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Sep. 28, 2011

Definition of weak solutions.
We continue the study of the Hamilton-Jacobi equation:

ut + H(Du)= 0 R
n× (0,∞); u= g R

n ×{t = 0}. (1)

We have shown that

1. In general we cannot expect the existence of classical solutions (that is u∈C1(Rn× (0,∞)) satisfying
the equation everywhere);

2. The Hopf-Lax formula

u(t, x) =min
y

{

g(y)+ t L
(

x− y

t

)}

(2)

satisfies the equation almost everywhere.

We see that existence is guaranteed as soon as we only require the equation to be satisfied almost everywhere.
Thus it is natural to propose the following as the definition for “weak solutions”:

u Lipschitz is a weak solution if u satisfies the equation a.e. and takes g as its initial value.

However such definition leads to non-uniqueness, as shown in the following example.

Example 1. Consider the 1D H-J equation

ut + |ux|2 = 0 R× (0,∞); u =0 R×{t = 0}. (3)

It is clear that u≡0 is a classical solution. However, we can check that the following also satisfies the equation
a.e. and takes the correct initial value:1

u(t, x)=

{

0 |x|> t

|x| − t |x|6 t
(4)

Note that u(x, t) is in fact “assembled” using two “solutions”: 0 and

{

x− t x> 0
−x− t x6 0

. It is easy to see that

one can assemble any solutions in anyway to get a function satisfying the equation almost everywhere, the
only thing to be careful is to make the result be consistent with the initial value.

For example:

+ �
gives a “almost everywhere” solution (note that T ′60 so the “wedge” is moving downward, thus satisfying

the initial value). In contrast,

is not a good construction, as it does not satisfy the initial value.
It is clear that the solution is not unique. How do we regain uniqueness? Or more specifically, how to

do we get rid of all non-zero solutions (as u≡ 0 is obviously a reasonable solution for this problem).

1. More generally, u(t, x) = λ |x| −λ2 t for λ|x|6λ2 t and 0 elsewhere also solves the equation a.e.
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One way is to add “viscosity”. Consider

ut
ε + |ux

ε |2 = ε uxx
ε (5)

and then let ε ց 0. In many cases uε will then converge to one of the many almost everywhere solutions of
the “inviscid” problem. In other words, uε is a “smoothed” version of the correct solution.

Smoothing the “wedge” solution, we see that x =0 is a minimizer of uε. At this point, we have

ut < 0, ux = 0, ε uxx > 0 (6)

a contradiction! Therefore the limit of uε cannot be the “wedge” solution!2

From the above example we see that “wedges” should not appear in the “correct” weak solution. In other
words, a “correct” solution should not have u′′=+∞ anywhere. Motivated by this, we introduce the following
notion. 3

Definition 2. (Semi-concavity) f is called semi-concave if there is C > 0 such that

f(x +h)− 2 f(x)+ f(x− h)6 C |h|2 (7)

for any x, z.

It is easy to see that the condition is equivalent to

f(x)−
C

2
|x|2 (8)

is concave. Hence the name “semi-concave”.
Now we can try the following definition of “weak solutions” for the H-J equation:

Definition 3. A Lipschitz function u is said to be a weak solution if

1. u takes g as initial value;

2. u satisfies the equation a.e.;

3. u is semi-concave:

u(t, x+ h)− 2 u(t, x)+ u(t, x− h)6 C

(

1+
1

t

)

|h|2. (9)

Note. Sorry that in today’s lecture I called this “entropy solution”. Seems the correct terminology should
be “weak solution”.

Remark 4. Note the 1/t in the “semi-concavity” condition. This allows the initial data g to be not semi-
concave.

Well-posedness of H-J equation.

Now we try to establish well-posedness. More specifically, we will show that under certain assumptions,
the solution given by the Hopf-Lax formula is the unique weak solution.

Theorem 5. (Existence) The function u(x, t) given by the Hopf-Lax formula is a weak solution if either

one of the following is true.

a) g is semi-concave;

b) H is uniformly convex, that is

ξT D2H ξ > θ |ξ |2 (10)

2. Of course, for this problem, one can directly show that uε≡ 0. However the argument used here is more appropriate for
motivating the general theory.

3. Compare with the “Naive” condition f ′′6C to see that they are almost the same except that the semi-concavity definition
does not require a priori knowledge on the differentiability of f .
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for all p, ξ. 4

Proof.

a) Since g is semi-concave, there is C > 0 such that

g(x + h)− 2 g(x)+ g(x− h)6 C |h|2. (11)

Now for any t, let y be such that

u(t, x)= t L
(

x− y

t

)

+ g(y). (12)

Then we have5

u(t, x± h)6 t L
(

x− y

t

)

+ g(y ± h) (14)

and the conclusion follows.

b) Again we choose y such that

u(t, x)= t L
(

x− y

t

)

+ g(y). (15)

Now

u(t, x± h)6 t L

(

x± h− y

t

)

+ g(y). (16)

Thus

u(t, x +h)− 2 u(t, x)+ u(t, x− h)6 t

[

L

(

x + h− y

t

)

− 2 L
(

x− y

t

)

+ L

(

x− h− y

t

)]

. (17)

The conclusion follows from the fact that

H uniformly convex � H
(

p1 + p2

2

)

−
1

2
H(p1)−

1

2
H(p2)6−

θ

8
|p1− p2|

2� L
(

q1 + q2

2

)

−
1

2
L(q1)−

1

2
L(q2)>−

1

8 θ
|q1− q2|

2. (18)

Which is Problem 3.5.9 in Evans.6 �

Now we establish uniqueness.

