MATH 436 FALL 2012 HOMEWORK 3 SOLUTIONS
DUE OctT. 25 IN CLASS

Note. All problem numbers refer to “Updated” version of lecture note.

e Ex. 2.28.d), e). Solve
wt+ui+u=0, ulr,0)=z
and
w+ui=0, u(z,0)=—z%
Show that the solution of the latter breaks down when t=1/4.
Solution.

o d). We have F(z,t,2,p,q)=q+ p>+ 2. The system of characteristics is

T = F,=2p
t = F,=1
i = pEy+qF,=2p*+q=p*—=z
p = —Fe—pF.=p
i = -F-qF.=q
with intial conditions
To=T, to=0, 20=T
and pg, qo satisfy
qo+ Po+20=0, 1:%:P0%+QO%:PO
This leads to
po=1, qg=—7—1.

From this we solve
p(T,s):es, q(T,S):—(T+1)€S.

Substituting into other equations we obtain

3s
x(1,8)=T+2¢€°, t(r,s)=s, 2(1,8)=— 477"
From the z,t equations we have 7=x — 2¢e!. Thus
o3t o3t
u(a:,t):z(T,s):?—l—(x—Qet)e_t:?joe_t—Q.
o e). We have F(z,t,2,p,q)=q+ p*>. The system of characteristics is

T = F,=2p

t = F,=1

i = ph+qF=2p+q=p’

]j = _Fx_szzo

q = —F,—qF.=0

(10)

(11)

(12)
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with intial conditions

To=T, to=0, 20=—T2 (19)
and
dzo dxo dto
2 — Q== _ _ . 2
Qo+ p5=0, T=q; = Po gt = 1o (20)
This gives
p(1,8)=po=—27,  q(7,5)=q=—4T" (21)

Consequently we have
x(r,8)=7—47s, t(r,s)=s, 2(r,8)=471is—7*=(4s—1)7% (22)

The x,t equations now give

s=t, =TT (23)
and consequently
2
x
u(x,t)—z(r,s)—4t_1. (24)
It is clear that the solution breaks down at t=1/4.
e Ex. 2.29. (Snell’s law) Consider the eiconal equation
2., ,2_ 2 _Jm y<o0
d=ntegfe alea)={ M V0. (25)

Here ny > my are constants. Let the initial condition be u(x, 0) = n; z cos 6 with
0e[0,7].

a) Solve the equation.

b) By considering the directions Vu, confirm Snell’s law.1
Solution.

a) We have F'(z,y,z,p,q)=p>+ ¢*—n(z,y)% Thus the system for characteristics
is

T = F,=2p, (26)
y = F=2q, (27)
5 = pr+qu=2<p2+q2>=2n<x,y>2={ Znd y <0 (28)
2n5 y>0
p = —I,—pF.=0, (29)
i = —F,—qF.,=0. (30)
with initial conditions
To=T,Yo=0,ug=mnq 7 cosb. (31)

1. Check wiki if you forget what it is.
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We determine pyg, ¢o from

2
9, 9 ) ni y=0— _duo  dxo dyo
po+<10—{n% y=0+" nicost) = -~ Po d7'+q0 1 Do (32)
Theref L 9 +n;sinf y=0— N
erefore we have py = n; cos = . Now
bo ! 0 ++/n3 — (n1cosh)? y=0+

notice that y =2 ¢. If we assume that when s >0, y > 0, we must have y >0
at y =0 therefore

_J nisind y=0— (33)
o= Vn2— (nicosf)? y=0+"
This leads to
nysind y <0
— 0 = . 34
plr.s)=micosd,  q(r.s) { e e (34)
Next we solve the z, vy, z equations:
T=2p=x=T+2nyscosb, (35)
9y 2nissinf s<0 (36)
yms=y= 254/n3—(nycosh)? s>0"
2nf y<0 niTcosh+2nis y<0
{27@% y>0 = 2(s,7) {anCOSG—l—Qn%s y>0 (37)
Thus we have
Y . cost
2n;sind y<0 * ysin@ y<0
§= Yy >O’T: ymnicosf (38)
T — y>0
2 \/n% — (n; cosh)? \/n3 — (n cosf)?
which leads to
ny [x cosd + y sind)] y<0
- . 39
(z,9) {n1x0039+y\/n%—(n1c059)2 y>0 (39)
We have
nysin 6 y <0
womco, { e — (40)

Here 6 is the angle between the vector Vu and the interface y =0 in y <0. If
we let 6 be the angle between Vu and y=0 in y >0, we have

te ™ cosf. (41)

cosf =———— =
(W2 +u)/? n

This is exactly Snell’s law.
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Ex. 2.32. a) Reduce the following equation
Upy + 4 Upy +3Uyy + 33Uy —uy+u=0 (42)
to canonical form. Then use further transformation

u(§,m)=exp (a&+ Bn)v(&,n) (43)

and choose the constants «, § to eliminate the first derivative terms.
Solution. We have

