MATH 527 LECTURE 9 EXERCISES AND PROBLEMS

Exercises.

Exercise 1. Let $\Phi(x)$ be the fundamental solution. Show that $-\Delta \Phi(x) = 0$ in the classical sense for all $x \neq 0$.

Problems.

Problem 1. Consider the Poisson equation with Neumann boundary condition in half-space:

$$-\Delta u = f \text{ for } x_n > 0; \qquad \frac{\partial u}{\partial n} = g \text{ for } x_n = 0.$$
 (1)

Construct the Green's function and represent u.

Problem 2. Obtain the Green's function for Poisson equation with Dirichlet boundary condition for $\Omega = B_1$ the unit ball. **Problem 3.** Let u(x) be defined by the Poisson formula for the upper half space $x_n > 0$.

$$u(x) = \frac{2x_n}{n\,\alpha(n)} \int_{\partial\mathbb{R}^n_+} \frac{g(y)}{|x-y|^n} \,\mathrm{d}y \equiv \int_{\partial\mathbb{R}^n_+} K(x,y) \,g(y) \,\mathrm{d}y.$$
(2)

Prove that u indeed solves

$$-\Delta u = 0 \text{ for } x_n > 0; \qquad u = g \text{ for } x_n = 0 \tag{3}$$

if we assume g is continuous.

Problem*.

Problem. (Thanks to Mr. Slevinsky) Consider the equation

$$-\Delta u = 0 \text{ in } \Omega \subset \mathbb{R}^2; \qquad u = g \text{ on } \partial\Omega.$$
(4)

Prove existence of the solution using the Riemann mapping theorem from Complex Analysis and the fact that u exists when Ω is the unit disk.