MATH 527 LECTURE 2: CONSERVATION LAWS I

Sep. 9, 2011

Conservation laws.

- Evolution of the density ρ of a certain substance:
 - The total amount inside a set Ω at time t:

$$\int_{\Omega} \rho(t, x) \,\mathrm{d}x. \tag{1}$$

 $\circ~$ Assumption: Change only occurs as this substance goes through the boundary. Quantified by a "flux" F.~ That is

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \rho(t, x) \,\mathrm{d}x = -\int_{\partial\Omega} F \cdot n \,\mathrm{d}s \tag{2}$$

where n is the outer normal.

 \circ $\,$ Gauss Theorem:

$$\int_{\partial\Omega} F \cdot n \, \mathrm{d}s = \int_{\Omega} \nabla \cdot F \, \mathrm{d}x \tag{3}$$

• We have

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \rho(t, x) \,\mathrm{d}x + \int_{\Omega} \nabla \cdot F \,\mathrm{d}x = 0 \tag{4}$$

as $\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \rho(t, x) = \int_{\Omega} \rho_t \, \mathrm{d}x$, we reach

$$\int_{\Omega} \left[\rho_t + \nabla \cdot F \right] \mathrm{d}x = 0. \tag{5}$$

• As Ω is arbitrary, when $\rho_t + \nabla \cdot F$ is assumed to be regular enough, we have a differential equation

$$\rho_t + \nabla \cdot F = 0. \tag{6}$$

- Conservation Laws.
 - A conservation law is obtained when F is a function of ρ (from now on we use u instead):

$$u_t + \nabla \cdot F(u) = 0, \qquad u(0, x) = g(x)$$
(7)

• In particular, a 1D scalar conservation law is

$$u_t + f(u)_x = 0, \qquad u(0,x) = g(x)$$
(8)

- Solving conservation laws using method of characteristics.
 - Denote a(u) = f'(u). We can write the equation as

$$u_t + a(u) \, u_x = 0. \tag{9}$$

the method of characteristics gives

$$\frac{\mathrm{d}t}{\mathrm{d}s} = 1, \qquad t(0) = 0 \tag{10}$$

$$\frac{\mathrm{d}x}{\mathrm{d}s} = a(u), \qquad x(0) = x_0 \tag{11}$$

$$\frac{\mathrm{d}u}{\mathrm{d}s} = 0, \qquad u(0) = g(x_0) \tag{12}$$

The solution is given by

$$u(t,x) = g(x_0) \tag{13}$$

with

$$x = x_0 + a(g(x_0))t$$
(14)

Combine these we get an implicit formula for u:

$$u = g(x - a(u) t).$$
 (15)

- Although under certain conditions the implicit function theorem gives the existence of a uniquely determined u, we cannot really write it down explicitly.
- However we can compute u_x explicitly:

$$u_x = g' \left(1 - a' t \, u_x\right) \Longrightarrow u_x = \frac{g'}{1 + g' \, a' t}.\tag{16}$$

We see that there is the possibility that u_x will become infinity – when g'a' < 0.

• Indeed, consider the Burgers equation

$$u_t + u \, u_x = 0 \tag{17}$$

with

$$u(0,x) = g(x) = \begin{cases} 0 & x < -1 \\ x+1 & -1 < x < 0 \\ 1-x & 0 < x < 1 \\ 0 & x > 1 \end{cases}$$
(18)

we see that characteristics will cross each other, leading to multi-valued solutions which are usually non-physical.

- Weak solution.
 - We would like to define "weak solutions" for the equation 1

$$u_t + f(u)_x = 0, \qquad u(x,0) = u_0(x).$$
 (19)

As any meaningful definition of "weak solutions" should coincide with the classical definition when the solution is smooth enough, we multiply the equation by a C^1 test function ϕ and integrate by parts as if u is C^1 .

$$\begin{bmatrix} u_t + f(u)_x \end{bmatrix} \phi(x,t) = 0 \implies -\iint_{\Omega} u \phi_t + f(u) \phi_x \, \mathrm{d}x \, \mathrm{d}t + \oint_{\partial\Omega} \phi(x,t) \begin{bmatrix} u \, n_t + f(u) \, n_x \end{bmatrix} \mathrm{d}S = 0.$$
(20)

If we take Ω to be the intersection of the support of ϕ and the half-plane t > 0, we obtain

$$\iint_{t>0} u \phi_t + f(u) \phi_x \,\mathrm{d}x \,\mathrm{d}t + \int_{\mathbb{R}} u_0 \phi \,\mathrm{d}x = 0.$$
⁽²¹⁾

Notice that u no longer needs to be C^1 to make the above integrals meaningful. For $\phi \in C^1$, the only requirement we should put on u is that both u, f(u) are measures. In particular, it is OK for u to be piecewise continuous.