Theorem 6. (Uniqueness) Assume H is C2, convex, with super-linear growth at infinity and g Lipschitz.

Then there exists at most one weak solution of the H-J equation.

Proof. Suppose u, ũ are two weak solutions. then letting w = u− ũ, we have w is differentiable a.e. and

wt(t, x) = ut(t, x)− ũt(t, x)

= H(D ũ(t, x))−H(Du(t, x))

= −

∫

0

1 d

dr
H(r Du+ (1− r) D ũ) dr

= −

∫

0

1

DH(r Du+ (1− r)Dũ) ·Dw(t, x) dr

= −

[
∫

0

1

DH(r Du+ (1− r) Dũ) dr

]

·Dw(t, x). (19)

Letting

b(t, x)≡

∫

0

1

DH(rDu +(1− r)Dũ) dr (20)

4. Equivalently, H −
θ

2
|p|2 is still convex.

5. By the Hopf-Lax formula

u(t, x±h)=min
y ′

{

g(y ′) + t L

(

x±h − y′

t

)}

(13)

Take y′ = y ±h.

6. Hint: For any q1, q2, take p1, p2 such that H(pi)+ L(qi)= pi · qi.
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we conclude that w satisfies

wt + b ·Dw = 0 a.e.; w N t=0 =0. (21)

If w is a classical solution to the above equation, then obviously w≡ 0 and we are done. But this is not the
case. Nevertheless, if b is Lipschitz, we still can show w≡ 0 as follows.

Let x(t) be such that ẋ = b. Then w satisfies

d

dt
w(t, x(t))= 0 a.e. (22)

As w is Lipschitz in x, t and x(t) Lipschitz in t, W (t) 6 w(t, x(t)) is also Lipschitz and thus absolutely
continuous. As a consequence we have

W (t)−W (0) =

∫

0

t

W ′(s) ds = 0 (23)

as W ′(s) = 0 almost everywhere. Now since W (0) = 0 we conclude that W ≡ 0. Then it’s clear that w = 0
almost everywhere.

However the problem is that

b(t, x)≡

∫

0

1

DH(rDu +(1− r)Dũ) dr (24)

is definitely not Lipschitz. The idea now is to approximate b by a Lipschitz function bε, get some estimate
and then let ε ց 0. Then we can write

wt + bε ·Dw =(bε − b) ·Dw a.e. (25)

If we try to do “energy-type” estimate of the above, we quickly realize that a uniform upper bound of ∇ · bε

is needed. This means that the “naïve” way

bε = ηε∗b (26)

will not work as this way ∇ · bε∼ 1/ε.

The correct smoothing here is (we use subscript to emphasize that this is not the usual mollification)

bε6 ∫

0

1

DH(rDuε + (1− r) Dũε) dr (27)

where uε, ũε are usual mollification fε = ηε∗f .

This way we have

∇· bε =

∫

0

1

D2H : [rD2uε + (1− r)D2ũε] (28)

where A: B ≡
∑

i,j
Aij Bij. Now using the fact that both u, ũ are semi-concave, we have D2uε, D2ũε 6

C
(

1+
1

t

)

I. Note that as the mollification is taken over space-time, such bound only holds for t>C ε. Using

this we have

∇· bε 6C

(

1 +
1

t

)

. (29)

Now let v6 φ(w) > 0 to be fixed later. Then v satisfies the same equation as w. Set

R6 max {|DH(p)|N |p|6max {Lip(u),Lip(ũ)}}. (30)

We try to show that v≡ 0 in the cone

C 6 {(x, t)N 06 t 6 t0, |x−x0|6 R (t0− t)}. (31)

Set

e(t)6 ∫

B(x0,R(t0−t))

v(x, t) dx. (32)
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We compute

ė(t) =

∫

vt −R

∫

∂B(x0,R(t0−t))

v dS

=

∫

B

−∇ · (bε v) + (∇· bε) v + (bε − b) ·Dv dx−−R

∫

∂B(x0,R(t0−t))

v dS

= −

∫

∂B

v (bε ·n+ R) dS +

∫

B

(∇ · bε) v +

∫

(bε − b) ·Dv. (33)

The first term is 60 due to the definitions of bε and R. The second term is bounded by C
(

1 +
1

t

)

e(t), the
third term vanishes as ε ց 0 due to dominated convergence. Thus we have

ė(t)6 C

(

1+
1

t

)

e(t) (34)

for a.e. 0 <t < t0.
Finally, taking φ such that φ(z)= 0 for |z |6 ε [Lip(u) +Lip(ũ)] and positive otherwise, we have

v = φ(w)= 0 (35)

for t 6 ε. Now for t > ε, 1 +
1

t
6 1+

1

ε
and we have

ė(t )6 C

(

1+
1

ε

)

e(t) a.e., t > ε; e(t) =0 t 6 ε. (36)

which gives e(t) =0. This means

|u− ũ |= |w |6 ε [Lip(u)+Lip(ũ)] (37)

in the cone C. By the arbitrariness of ε we conclude that u− ũ =0 almost everywhere and ends the proof. �
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