Conservation laws.

- Evolution of the density \(\rho \) of a certain substance:
 - The total amount inside a set \(\Omega \) at time \(t \):
 \[
 \int_{\Omega} \rho(t, x) \, dx.
 \]
 - Assumption: Change only occurs as this substance goes through the boundary. Quantified by a "flux" \(F \). That is
 \[
 \frac{d}{dt} \int_{\Omega} \rho(t, x) \, dx = -\int_{\partial\Omega} F \cdot n \, ds
 \]
 where \(n \) is the outer normal.
- Gauss Theorem:
 \[
 \int_{\partial\Omega} F \cdot n \, ds = \int_{\Omega} \nabla \cdot F \, dx
 \]
- We have
 \[
 \frac{d}{dt} \int_{\Omega} \rho(t, x) \, dx + \int_{\Omega} \nabla \cdot F \, dx = 0
 \]
 as \(\frac{d}{dt} \int_{\Omega} \rho(t, x) \, dx = \int_{\Omega} \rho_t \, dx \), we reach
 \[
 \int_{\Omega} [\rho_t + \nabla \cdot F] \, dx = 0.
 \]
- As \(\Omega \) is arbitrary, when \(\rho_t + \nabla \cdot F \) is assumed to be regular enough, we have a differential equation
 \[
 \rho_t + \nabla \cdot F = 0.
 \]

- Conservation Laws.
 - A conservation law is obtained when \(F \) is a function of \(\rho \) (from now on we use \(u \) instead):
 \[
 u_t + \nabla \cdot F(u) = 0, \quad u(0, x) = g(x)
 \]
 - In particular, a 1D scalar conservation law is
 \[
 u_t + f(u)_x = 0, \quad u(0, x) = g(x)
 \]

- Solving conservation laws using method of characteristics.
 - Denote \(a(u) = f'(u) \). We can write the equation as
 \[
 u_t + a(u) \ u_x = 0.
 \]
 the method of characteristics gives
 \[
 \frac{dt}{ds} = 1, \quad t(0) = 0
 \]
 \[
 \frac{dx}{ds} = a(u), \quad x(0) = x_0
 \]
 \[
 \frac{du}{ds} = 0, \quad u(0) = g(x_0)
 \]
 The solution is given by
 \[
 u(t, x) = g(x_0)
 \]
with
\[x = x_0 + a(g(x_0)) t \]
(14)

Combine these we get an implicit formula for \(u \):
\[u = g(x - a(u) t). \]
(15)

- Although under certain conditions the implicit function theorem gives the existence of a uniquely determined \(u \), we cannot really write it down explicitly.
- However we can compute \(u_x \) explicitly:
\[u_x = g'(1 - a' t u_x) / u_x = g' / (1 + g' a'), \]
(16)

We see that there is the possibility that \(u_x \) will become infinity – when \(g' a' < 0 \).
- Indeed, consider the Burgers equation
\[u_t + u u_x = 0 \]
(17)

with
\[u(0, x) = g(x) = \begin{cases}
0 & x < -1 \\
x + 1 & -1 < x < 0 \\
1 - x & 0 < x < 1 \\
0 & x > 1
\end{cases} \]
(18)

we see that characteristics will cross each other, leading to multi-valued solutions which are usually non-physical.

- **Weak solution.**
 - We would like to define “weak solutions” for the equation\(^1\)
\[u_t + f(u)_x = 0, \quad u(x, 0) = u_0(x). \]
(19)

As any meaningful definition of “weak solutions” should coincide with the classical definition when the solution is smooth enough, we multiply the equation by a \(C^1 \) test function \(\phi \) and integrate by parts as if \(u \) is \(C^1 \).
\[[u_t + f(u)_x] \phi(x, t) = 0 \implies - \int \int u \phi_t + f(u) \phi_x \, dx \, dt + \int_\partial \phi(x, t) [u n_t + f(u) n_x] \, dS = 0. \]
(20)

If we take \(\Omega \) to be the intersection of the support of \(\phi \) and the half-plane \(t > 0 \), we obtain
\[\int \int_{t>0} u \phi_t + f(u) \phi_x \, dx \, dt + \int_{\partial \Omega} u_0 \phi \, dx = 0. \]
(21)

Notice that \(u \) no longer needs to be \(C^1 \) to make the above integrals meaningful. For \(\phi \in C^1 \), the only requirement we should put on \(u \) is that both \(u, f(u) \) are measures. In particular, it is OK for \(u \) to be piecewise continuous.

