂xi xj
(−△)−1 does not map L∞ into L∞. Details can be found in any textbook

in real harmonic analysis.

3. Note that the intermediate value theorem gives x3 depending on y. But when we are working outside Bδ(x1), |ξ − y | are
all comparable for any ξ between x1 and x2.
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When f does not have compact support, we cannot obtain uniform bounds for u over the whole Ω, but
we can obtain estimates on any smaller set Ω0⊂⊂Ω. 4

Theorem 10. Let Ω⊂R
n be open and bounded, and Ω0 ⋐ Ω. Let u solve △u= f in Ω.

a) If f ∈C0(Ω), then u∈C1,α(Ω) for any α∈ (0, 1), and

‖u‖C1,α(Ω0) 6 c (‖f ‖C0(Ω) + ‖u‖L2(Ω)). (48)

b) If f ∈Cα(Ω) for 0< α < 1, then u∈C2,α(Ω), and

‖u‖C2,α(Ω0) 6 c (‖f ‖Cα(Ω) + ‖u‖L2(Ω)). (49)

Here

‖u‖L2(Ω) =

(
∫

Ω

u2

)1/2

. (50)

Proof. We just give an outline of the proof here. Set η be a cut-off function and consider φ= η u. We have

△φ =F ≡ η f + 2∇u · ∇η + u △η (51)

where the RHS has compact support.
This gives

‖F ‖L∞ 6 c(η) ‖f ‖L∞ + C(η) ‖u‖C1] (52)

and

‖F ‖Cα 6 c(η) ‖f ‖Cα + C(η) ‖u‖C1,α]. (53)

Next we show that for any ε > 0, there is N(ε)> 0 such that

‖u‖C1 6 N(ε) ‖u‖L2 + ε ‖u‖C1,α (54)

and

‖u‖C1,α 6 N(ε) ‖u‖L2 + ε ‖u‖C2,α. (55)

This is shown via reductio ad absurdum using the Arzela-Ascoli theorem.
Thus we obtain

‖u‖C1,α(Ω0) 6C(η) [ε ‖u‖C1,α(Ω) + ‖u‖L2(Ω)] + c(η)N(ε) ‖f ‖C0(Ω) (56)

(and a similar estimate for ‖u‖C2,α(Ω0)) with the problem that the C1,α norm on the LHS is on Ω0 while

that on the RHS is on a bigger set Ω and therefore cannot be absorbed into the LHS.
This difficulty is overcome by the following technical trick. Consider the case when Ω0 =Br, Ω=BR2

, we
have

‖u‖C1,α(Br) 6 C(η)
[

ε ‖u‖C1,α(BR2)
+ ‖u‖L2(BR2

)

]

+ c(η)N(ε) ‖f ‖C0(BR2
). (57)

Now set5

A≡ sup
06r6R

(R− r)3 ‖u‖C1,α(Br). (58)

for some R > R2.
Now choose R1 such that

A1 6 2 (R−R1)
3 ‖u‖C1,α(BR1)

, (59)

This gives

A1 6 2 (R−R1)
3 ‖u‖C1,α(BR1

)

6 2 (R−R1)
3
[

ε C(η) ‖u‖C1,α(BR2)
+ C(η) ‖u‖L2(BR2)

]

+2 (R−R1)
3 c(η)N(ε) ‖f ‖C0(BR2)

. (60)

4. Meaning: The closure Ω0 is a compact subset of Ω.

5. Here it seems we need to assume the finiteness of this quantity.
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Now observe that C(η)∼
1

(R2−R1)2
and c(η)∼ 1, we have, using the definition of A1,

A1 6C
(R−R1)3

(R−R2)3
ε

(R1−R2)2
A1 + C ′N(ε)

(R−R1)3

(R2−R1)2
‖u‖L2(BR2

) + C ′′ (R−R1)3 ‖f ‖C0(BR2
). (61)

Now for fixed R,R1, one can choose R2 and ε appropriately so that the coefficient of A1 on the RHS is less
than 1. Thus we obtain the desired estimate for

‖u‖C1,α(Br) 6
1

(R− r)3
A1. (62)

Now we can cover Ω0 by balls Br, and set R = r + d where d = dist(Ω0, ∂Ω), and finish the proof. �

Corollary 11. If u solves △u = f with f ∈Ck,α(Ω) for k ∈N and 0 < α < 1, then u∈Ck+2,α(Ω0) for any
Ω0⊂⊂Ω and

‖u‖Ck+2,α(Ω0) 6 c
(

‖f ‖Ck,α(Ω) + ‖u‖L2(Ω)

)

. (63)

In particular, u∈C∞ when f ∈C∞.

3. Regularity and existence: method of continuity.
We briefly discuss why the regularity estimates matter. Consider two bounded linear operators L, L′

from Banach spaces X to Y .6 Assume that we know that L is surjective and wish to establish that L′ is also
surjective, in other words the solvability of

L′x= y. (64)

for arbitrary y ∈Y .
Define a family of operators

Lt = (1− t)L+ t L′. (65)

Thus L0 = L and L1 = L′.
Assumption. We have uniform (that is, independent of t) a priori (that is, assuming the existence of

solutions) estimates

‖u‖X 6 c ‖Ltu‖Y . (66)

Under this assumption, one has

Theorem 12. If L0 is surjective, so is L1.

Proof. The idea is to show that there is ε independent of t, such that if Lτ is surjective, so is Lt for all
t∈ (τ , τ + ε).

To see this, note that the estimate ‖u‖X 6 c ‖Ltu‖Y implies that all Lt’s are injective. Thus the inverse
Lτ
−1 is well-defined and bounded.
We write

Ltu= f (67)

into

Lτu = f + (Lτ −Lt)u = f + (t− τ ) (L0−L1)u. (68)

This gives

u= Lτ
−1f +(t− τ )Lτ

−1 (L0−L1)u. (69)

Therefore all we need to do is to show the existence of a fixed point of the mapping (from X to X):

u� Tu≡Lτ
−1f + (t− τ )Lτ

−1(L0−L1)u. (70)

It is clear that if we take t− τ small enough, we can find 0< r < 1, such that

‖Tu−Tv‖X 6 r ‖u− v‖X. (71)

6. For example, in the case L =
∑

i,j
aij ∂2

∂xi ∂xj
with aij ∈Cα, X = C2,α, Y = Cα.
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Now set v0=0 and vn =Tvn−1, we see that {vn} is a Cauchy sequence in X and therefore has a limit v which
is a fixed point. �

An application of this theorem is to show the existence of the solutions to

L′u =
∑

i,j

aij(x)
∂2u

∂xi ∂xj
+

∑

i

bi(x)
∂u

∂xi
+ c(x)u(x)= f (72)

for Hölder continuous aij , bi, c starting from the existence of the Poisson equation which can be shown by
explicitly construct the solutions.
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