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Construction of weak solutions for simple initial data.
e Problem with method of characteristics:

1. Crossing; For example

B |1 xz<0
U+ uug =0, u(O,x)—{ 0 20 (1)
2. Void. For example
U+ uu, =0, u(O,:E):{(l) iig (2)

e How does “weak solution” resolve these two issues?

o Crossing.
Introduce a curve of “jump discontinuity”. This curve has to satisfy the jump condition:

do _ ooy fu) = flur) (3)

E Uy — Uy

o Note that we should only use “jump discontinuity” to resolve crossing. If we use it to deal with
void, we would get unreasonable solutions.

Example 1. Consider
0 <0

U+ uug, =0, u(O,:v):{l >0

We can define

u(t,x)—{(l) iii?g (5)

The jump condition is satisfied therefore u is indeed a weak solution.
However we claim that it is not reasonable. To see this, consider the following problem

0 T < —€
up+ uug, =0, u(0,2) = x;: —e<z<e (6)
1 x>0
We can clearly see that its solution approaches
0 =<0
u(t,r)=< z/t 0<z<t. (7)
1 >t

Therefore using discontinuities to fill “voids” should not be allowed.

o This leads to the idea of “entropy solution”. An entropy solution is a weak solution which
further satisfies an “entropy condition” which excludes unreasonable solutions like the above.
For 1D scalar equation, we can design the following

— Toy entropy condition: For convex f(u), a weak solution should only have discontinuities
satisfying w; > u,.

—  This entropy condition is not useful in proofs due to the following reason. This condition
is only meaningful when u is “piecewise C'"”. However, in practice such information is
usually very hard to establish and is often not true.
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— A better one that is meaningful for any L°° function is the following:

e bo ) —ulet) F (®)

for all a >0, t >0.

o Void.
Guided by the above example, we try to fill “voids” using simple wave solution as

u(t,x):U(w), (9)
t—1o
Substituting into the equation

ug+a(u)u, =0 (10)
we obtain

a(U(§)) =¢. (11)

In particular, for Burgers equation we have

u(t,w)zU(x_x())—w_wo (12)

t—ty ) t—to

Here (xo, to) is the “tip” of the wedge-like void region.

Example 2. Construct the entropy solution for (Sorry guys, how come I copied u=0 for |z| > 17!)

u?\ _J1 |z|>1
ut—l—(?)w—o, u(O,x)—{ C1fe] o<1 (13)

Solution. First we have to understand the structure of characteristics.

r=t+1

Figure 1. Structure of characteristics

1. Taken from J. Kevorkian, “Partial Differential Equations: Analytical Solution Techniques”.
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From this picture it is clear that

1. Right of z=t+1, u=1;

2. Left of t=—1, u=1.

3. There is no characteristics in the gray area;

4. There are lots of crossings for x < 1. In particular, the very first crossing occurs at z=—1 at t=0.
Based on the above understanding, we try to construct the solution as follows:

1. u=1for x>t+1;

2. A rarefaction wave mT_l filling the gray area;

3. A shock emanating from the point z = —1,¢t=0. To the right of the shock, u=1. To the left, using

the fact that u is constant along the straight lines, we see that u = %Jrll below z = —t, and u = f;ll
above it.
Now we determine the shock speed:
e Before meeting x = —t, we have
z+1)\2 +1
%—s—(“l) LTt et 2(0)=—1 (14)
de © 0 ozl 4 2 2(t—1) N

t—1
This is a linear equation and can be solve to get
r=-2+t+1-1 (15)
e We compute the point of meeting (note that ¢ needs to be positive):
—t=-2+t+\1—-t=1t=3/4. (16)
So the shock is given by 2 =—2+t++/1—t from x=—1,t=0 to = —3/4,t =3/4.

e The 2nd part of the shock is determined through solving

x—1
diEi 7t+1+17 .I—'—t _

The solution is given by

2(t)=2+t—/TA+1). (18)

e At this point it is clear that the shock will ultimately meet x =1, and then “invading” into the gray
area. To compute this 3rd part of the shock, we first get the “meeting point™:

1=24t—/T(1+t)=>t=6. (19)

e The shock from the point x =1,t=6 is governed by

x—1

do _——+1
e 2

x(6)=1 (20)
whose solution is

z(t)=1+t—V61. (21)

o Asz(t)=14+t—+6t <1+t forallt, the shock will never meet x =1+¢, the boundary of the right side.

Remark 3. Note that as t — oo, the solution approaches a constant ©=1. In other words, all the “details”
between —1 <x <1 are lost.



