MATH 527 LECTURE 3 EXERCISES AND PROBLEMS

Exercises.

Exercise 1. (Evans) Show that
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is an (unbounded) entropy solution of wu;+ (%2) =0.
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Exercise 2. Construct entropy solutions for the following initial value problems
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Exercise 3. Consider the following problem
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Construct the entropy solution and study what happens when & \, 0.

Exercise 4. (Irreversibility) Consider the Burgers equation
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Consider the following two initial values
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Let uj, uo be the entropy solutions starting from g;, go respectively. Show that u; = wug for all ¢ > 1. Thus there
is “irreversibility” as information is “lost” as solutions evolve.

Problems.

Problem 1. (Evans) Compute explicitly the unique entropy solution of

w2
ut+(f) —0,  u(0,a)=g (®)
2 x
for
1 z<—1
Jo —1<z<o0
9@)=09 gczc1 ©)
0 z>1

Draw a picture of your answer. Be sure to illustrate what happens for all times t > 0.

Problem 2. Solve the Burgers equation
2
up + <i> =0 (10)
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Problem 3. Consider 1D scalar conservation law

wet fu), =0 (1)

with initial condition g(z)=sinx + 1.

with f concave (that is f <0). Develop a complete theory of entropy solutions for such problem.

Problem 4. (Irreversibility) Consider a general 1D scalar conservation law

ut + f(u);v:()v u(O,w):uO(m). (12)
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Show that for any convex f (that is f’’ > 0 everywhere), we can find two different initial values up1 and w2, and then
determine a time T > 0, such that the solutions u; and wuo coincide for ¢t > T'.

Problem*.