Definition 1. *u* is called a weak solution of

$$u_t + f(u)_x = 0, \qquad u(x,0) = u_0$$
(22)

if

$$\iint_{t>0} u \phi_t + f(u) \phi_x \,\mathrm{d}x \,\mathrm{d}t + \int_{\mathbb{R}} u_0 \phi \,\mathrm{d}x = 0.$$
⁽²³⁾

holds for any $\phi \in C_0^1$.

^{1.} For simplicity we deal with the scalar case here. We should keep in mind that the "real-world" problems are mostly systems of conservation laws. For them weak solutions can be defined similarly.

One can easily show that if $u \in C^1$ is a weak solution, then it also solves the equation in the classical sense.

- Note that, the above definition allows discontinuity but not multi-valuedness. 0
- The goal of introducing weak solution is to do more than method of characteristics, which are 0 faced with two problems:
 - 1. The method of characteristics may leave regions of solution undefined. Consider the example: 1 .

$$u_t + u \, u_x = 0, \qquad u(0, x) = \begin{cases} 0 & x < 0\\ 1 & x > 0 \end{cases}.$$
 (24)

- 2. As already illustrated, the method of characteristics may cause ambiguity in the value of u.
- Filling the void: Rarefaction waves.
 - We claim that 0

$$u(t,x) = \begin{cases} 0 & x < 0\\ x/t & 0 < x < t\\ 1 & x > t \end{cases}$$
(25)

is a weak solution to the problem

$$u_t + u \, u_x = 0, \qquad u(0, x) = \begin{cases} 0 & x < 0\\ 1 & x > 0 \end{cases}.$$
 (26)

- More examples in next lecture. 0
- Resolving the ambiguity: Shock waves.
 - Instead of letting characteristics cross, we introduce a discontinuity curve which "cuts" the 0 characteristics. That is, we try to get u which is piecewise C^1 with jump discontinuities along certain curves. Turns out that the requirement of u being a weak solution totally determines these curves.
 - Consider one such curve, denote it by Γ . Let $\phi \in C_0^1$ be supported in a small ball centering on 0 Γ . The ball is so small that it does not intersect with the x-axis and u is C^1 everywhere in the ball except along Γ .

Denote this ball by D, which is divided into two parts D_1, D_2 by Γ . As $\phi = 0$ along the xaxis, the definition of weak solutions becomes

$$\iint_{D} u \phi_t + f(u) \phi_x \, \mathrm{d}x \, \mathrm{d}t = 0.$$
⁽²⁷⁾

We write the left hand side as $\int \int_{D_1} + \int \int_{D_2}$ and try to use integration by parts. Since u is C^1 in D_1, D_2 , we have

$$\iint_{D_1} u \phi_t + f(u) \phi_x \, \mathrm{d}x \, \mathrm{d}t = -\iint \left[u_t + f(u)_x \right] \phi \, \mathrm{d}x \, \mathrm{d}t + \oint_{\partial D_1} \left[u \, n_t + f(u) \, n_x \right] \phi \, \mathrm{d}S \tag{28}$$

Since u solves the equation in the classical sense in D_1 (see exercise) we have

$$\iint_{D_1} u \phi_t + f(u) \phi_x \, \mathrm{d}x \, \mathrm{d}t = \oint_{\partial D_1} \left[u \, n_t + f(u) \, n_x \right] \phi \, \mathrm{d}S. \tag{29}$$

Similarly

$$\iint_{D_2} u \phi_t + f(u) \phi_x \, \mathrm{d}x \, \mathrm{d}t = \oint_{\partial D_2} \left[u \, n_t + f(u) \, n_x \right] \phi \, \mathrm{d}S. \tag{30}$$

Since ϕ vanishes on ∂D_1 except along Γ , we finally obtain

$$\int_{\Gamma} \left[\left[u \right] n_t + \left[f(u) \right] n_x \right] \phi \, \mathrm{d}S = 0 \tag{31}$$

where [u] is the "jump" of u across Γ . Now let Γ be determined by $\frac{dx}{dt} = s(x, t)$. We have $\frac{n_t}{n_x} = -s$ which gives

$$\int_{\Gamma} \left[-s \left[u \right] + \left[f(u) \right] \right] \phi \, \mathrm{d}S = 0.$$
(32)

Due to the arbitrariness of ϕ , the weak solution must satisfy

$$[f(u)] = s [u]. \tag{33}$$

This is called the *jump condition*. On can also do the same analysis for systems of conservation laws and obtain

$$[\boldsymbol{f}(\boldsymbol{u})] = s [\boldsymbol{u}]. \tag{34}$$

In the special case of gas dynamics, this condition is referred to as Rankine-Hugoniot condition.