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Method of characteristics.

We try to apply the method of characteristics to the Hamilton-Jacobi equation:

ut +H(x, Du) = 0 in R
n× (0,∞) (1)

u = g on R
n ×{t = 0}. (2)

To avoid confusion, we use the following notation:
(

t

x

)� x̃ , u� z,

(

ut

Du

)� p̃ =

(

p0

p

)

. (3)

Then we can re-write the equation to

F (x̃ , z , p̃)= 0 (4)

where

F (x̃ , z , p̃)6 p0 + H(x, p). (5)

The characteristics ODEs then are
(

ṫ

ẋ

)

= x̃̇ = Dp̃F =

(

1
DpH

)

, (6)

ż = Dp̃F · p̃ =

(

1
DpH

)

·

(

p0

p

)

= p0 + DpH · p =DpH · p−H(p, x), (7)

(

ṗ0

ṗ

)

= p̃̇ = −(DzF ) p−DxF =−

(

0
DxH

)

. (8)

Now we try to solve the characteristic ODEs. First notice that, since ṫ = 1, we can simply use t as the
parameter instead of s. Thus the equations become

ẋ = DpH, (9)

ż = DpH · p−H(x, p), (10)

ṗ = −DxH, (11)

p0 = p0 N t=0 . (12)

It is clear the all we need to do is to solve the first 3 equations.
Losing a bit rigor, we assume (for now only) H is differentiable and strictly convex. We also assume H

grows super-linearly at infinity:

lim
|p|ր∞

H(x, p)

|p|
=+∞, (13)

Now take Legendre transform:

L(x, v)6 sup
p∈Rn

{v · p−H(x, p)}. (14)

The z equation then becomes

ż = L(x, v) (15)

where q satisfies

q =DpH(x, p). (16)

Therefore the solution u is given by

u(x)= u(x0)+

∫

0

t

L(x(τ ), v(τ )) dτ . (17)

where x and x0 are related by

ẋ = DpH = v, x(0) =x0. (18)
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To further simplify the system, we notice that

ẋ = DpH, ṗ =−DxH (19)

implies

−
d

dt
(DvL)+ DxL = 0 (20)

which implies that q, x minimizes
∫

0

t

L(x(τ ), v(τ )) dτ (21)

with x(0), x(t) fixed.
To see this, write L(x, v)= v · p(x, v)−H(x, p(x, v)), and compute

DvL= p + v ·Dqp−DpH ·Dvp = p, (22)

DxL= v ·Dxp−DxH −DpH ·Dxp =−DxH, (23)

where we have used v =DpH . Now the equation ṗ =−DxH gives what we want.
Thus we see that the Hamilton-Jacobi equation can be solved as soon as we find out the trajectories x(t)

and v(t). Below we will see that in a special case, this can indeed be done (in some sense).

The Hopf-Lax formula.

This special case is when H is independent of x, that is H = H(Du). The characteristic equations can
then be further simplified to

ẋ = DpH, (24)

ż = DpH · p−H(p)= L(v), (25)

ṗ = DxH =0, (26)

pn+1 = pn+1N t=0 . (27)

We see that p is a constant vector along the characteristic curve, and as a consequence ẋ =DpH is a constant
vector, and therefore the characteristics x(t) are straight lines. Furthermore we know that the velocity q = ẋ

is constant.
Thus if x(0)= y and x(t)= x, we must have

v =
x− y

t
. (28)

As a consequence

d

dt
z =L(v)= L

(

x− y

t

)� z(t)= z(0)+ t L
(

x− y

t

)

= g(y)+ t L
(

x− y

t

)

. (29)

Now the only problem is that y is not known.
Now think of g(y) as not merely an “initial function”, but as an intermediate record. In other words,

instead of starting at t=0, imagine our system starts from t= , say, −1. We consider all possible trajectories
emanating from some point at t = −1, passing y at t = 0, and finally reach time t at x. Think of g(y) as
the record of work done from t=−1 to t=0. Obviously the correct trajectory should be the one that is the
minimizer among them all.

Remark 1. Note that the above explanation means that the trajectory may not stay C1 as it crosses t=0.
This should be expected. Because in general the given g(y) cannot be the result of a dynamical system with
H = H(Du), that is “free particle”. The H producing g(y) has to be dependent on x or even u. Thus there
is no surprise that this sudden change leads to a sudden change of direction in the trajectory v(t).

Following this idea, we reach the following Hopf-Lax formula:

u(t, x)= z(t)= inf
y∈Rn

{

t L
(

x− y

t

)

+ g(y)
}

. (30)

Remark 2. It can be shown that L grows superlinearly at infinity. As a consequence, if we assume g to be
Lipschitz continuous, then the infimum is actually a minimum.
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Remark 3. Note that convex functions are continuous. The proof can go roughly as follows. First one can
show that f (the convex function) is bounded, let the bound be denoted M . Then using the definition of
convexity we have, for any fixed x, y,

u(y + α(x− y)) 6u(y) +α (u(x)− u(y)) 6u(y) +2 α M. (31)

Letting α→ 0 we see that

limsup
xn→x

u(xn) 6u(x). (32)

On the other hand, for any xn→x we have, by convexity

u(x)6
1

2
[u(xn)+ u(2x−xn)]. (33)

This gives

u(x)6
1

2
liminf
xn→x

[u(xn) +u(2x− xn)]. (34)

Continuity then follows.
One can in fact prove that any convex function is Lipschitz continuous, see e.g. B. Dacorogna Direct

Methods in the Calculus of Variations, 2nd ed., Springer, 2008, §2.3.

