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In our last lecture we derived the formulas for the solutions of Poisson’s equation through Green’s
function:

u(x)=

∫

Ω

G(x, y) f(y) dy −

∫

∂Ω

∂G(x, y)

∂ny
g(y) dSy (1)

solves

−△u= f in U ; u = g on ∂U. (2)

From this formula we can obtain many regularity estimates for u, as we will see in the next lecture. However,
such estimates only apply to u given by the above formula. In other words, before we settle the uniqueness
issue, we cannot use the above formula to estimate general solutions of Poisson’s equation.

Naturally, the uniqueness question leads to the study of Laplace’s equation with zero boundary condition:

△u= 0 in Ω; u= 0 on ∂Ω. (3)

Thus it is important to study the properties of C2 functions satisfying △u = 0. Such functions are called
harmonic functions .

Remark 1. We will see soon that, somehow surprisingly, the study of harmonic functions leads to much
more than uniqueness of Poisson’s equation. It turns out that all estimates can be obtained through several
properties of the equation △u =0 and the related △u > (6)0, without using the exact formula above.

Remark 2. Another reason of studying harmonic functions is that the properties are much more stable
under perturbation of the equation itself. While the exact formula only applies to Poisson equation, the
properties of harmonic functions are shared by general linear elliptic equation

∇ · (A(x) ·Du) = f (4)

and even nonlinear equations.

1. Properties of harmonic functions.
Recall the definition

Definition 3. A C2 function satisfying △u =0 in Ω is called a harmonic function in Ω.

1.1. Mean value formula.

Theorem 4. If u∈C2(Ω) is harmonic, then

u(x) =
1

|Br(x)|

∫

Br(x)

u dx =
1

|∂Br(x)|

∫

∂Br(x)

u dS (5)

for every ball Br(x)6 {y N |y − x|< r}⋐ Ω.

Remark 5. It turns out that

u(x)=
1

|∂Br(x)|

∫

∂Br(x)

u dS (6)

is easier to prove. Thus we need to first establish

u(x)=
1

|Br(x)|

∫

Br(x)

u dx for all Br(x)⋐Ω� u(x) =
1

|∂Br(x)|

∫

∂Br(x)

u dS for all Br(x)⋐ Ω. (7)

This is left as an exercise.

Proof. We prove

u(x)=
1

|∂Br(x)|

∫

∂Br(x)

udS for all Br(x) ⋐Ω.

1



Without loss of generality, set x= 0 and denote Br(0) by Br.
We compute

d

dr

[

1

|∂Br |

∫

∂Br

u dS

]

=
d

dr

[

1

|∂B1

∫

∂B1

u(r w) dSw

]

=
1

|∂B1|

∫

∂B1

w ·Du(rw) dSw

=
1

|∂B1|

∫

∂B1

n ·Du(y) dSy

=
1

|∂B1|

∫

B1

△udy = 0. (8)

Thus
1

|∂Br |

∫

∂Br

u dS = lim
rց0

1

|∂Br |

∫

∂Br

udS = u(0) (9)

due to the continuity of u. �

Theorem 6. If u∈C2(Ω) satisfies

u(x)=
1

|∂Br(x)|

∫

∂Br(x)

udS (10)

or

u(x)=
1

|Br(x)|

∫

Br(x)

u dx (11)

for all x∈Ω and all balls Br(x)6 {y N |y − x|<r}⋐ Ω, then u is harmonic.

Proof. We have already seen that the two conditions are equivalent. Thus we only need to show that

u(x) =
1

|∂Br(x)|

∫

∂Br(x)

u dS for all x∈Ω, Br(x)⋐ Ω � △u= 0 in Ω. (12)

This can be fulfilled by simply reverse the argument in the proof of the above theorem. �

Remark 7. The above “Converse to mean-value property” is kind of trivial and not very useful. If u is
already C2, we can simply differentiate to see whether at every x △u = 0 or not, and there is no need to
check the mean value condition for every x and every ball.

What makes the mean value formula useful is the following theorem, which says we do not need the a
priori knowledge that u is C2.

Theorem 8. If u∈C(Ω) satisfies

u(x)=
1

|∂Br(x)|

∫

∂Br(x)

udS (13)

for all x∈Ω and all balls Br(x)6 {y N |y − x|<r}⋐ Ω, then u is harmonic.

Proof. Since we already have shown that the mean value property leads to u harmonic if u∈C2, we only
need to show u∈C2.