(dy)? — 4 (dz) (dy) + 3 (dr)?*=0= (dy — 3dz)(dy — dz) =0 (44)
soweset {=y—3z, n=y—x. So §=-3,§{,=1,n7,=—1,n,=1. This leads to
Uy = —3 Ug — Uy, Uy = U + Uy (45)
and
Ugg = 9 Uge + 6 Ugy + U, Uzy = —3 Uge — 4 Uy — Uy, Uyy = Uge + 2 Ugy + Unyy (46)

Thus the equation in &-n variables reads

dug +10ug +4u, —u=0. (47)
If we introduce v(&,n) through
u(§,n) =exp (a&+ Bn)v(E,n) (48)
then we have
ue = ety 4 &0y, u, = [Ty 4 eattiny, (49)
and
Ugy = €T ye, + e TPy, + ety + o ey, (50)

Substituting into the equation we obtain

e [4vg, + (4 84+10)ve+ (da+4) v, + (4aB+10a+4 3 —1)v]=0. (51)
Choosing a=—5/2, = —1 we reach
Ve —Hv=0. (52)

Ex. 2.33. Consider the general linear 2nd order equation in R™:
Z aijuxixj_'_z bi Uy, +cu+d=0. (53)

with constant coefficients. Prove that there is a change of variables which reduce the
equation to canonical form.

Proof. Define the matrix A = (a;;). From linear algebra we know that there is a
nonsingular matrix R such that
(1 )

RART = ~1, (54)
O —p—q
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where [, means the p X p identity matrix, 0, means the r X r zero matrix.
Since a;; are constants, R is a constant matrix. Denoting its (¢, j) entry by 7,
we introduce the change of variables:

§i=TrinT1+riala+ o+ Tin T (55)

Then straightforward calculation shows that under such change of variables, the
equation becomes

Z djjue;e,; +lower order terms=0 (56)

ij=1
K )

/I:(dij):k ~1, on_p_q). (57)

This means the equation reads

with the matrix

Ugyg, o T Uge, — Uy 16,01 — " — Uty £y T lOWer order terms=0. (58)

which is exactly the canonical form. O

Ex. 2.40. Let ¢(z,y)=constant be a family of characteristics for
a(@, y) uy +b(x, y)uy=c(z, y)u+d(z, y). (59)

Let £ = p(z,y) and n=1(x,y) be perpendicular to it. Show that the equation reduces
to

(e +b1y) uy=cu+d. (60)

Now assume wu is continuous across { = 0 while u¢ has a jump there, then the jump
[ug] satisfies

(ats+biby)[uel, = clugl. (61)

Thus the propagation of jumps are determined by a equation.

Proof. Since ¢(x,y)=c is characteristics, we have a ¢, + by, =0. Apply chain rule
we have

Aty +buy=(ap;+bp,) ue+ (@), +by) uy=(ay+b1hy) uy, (62)
That is the equation reduces to
(e +b1y) uy=cu+d. (63)

If we further assume u is continuous across { =0 while u¢ has a jump there, then we
can take O¢ of both sides of the equation to obtain

(@, +b1y) uey+ (athy +b1hy) e uy=cue+ceu+de. (64)

As a,b,c,d are functions of z,y (that is £, n) only, all the terms in the above equations
are continuous across & =0 except (a 9, + b1y) ug, and c ue. Taking the difference
between £ =0+ and 0 — gives the desired result. O
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Ex. 2.42. Consider the first order quasi-linear equation:
a(z,y, u) uz +b(z, y,u) uy=c(z, y,u). (65)

Assume that u is smooth everywhere except that along ® = 0 there is a “jump” in
its 2nd order derivatives. Derive the equation for . Then consider the case when
the “jump” is in its kth derivative and all (k — 1)th derivatives are continuous across
the curve.

Proof. We consider directly the general case. We do a change of variables £ =®(x, y)
and n=V(z, y) with level sets of ¥ perpendicular to that of ®. Then the equation
becomes

(a®,+bP)ue+(aV,+b¥,)u,=c. (66)

Since all the (k — 1)th derivatives are continuous across the curve, we have all the kth
derivatives are also continuous except for 0I§u: For any [ > 1, we can write

OLOE = 0,(0L 0 ) (67)

which is a 7 derivative of a (k — 1)th order derivative. Therefore taking 0?‘1 of (66)
we reach

(a®,+b®,) (fu) + [terms continuous across & = 0] =0. (68)
Now taking the difference between £ =0+ and 0 — we conclude
(a®,+b®,) [Ofu]=0=a P, +bD, (69)

which is the equation for characteristic curves. O]