Solution of the H-J equation.

Now we show that the Hopf-Lax formula

u(x, t)= inf
y∈Rn

{

t L
(

x− y

t

)

+ g(y)
}

. (35)

indeed solves the Hamilton-Jacobi equation, albeit only “almost everywhere”.

Remark 4. It is easy to see that in general one cannot expect the existence of classical solutions due to
possible intersections of characteristics.

There are three things to show.

1. u = g on R
n ×{t = 0},

2. ut, Du exist almost everywhere,

3. ut + H(Du)= 0 a.e.

We show them one by one.

1. u = g on R
n ×{t = 0}.

Recall the formula:

u(t, x)=min
y

{

t L
(

x− y

t

)

+ g(y)
}

. (36)

Taking y = x we have

u(t, x)6 g(x)+ t L(0) � limsup
tց0

u(t, x)6 g(x). (37)

On the other hand, we compute

u(t, x) = min
y

{

t L
(

x− y

t

)

+ g(y)
}

= g(x)+min
y

{

t L
(

x− y

t

)

+ g(y)− g(x)
}

> g(x)−max
y

{

Lip(g) |y − x| − t L
(

x− y

t

)}

= g(x)− tmax
z

{Lip(g) |z | −L(z)}

= g(x)− t max
w∈BLip(g)

{

max
z

{w · z −L(z)}
}

= g(x)− t max
w∈BLip(g)

H(w). (38)
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As H is continuous, we have

liminf
tց0

u(t, x)> g(x). (39)

Thus ends the proof.

2. ut, Du exist almost everywhere.

It suffices to show that u is Lipschitz with respect to x and to t.

− u is Lipschitz w.r.t. x. We estimate u(t, x̂)−u(t, x).
Choose y such that

u(t, x)= t L
(

x− y

t

)

+ g(y). (40)

Then

u(t, x̂)− u(t, x) = min

{

t L

(

x̂ − z

t

)

+ g(z)− t L
(

x− y

t

)

− g(y)

}

. (41)

Taking z = x̂ − x+ y (such that x̂ − z = x− y) we have

u(t, x̂)− u(t, x)6 g(x̂ −x + y)− g(y)6Lip(g) |x̂ − x|. (42)

Similarly we can show

u(t, x)−u(t, x̂)6Lip(g) |x̂ −x|. (43)

The Lipschitz continuity of u then follows.

− u is Lipschitz w.r.t. t. This follows from the following property of the Hopf-Lax formula:

u(t, x)= min
y∈Rn

{

(t− s)L
(

x− y

t− s

)

+u(s, y)
}

. (44)

That this should hold is intuitively very clear following our derivation of the formula. For a
proof see Evans p. 126.

Using this formula, we see that estimating u(t, x)− u(s, x) is no different than estimating
u(x, t)− g(x). Thus a similar argument as in Step 1. gives

|u(t, x)− u(s, x)|6 C |t− s|. (45)

3. ut + H(Du)= 0 a.e.

Fix any q ∈R
n, we compute

u(t + h, x+ h q) = min

{

h L

(

x+ h q − y

h

)

+ u(t, y)

}

6 hL(q)+ u(t, x). (46)

This implies

ut + q ·Du 6 L(q) � − ut > Du · q −L(q) (47)

for all q ∈R
n. Therefore

−ut >max
q

{Du · q −L(q)}= H(Du) (48)

and

ut + H(Du) 6 0. (49)

For the other direction (that is ut + H(Du)> 0), we only need to find one q such that

ut + q ·Du >L(q) (50)

or more specifically
u(t, x)− u(s, y)

t− s
>L(q) (51)

where x− y is in the direction of q.
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As u is a minimum, to get u(t, x) − u(s, y) > something, we get rid of the minimum in u(t, x).
Take z such that

u(t, x)= t L
(

x− z

t

)

+ g(z). (52)

Now that q =
x − z

t
is already chosen, y has to be on the line segment connecting x and z. Thus we take

s = t− h, y =
s

t
x +

(

1−
s

t

)

z. (53)

Then we have
x− z

t
=

y − z

s
= q (54)

This gives

u(t, x)− u(s, y) > t L
(

x− z

t

)

+ g(z)−
[

s L
(

y − z

s

)

+ g(z)
]

= (t− s)L
(

x− z

t

)

. (55)

As
u(t, x)− u(s, y)

t− s
� ut +

x− z

t
·Du (56)

we get

ut +
x− z

t
·Du > L

(

x− z

t

)

(57)

and finishes the proof.
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