Take any radially symmetric function φ= φ(r) supported in Bε with
∫

Bε

φ =1. We will show that

(u∗φ)(x)=

∫

Rn

u(y) φ(x− y) dy = u(x). (14)

Now recall that

Dα(u∗φ)= u∗(Dαφ). (15)

Obviously we can take φ∈C2 and conclude that u∈C2.
Now we show

(u∗φ)(x)=

∫

Rn

u(y) φ(x− y) dy = u(x). (16)
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Without loss of generality, set x= 0. Take ε so small such that Bε ⋐ Ω. We compute

(u∗φ)(0) =

∫

Rn

u(y) φ(−y) dy

=

∫

Bε

u(y) φ(−y) dy

=

∫

0

ε
[
∫

∂Br

u(y) dSy

]

φ(r) dr

=

∫

0

ε

|∂Br |u(0) φ(r) dr

= u(0)

[
∫

0

ε ∫

∂Br

φ(r) dS dr

]

= u(0)

∫

Bε

φ(y) dy

= u(0). (17)

Thus ends the proof. �

Remark 9. u∗φ = u may seems surprising until we realize the following.

• Mean value property is the same as

u =u∗
1

|Br |
1Br(x) (18)

where 1V denotes the characteristic function of the set V .

• We can approximate φ in the L∞ norm using
∑

i
ci 1Bri

(x) with
∑

ci = 1.

Corollary 10. If u is harmonic, then u∈C∞.

Proof. As u is harmonic, u satisfies the mean value formula. Therefore

u∗φ= u (19)

for all φ satisfying the condition in the above theorem. Taking φ∈C∞ gives the conclusion. �

Lemma 11. (Weyl’s lemma) Let u: Ω� R be measurable and locally integrable in Ω. Suppose that for all
ϕ∈C0

∞(Ω),
∫

Ω

u(x)△ϕ(x) dx = 0. (20)

Then u is harmonic and, in particular, smooth.

Remark 12. A question for those who know what a distribution:
Let u be a distribution and

△u = 0 (21)

in the distributional sense. Then can we conclude that u is C∞?

1.2. Local estimates for harmonic functions.
Using the mean value formula, we can obtain good estimates for the derivatives of hamonic functions

(recall that harmonic functions are C∞).

Theorem 13. Assume u is harmonic in Ω. Then

|Dαu(x)|6
Ck

rn+k

∫

Br(x)

|u| dx (22)

for each x∈Ω and Br(x) ⋐Ω.

Proof. k = 0 is a immediate consequence of mean value formula.
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Now we prove the case k = 1. If u is harmonic, so is ∂iu. Therefore we have (wlog take x =0)

∂iu(0)=
1

|Br/2|

∫

Br/2

∂iudx =
1

|Br/2|

∫

∂Br/2

ni u dS. (23)

Now taking absolute value we have

|∂iu(0)|6
1

|Br/2|

∫

∂Br/2

|u| dS 6
C

r
sup

∂Br/2

|u|. (24)

Assume that sup∂Br/2
|u| is reached at x0∈ ∂Br/2. We apply the k =0 case for x0 with Br/2 (x0) and get the

desired estimate. �

Remark 14. From the above estimates, it is easy to show that u is not only C∞, but in fact analytic. See
pp. 31 – 32 of Evans.

Remark 15. The mean value formulas cease to be true for Poisson’s equation or the more general elliptic
equations. As a consequence, one can not obtain local estimates for these equations using the above method.
A more robust way is to estimate through the following maximum principles.

1.3. Harnack inequality.
It turns out that, for nonnegative harmonic functions, its value at two different points are always com-

parable.

Theorem 16. (Harnack’s inequality) For each connected open set V ⋐Ω, there exists a positive constant
C, depending only on V, such that

sup
V

u6 C inf
V

u (25)

for all nonnegative harmonic functions u in Ω.

Proof. First consider two points x, y (denote r 6 dist(x, y)), such that B2r(x) ⋐ Ω. Using mean value
formula we have

u(x) =
1

|B2r |

∫

B2r(x)

u >
1

|B2r |

∫

Br(y)

u=
1

2n
u(y). (26)

The conclusion easily follows.
For the general case, as V is connected, we can connect x, y by a curve. Then pick x0=x,x1,	 ,xn= y such

that dist(xn, ∂Ω)> 2 dist(xn, xn−1). Then we can repeat the above argument n times to get the result. �

1.4. Uniqueness for Poisson equation.
It suffices to establish the following maximum principle:

Theorem 17. (Weak maximum principle) Suppose u∈C2(Ω)∩C(Ω̄) is harmonic in Ω. Then

max
Ω̄

u=max
∂Ω

u. (27)

Proof. Assume the contrary, that is maxΩ̄u >max∂Ωu. Then there must be a x0 such that

u(x0)=max
Ω

u (28)

but u≡u(x0) in some neighborhood of x0. This contradicts the mean value formula. �

In fact, one can establish the stronger

Theorem 18. (Strong maximum principle) Suppose u ∈ C2(Ω) ∩ C(Ω̄). If Ω is connected and there
exists a point x0∈Ω such that

u(x0) =max
Ω̄

u, (29)
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then u≡u(x0) in Ω.

