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Conservation laws.
e Evolution of the density p of a certain substance:

o The total amount inside a set 2 at time ¢:
[ sty 1)
Q

o Assumption: Change only occurs as this substance goes through the boundary. Quantified by
a “flux” F'. That is

i/ p(t,x)de=— F-nds (2)
dt Jo 20

where n is the outer normal.

o Gauss Theorem:
/ F-ndSZ/V-Fdx (3)
le) Q

p(t,:v)d:v—l—/QV-Fd:vzo (4)

o We have
d

dt Jq
d
as g [ p(t,2)= [, prdx, we reach

/Q[Pt—i—V-F]d:EZO. (5)

o As Q is arbitrary, when p; + V - F' is assumed to be regular enough, we have a differential
equation

pi+V-F=0. (6)
e Conservation Laws.
o A conservation law is obtained when F' is a function of p (from now on we use u instead):
us+ V- F(u)=0, u(0,2) = g(x) (7)
o In particular, a 1D scalar conservation law is
ur+ f(u), =0, u(0,z)=g(x) (8)
e Solving conservation laws using method of characteristics.

o Denote a(u) = f'(u). We can write the equation as

us+a(u) uy =0. 9)
the method of characteristics gives
j_i — 1, #0)=0 (10)
P = e, w(0)=x0 (11)
T= 0 u(0)=glwo) (12)
The solution is given by
u(t, z) = g(zo) (13)
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with
x =10+ a(g(xo))t (14)
Combine these we get an implicit formula for u:
u=g(z —a(u)t). (15)
o Although under certain conditions the implicit function theorem gives the existence of a
uniquely determined u, we cannot really write it down explicitly.

o However we can compute u, explicitly:
gl
— ’ —
We see that there is the possibility that u, will become infinity — when ¢’a’ <0.

o Indeed, consider the Burgers equation

u+uu,=0 (17)
with
0 r<—1
r+1 —1<x<0
uw0,2)=9@)=9 15 0cacl (18)
0 z>1

we see that characteristics will cross each other, leading to multi-valued solutions which are
usually non-physical.

e Weak solution.
o  We would like to define “weak solutions” for the equation!
ug+ f(u), =0, u(x,0) =up(x). (19)

As any meaningful definition of “weak solutions” should coincide with the classical definition
when the solution is smooth enough, we multiply the equation by a C' test function ¢ and
integrate by parts as if u is C.

[ut + f(u),] o2, 1) =0 = —// udy+ f(u) podzdt+ ¢ Gz, t) [ung + f(u) na] dS =
. Q o0 20)

If we take © to be the intersection of the support of ¢ and the half-plane ¢ > 0, we obtain

// u(bt—l—f(u)(bmdxdt—i—/ ug ¢dx =0. (21)
t>0 R

Notice that u no longer needs to be C' to make the above integrals meaningful. For ¢ € C?,
the only requirement we should put on w is that both u, f(u) are measures. In particular, it
is OK for u to be piecewise continuous.

Definition 1. u is called a weak solution of
U+ f(u);p =0, ’U,(LL', O) =Uo (22)
if
// uqﬁt—l—f(u)(bmd:vdt—i—/ ug ¢ dz =0. (23)
t>0 R

holds for any ¢ € C}.

1. For simplicity we deal with the scalar case here. We should keep in mind that the “real-world” problems are mostly
systems of conservation laws. For them weak solutions can be defined similarly.
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One can easily show that if © € C! is a weak solution, then it also solves the equation in
the classical sense.

Note that, the above definition allows discontinuity but not multi-valuedness.

The goal of introducing weak solution is to do more than method of characteristics, which are
faced with two problems:

1. The method of characteristics may leave regions of solution undefined. Consider the
example:
0 <0

1 z2>0° (24)

us+uu, =0, u(O,x):{

2. As already illustrated, the method of characteristics may cause ambiguity in the value
of w.

e Filling the void: Rarefaction waves.

(e]

(e]

We claim that

0 z<0
u(t,z)=< z/t 0<z<t (25)
1 x>t
is a weak solution to the problem
0 <0
us+uu, =0, u(O,:E)—{l 250" (26)

More examples in next lecture.

e Resolving the ambiguity: Shock waves.

(¢]

Instead of letting characteristics cross, we introduce a discontinuity curve which “cuts” the
characteristics. That is, we try to get u which is piecewise C'' with jump discontinuities along
certain curves. Turns out that the requirement of u being a weak solution totally determines
these curves.

Consider one such curve, denote it by T'. Let ¢ € O} be supported in a small ball centering on
I'. The ball is so small that it does not intersect with the z-axis and u is C'! everywhere in the
ball except along T'.

Denote this ball by D, which is divided into two parts D1, Dy by I'. As ¢ =0 along the z-
axis, the definition of weak solutions becomes

/L ugr+ f(u) g dodt =0. (27)

We write the left hand side as [ fDl + [ sz and try to use integration by parts.
Since u is C' in Dy, Dy, we have

//Dlu@—i-f(u)%dxdt:—// [ut+f(u)x]¢d:vdt+7({wl [unet fu)na 6dS  (28)

Since u solves the equation in the classical sense in Dy (see exercise) we have

// uqﬁt—l—f(u)(bmdxdt:j{ [ung+ f(u)ng] ¢dsS. (29)
.. D,y 0D,
Similarly
// u¢t—|—f(u)¢xdxdt:j{ [ung+ f(u)ng) ¢dS. (30)
D, oD,

Since ¢ vanishes on 9D; except along I', we finally obtain

/F (] e+ [ ()] s 6 dS =0 (31)
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where [u] is the “jump” of u across T'.
Now let I" be determined by i—f = s(x,t). We have % = —s which gives

/F (=5 [u] + [/ (w)] $dS =0. (32)

Due to the arbitrariness of ¢, the weak solution must satisfy
[f(w)] = s[u]. (33)

This is called the jump condition. On can also do the same analysis for systems of conservation
laws and obtain

[f(w)] = s [u]. (34)

In the special case of gas dynamics, this condition is referred to as Rankine- Hugoniot condition.



