MATH 527 LECTURE 5 EXERCISES AND PROBLEMS

Exercises.

Exercise 1. Solve the eikonal equation \mathbf{E}

$$Du|=1, \qquad u=0 \text{ along } x_n=0.$$

using method of characteristics.

Exercise 2. (Evans) Compute the Legendre transform of

- a) $H(p) = \frac{1}{r} |p|^r$ for $1 < r < \infty$. Here $p \in \mathbb{R}^n$ and $|p| := \sqrt{p_1^2 + \dots + p_n^2}$. (Ans. $\frac{1}{s} |v|^s$, with 1/s + 1/r = 1)
- b) $H(p) = \frac{1}{2} \sum_{i, j=1}^{n} a_{ij} p_i p_j + \sum_{i=1}^{n} b_i p_i$. Here $A = (a_{ij})$ is a symmetric and positive definite matrix, $b \in \mathbb{R}^n$.

Problems.

Problem 1. (Evans) Let $H: \mathbb{R}^n \mapsto \mathbb{R}$ be convex. We say v belongs to the subdifferential of H at p, written

$$v \in \partial H(p),\tag{2}$$

(1)

if

$$H(r) \ge H(p) + v \cdot (r - p) \tag{3}$$

for all $r \in \mathbb{R}^n$. Prove $v \in \partial H(p)$ if and only if $p \in \partial L(v)$ if and only if $p \cdot v = H(p) + L(v)$, where $L = H^*$.

Problem 2. (Evans) Assume $L_1, L_2: \mathbb{R}^n \to \mathbb{R}$ are convex, smooth and superlinear (that is $L/|x| \to \infty$ as $|x| \to \infty$). Show that

$$\min_{v \in \mathbb{R}^n} \left(L_1(v) + L_2(v) \right) = \max_{p \in \mathbb{R}^n} \left(-H_1(p) - H_2(-p) \right) \tag{4}$$

where $H_1 = L_1^*, H_2 = L_2^*$.

Problem 3. Show that method of characteristics indeed gives the solution to F(x, u, Du) = 0.

Problem*.