Definition 1. \(u \) is called a weak solution of
\[u_t + f(u)_x = 0, \quad u(x, 0) = u_0 \]
(22)

if
\[\int \int_{t>0} u \phi_t + f(u) \phi_x \, dx \, dt + \int_{\mathbb{R}} u_0 \phi \, dx = 0. \]
(23)

holds for any \(\phi \in C^1_0 \).

1. For simplicity we deal with the scalar case here. We should keep in mind that the “real-world” problems are mostly systems of conservation laws. For them weak solutions can be defined similarly.
One can easily show that if \(u \in C^1 \) is a weak solution, then it also solves the equation in the classical sense.

- Note that, the above definition allows discontinuity but not multi-valuedness.
- The goal of introducing weak solution is to do more than method of characteristics, which are faced with two problems:
 1. The method of characteristics may leave regions of solution undefined. Consider the example:
 \[
 u_t + u u_x = 0, \quad u(0, x) = \begin{cases}
 0 & x < 0 \\
 1 & x > 0
 \end{cases}.
 \] (24)
 2. As already illustrated, the method of characteristics may cause ambiguity in the value of \(u \).

- Filling the void: Rarefaction waves.
 - We claim that
 \[
 u(t, x) = \begin{cases}
 0 & x < 0 \\
 x/t & 0 < x < t \\
 1 & x > t
 \end{cases}
 \] (25)
 is a weak solution to the problem
 \[
 u_t + u u_x = 0, \quad u(0, x) = \begin{cases}
 0 & x < 0 \\
 1 & x > 0
 \end{cases}.
 \] (26)
 - More examples in next lecture.

- Resolving the ambiguity: Shock waves.
 - Instead of letting characteristics cross, we introduce a discontinuity curve which “cuts” the characteristics. That is, we try to get \(u \) which is piecewise \(C^1 \) with jump discontinuities along certain curves. Turns out that the requirement of \(u \) being a weak solution totally determines these curves.
 - Consider one such curve, denote it by \(\Gamma \). Let \(\phi \in C_0^1 \) be supported in a small ball centering on \(\Gamma \). The ball is so small that it does not intersect with the \(x \)-axis and \(u \) is \(C^1 \) everywhere in the ball except along \(\Gamma \).
 Denote this ball by \(D \), which is divided into two parts \(D_1, D_2 \) by \(\Gamma \). As \(\phi = 0 \) along the \(x \)-axis, the definition of weak solutions becomes
 \[
 \int \int_D u \phi_t + f(u) \phi_x \, dx \, dt = 0.
 \] (27)
 We write the left hand side as \(\int \int_{D_1} + \int \int_{D_2} \) and try to use integration by parts.
 Since \(u \) is \(C^1 \) in \(D_1, D_2 \), we have
 \[
 \int \int_{D_1} u \phi_t + f(u) \phi_x \, dx \, dt = - \int \int_{D_1} [u_t + f(u) u_x] \phi \, dx \, dt + \int \int_{\partial D_1} [u n_t + f(u) n_x] \phi \, dS
 \] (28)
 Since \(u \) solves the equation in the classical sense in \(D_1 \) (see exercise) we have
 \[
 \int \int_{D_1} u \phi_t + f(u) \phi_x \, dx \, dt = \int \int_{\partial D_1} [u n_t + f(u) n_x] \phi \, dS.
 \] (29)
 Similarly
 \[
 \int \int_{D_2} u \phi_t + f(u) \phi_x \, dx \, dt = \int \int_{\partial D_2} [u n_t + f(u) n_x] \phi \, dS.
 \] (30)
 Since \(\phi \) vanishes on \(\partial D_1 \) except along \(\Gamma \), we finally obtain
 \[
 \int_{\Gamma} [u n_t + f(u) n_x] \phi \, dS = 0
 \] (31)
where $[u]$ is the “jump” of u across Γ.

Now let Γ be determined by $\frac{dx}{dt} = s(x,t)$. We have $\frac{\partial u}{\partial x} = -s$ which gives

$$\int_{\Gamma} [-s[u] + [f(u)]] \phi \, dS = 0.$$ \hspace{1cm} (32)

Due to the arbitrariness of ϕ, the weak solution must satisfy

$$[f(u)] = s[u].$$ \hspace{1cm} (33)

This is called the jump condition. On can also do the same analysis for systems of conservation laws and obtain

$$[f(u)] = s[u].$$ \hspace{1cm} (34)

In the special case of gas dynamics, this condition is referred to as Rankine-Hugoniot condition.