Proof. All we need to show is that, u(x) =u(x0) for any x∈Ω. First consider the case when there is r > 0
such that x∈Br(x0)⊂Ω. Now mean value formula gives

u(x0)=
1

|Br |

∫

Br(x0)

u dy (30)

As u(x0)> u(y) for any y ∈Br(x0), the above can only be true if u(y)= u(x0) for all y ∈Br(x0).
For the general case, we can argue similarly as in the proof of Harnack inequality. �

Remark 19. It is clear that the strong maximum principle ceases to be true when Ω is not connected.

Theorem 20. The solution to Poisson’s equation is unique.

Proof. It follows from applying the weak maximum principle to the equation

△u = 0 (31)

with 0 boundary condition. �

2. Maximum principles.

2.1. Subharmonic and superharmonic functions.
We consider, instead of △u =0, the inequalities

−△u 6 (>)0. (32)

A simple adaptation of the proof for the Laplace equation then gives

−△u6 (>)0 � u(x)6 (>)
1

|Br(x)|

∫

Br(x)

udx,
1

|∂Br(x)|

∫

∂Br(x)

udS (33)

for all x∈Ω, Br(x)⋐ Ω. This naturally leads to the following definition.

Definition 21. Let u be continuous. It is called subharmonic (superharmonic) if for every Br(x)⋐Ω, we have

u(x)6 (>)
1

|Br(x)|

∫

Br(x)

u dx or
1

|∂Br(x)|

∫

∂Br(x)

udS. (34)

Remark 22. It is easy to see that subharmonic/superharmonic functions are not necessarily differentiable,
as the 1D example u= 1− |x| shows.

Remark 23. One can show that, v is subharmonic(superharmonic) if and only if for every V ⋐Ω, and every
harmonic function u on V such that u > (6)v on ∂V , we have

u > (6)v in V . (35)

This further justifies the terminology “subharmonic” (“superharmonic”).

Remark 24. Question:
Do we still have

u(x)6 (>)
1

|Br(x)|

∫

Br(x)

udx � u(x)6 (>)
1

|∂Br(x)|

∫

∂Br(x)

udS (36)

or not?

It is easy to show that

− u subharmonic, then

max
Ω̄

u6max
∂Ω

u, (37)
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and if u(x0) =maxΩ̄u for some x0∈Ω, then u≡ u(x0);

− u superharmonic, then

inf
Ω̄

u> inf
∂Ω

u, (38)

and if u(x0) = infΩ̄u for some x0∈Ω, then u≡ u(x0).

This can be applied to obtain various estimates for Laplace’s and Poisson’s equations. For example, we can
prove the estimate

sup
B1/2

|Du|6 C sup
∂B1

|u| (39)

for harmonic function u.
To see this, we take a “cut-off” function η ∈C0

1(B1) such that η≡ 1 in B1/2. Then we compute

△(η2 |Du|2) = 2 η △η |Du|2 +2 |Dη |2 |Du|2 + 8 η (Dη) ·D2u ·Du + 2 η2 |D2u|2

> 2 η △η |Du|2 +2 |Dη |2 |Du|2− [8 |Dη |2 |Du|2 + 2 η2 |D2u|2] + 2 η2 |D2u|2

= (2 η △η − 6 |Dη |2 ) |Du|2

> −C |Du|2. (40)

Next we notice that, if △u =0, then

△(u2)= 2 |Du|2. (41)

As a consequence, we have

△(η2 |Du|2 +α u2)> 0 (42)

for some constant α.
Thus η2 |Du|2 + α u2 is subharmonic, and we have

max
B1/2

|Du|2 6max
B1

η2 |Du|2 + α u2 6max
∂B1

η2 |Du|2 + α u2 = α
(

max
∂B1

u
)2

. (43)

Remark 25. Note that the above argument does not involve mean value formula. Thus this method is more
robust than estimating through mean value formula.
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