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Conservation laws.

• Evolution of the density ρ of a certain substance:

◦ The total amount inside a set Ω at time t:
∫

Ω

ρ(t, x) dx. (1)

◦ Assumption: Change only occurs as this substance goes through the boundary. Quantified by
a “flux” F . That is

d

dt

∫

Ω

ρ(t, x) dx =−

∫

∂Ω

F ·n ds (2)

where n is the outer normal.

◦ Gauss Theorem:
∫

∂Ω

F ·n ds =

∫

Ω

∇·F dx (3)

◦ We have
d

dt

∫

Ω

ρ(t, x) dx +

∫

Ω

∇·F dx= 0 (4)

as
d

dt

∫

Ω
ρ(t, x)=

∫

Ω
ρt dx, we reach

∫

Ω

[ρt +∇·F ] dx= 0. (5)

◦ As Ω is arbitrary, when ρt + ∇ · F is assumed to be regular enough, we have a differential
equation

ρt +∇ ·F =0. (6)

• Conservation Laws.

◦ A conservation law is obtained when F is a function of ρ (from now on we use u instead):

ut +∇·F (u) =0, u(0, x)= g(x) (7)

◦ In particular, a 1D scalar conservation law is

ut + f(u)x =0, u(0, x)= g(x) (8)

• Solving conservation laws using method of characteristics.

◦ Denote a(u) = f ′(u). We can write the equation as

ut + a(u) ux = 0. (9)

the method of characteristics gives

dt

ds
= 1, t(0) =0 (10)

dx

ds
= a(u), x(0)= x0 (11)

du

ds
= 0, u(0)= g(x0) (12)

The solution is given by

u(t, x)= g(x0) (13)
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with

x= x0 + a(g(x0)) t (14)

Combine these we get an implicit formula for u:

u= g(x− a(u) t). (15)

◦ Although under certain conditions the implicit function theorem gives the existence of a
uniquely determined u, we cannot really write it down explicitly.

◦ However we can compute ux explicitly:

ux = g ′ (1− a′ t ux)� ux =
g ′

1+ g ′ a′ t
. (16)

We see that there is the possibility that ux will become infinity – when g ′ a′< 0.

◦ Indeed, consider the Burgers equation

ut +u ux = 0 (17)

with

u(0, x)= g(x) =















0 x <−1
x+ 1 −1 <x < 0
1− x 0 <x < 1
0 x > 1

(18)

we see that characteristics will cross each other, leading to multi-valued solutions which are
usually non-physical.

• Weak solution.

◦ We would like to define “weak solutions” for the equation1

ut + f(u)
x
= 0, u(x, 0)= u0(x). (19)

As any meaningful definition of “weak solutions” should coincide with the classical definition
when the solution is smooth enough, we multiply the equation by a C1 test function φ and
integrate by parts as if u is C1.

[ut + f(u)
x
] φ(x, t) = 0 � −

∫ ∫

Ω

u φt + f(u) φx dx dt +

∮

∂Ω

φ(x, t) [u nt + f(u) nx] dS =

0. (20)

If we take Ω to be the intersection of the support of φ and the half-plane t > 0, we obtain
∫ ∫

t>0

u φt + f(u) φx dx dt +

∫

R

u0 φdx= 0. (21)

Notice that u no longer needs to be C1 to make the above integrals meaningful. For φ ∈ C1,
the only requirement we should put on u is that both u, f(u) are measures. In particular, it
is OK for u to be piecewise continuous.

Definition 1. u is called a weak solution of

ut + f(u)
x
= 0, u(x, 0) =u0 (22)

if
∫ ∫

t>0

u φt + f(u) φx dx dt +

∫

R

u0 φdx= 0. (23)

holds for any φ∈C0
1.

1. For simplicity we deal with the scalar case here. We should keep in mind that the “real-world” problems are mostly

systems of conservation laws. For them weak solutions can be defined similarly.
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One can easily show that if u ∈ C1 is a weak solution, then it also solves the equation in
the classical sense.

◦ Note that, the above definition allows discontinuity but not multi-valuedness.

◦ The goal of introducing weak solution is to do more than method of characteristics, which are
faced with two problems:

1. The method of characteristics may leave regions of solution undefined. Consider the
example:

ut + uux =0, u(0, x)=

{

0 x < 0
1 x > 0

. (24)

2. As already illustrated, the method of characteristics may cause ambiguity in the value
of u.

• Filling the void: Rarefaction waves.

◦ We claim that

u(t, x)=







0 x < 0
x/t 0 < x < t

1 x > t

(25)

is a weak solution to the problem

ut + uux =0, u(0, x)=

{

0 x < 0
1 x > 0

. (26)

◦ More examples in next lecture.

• Resolving the ambiguity: Shock waves.

◦ Instead of letting characteristics cross, we introduce a discontinuity curve which “cuts” the
characteristics. That is, we try to get u which is piecewise C1 with jump discontinuities along
certain curves. Turns out that the requirement of u being a weak solution totally determines
these curves.

◦ Consider one such curve, denote it by Γ. Let φ∈C0
1 be supported in a small ball centering on

Γ. The ball is so small that it does not intersect with the x-axis and u is C1 everywhere in the
ball except along Γ.

Denote this ball by D, which is divided into two parts D1, D2 by Γ. As φ =0 along the x-
axis, the definition of weak solutions becomes

∫ ∫

D

uφt + f(u) φx dx dt = 0. (27)

We write the left hand side as
∫ ∫

D1

+
∫ ∫

D2

and try to use integration by parts.

Since u is C1 in D1, D2, we have
∫ ∫

D1

uφt + f(u) φx dxdt =−

∫ ∫

[ut + f(u)
x
] φdxdt +

∮

∂D1

[unt + f(u)nx] φ dS (28)

Since u solves the equation in the classical sense in D1 (see exercise) we have
∫ ∫

D1

uφt + f(u) φx dxdt =

∮

∂D1

[unt + f(u)nx] φ dS. (29)

Similarly
∫ ∫

D2

uφt + f(u) φx dxdt =

∮

∂D2

[unt + f(u)nx] φ dS. (30)

Since φ vanishes on ∂D1 except along Γ, we finally obtain
∫

Γ

[[u] nt + [f(u)] nx] φ dS =0 (31)
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where [u] is the “jump” of u across Γ.
Now let Γ be determined by

dx

dt
= s(x, t). We have

nt

nx

=−s which gives

∫

Γ

[−s [u] + [f(u)]] φ dS =0. (32)

Due to the arbitrariness of φ, the weak solution must satisfy

[f(u)] = s [u]. (33)

This is called the jump condition. On can also do the same analysis for systems of conservation
laws and obtain

[f(u)] = s [u]. (34)

In the special case of gas dynamics, this condition is referred to as Rankine-Hugoniot condition.
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