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1. Ordering

1.1. Relation

Definition 1. (Relation) A �relation� R from a set X to a set Y is a subset AR �X � Y. We
write xRy (or R(x; y)) if and only if (x; y)2AR.

The domain and range of a relation R is de�ned as the projection of AR to X and Y:

domR: =fx2X:9y 2Y xRyg; ranR := fy 2Y : 9x2X xRyg: (1)

Notation 2. When X =Y we say a �relation� R in X.

Exercise 1. Let xRy be x< y and X =R. What is AR? (Hint:1 )

Exercise 2. Let xRy be de�ned as x¡ 3< y <x2. What is AR? (Hint:2 )

Definition 3. (Function) A �function� f :X 7!Y is a relation from X to Y such that

8x02X; AR\f(x0; y)j y 2Y g has exactly one element. (2)

1.2. Ordering: partial; total; well

Definition 4. (Partial ordering) A relation R in a set X is said to be a partial ordering (or
simply an ordering) of X if and only if it is

i. re�exive: x2X =)xRx;

ii. anti-symmetric: (x; y 2X; x=/ y; xRy)=):(yRx);
iii. transitive: (x; y; z 2X; xRy; yRz)=)xRz.

Exercise 3. Prove that 6 is a partial ordering on R.

Exercise 4. Let X =R2 and (x1; x2)R(y1; y2) be de�ned as

x1< y1 or (x1= y1 and x2< y2) or (x1= y1; x2= y2): (3)

Prove that it is an ordering.

Exercise 5. Prove that (x; y)6 (a; b) de�ned as x6 a; y6 b is a partial ordering of R2.

Remark 5. In the following we will use 6 to denote partial ordering.

Definition 6. Let �6� be a partial ordering in a set X. We de�ne x< y, x> y, x> y as

x6 y; x=/ y; y6 x; y <x (4)

respectively.

Definition 7. Let (X;6) be a partially ordered set. x02Y �X is said to be

� a least element of Y if and only if for every y 2Y, x06 y.

� a minimal element of Y if and only if there is no y 2Y such that y <x0.

Remark 8. �Least� means smaller than others; �minimal� means no other element is smaller.

Exercise 6. De�ne �maximal� and �greatest� elements. (Hint:3 )

1. (x; y); x< y.

2. (x; y); x¡ 3< y <x2.

3. greatest ! least; maximal  ! minimal.
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Example 9. Let R2 be equipped with the ordering (x; y) 6 (a; b) () x 6 a; y 6 b. Let
Y = fx> 0; y> 0; x2+ y2> 1g. Then
� Least element: No least element;

� Minimal element: fx> 0; y> 0; x2+ y2=1g.

Exercise 7. Find the least elements and minimal elements for Z := fx2+ y26 1g. (Ans:4 )

Exercise 8. Prove that

a) Any least element must also be minimal; But a minimal element may not be a least element.

b) The least element, if it exists, is unique. (Hint:5 )

Example 10. Let X be a set. Then � is a partial ordering on the power set P(X).

Definition 11. (Total ordering) A relation 6 on a set X is said to be a total ordering (or
simple ordering) if and only if

i. it is a partial ordering, and

ii. it is strongly connected, that is

8x; y 2X; either x6 y or y6 x: (5)

Exercise 9. Let (X;6) be a totally ordered set. Prove that any minimal element is also a least element. (Hint: 6 )

Remark 12. A totally ordered set is also called a �chain�.

Definition 13. (Well-ordering) A relation 6 on a set X is said to be a well-ordering of X if
and only if

i. it is a total ordering, and

ii. every non-empty subset of X has a least element.

Exercise 10. Consider N;Z;Q;R and R2 with the lexicographical ordering. Which are partially ordered? totally
ordered? well-ordered? (Ans:7 )

Proposition 14. A linearly ordered set is well-ordered if and only if there is no in�nite decreasing
sequence.

Proof. Exercise. (Hint:8 ) �

1.3. Similarity

Definition 15. (Similarity) Two ordered sets are similar (ordinally isomorphic) if and only if
there is a bijection f :X 7! Y such that the order is preserved. If X and Y are similar we say they
belong to the same �order-type�.

Theorem 16. If (X;6) is a partially ordered set, then there is a set Y � 2X such that (X;6) and
(Y ;�) are similar.

Proof. Set
Y : =fXaj a2Xg (6)

4. No least; Minimal: x2+ y2=1, x60 or y60.
5. Assume the contrary, there are x1=/ x2 both least. Consider the relation between x1; x2.
6. If y <x is not true, then x6 y.
7. Partial: R2; total: Z;Q;R; well: N.

8. If a1> a2> a3> ��� is in�nite, then the subset fa1; a2; a3; :::g does not have least element; For the other direction let
A�X be nonempty. Take any a12A, if it is least, done; Otherwise there must be a2<a1 ...
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where
Xa := fx2Xjx6 ag: (7)

Then we de�ne
f :X 7!Y a 7!Xa: (8)

The following is left as exercise. �
Exercise 11. Finish the proof of the theorem.

Example 17. Let A=N with the natural order; Let B=N with the following order:

2<B 1<B 4<B 3<B 6<B 5<B ��� (9)
Then A;B are similar.

Now let C =N with the following order:

1<C 3<C 5<C ���<C 2<C 4<C 6<C ��� (10)

Then A; C are not similar. To justify this, we assume the contrary: Let f : A 7! C be a bijection
preserving order. Then there is n02N such that f(n0)=2. Now consider f(n0¡1). Since f preserves
order, f(n0¡ 1) must be an odd number, denote it by 2 k0¡ 1. Finally let f(m0) = 2 k0+ 1. Now
we have:

f(n0¡ 1)= 2 k0¡ 1<C 2 k0+1= f(m0)<C 2= f(n0)=)n0¡ 1<m0<n0 (11)

which is not possible. Contradiction.

Exercise 12. Prove that N and Q do not have the same order type. (Hint:9 )

Exercise 13. Do Z and Q have the same order type? Justify your answer. (Hint:10 )

Theorem 18. Let A;B be two ordered sets. If jAj= jB j, then there is a re-ordering making A of
the same order-type as B.

Proof. Exercise. (Hint:11 ) �
Example 19. Re-order Z so that it has the same order-type as N.

We introduce the following ordering for m;n2Z:

m�n if and only if jmj> jnj or jmj= jnj and m> 0; n< 0: (12)

Notation. Sometimes in the de�nition of the new ordering, the usual ordering of numbers is
involved. In such situation to avoid confusion, sometimes a di�erent symbol, such as 4, ��, P, or
J, are used to denote the new ordering.

Note that when re-ordering a set, its elements must all be involved. For example, 2<4<3<5
is not a re-ordering of 1< 2< 3< 4< 5.

Re-order

Exercise 14. Re-order N so that it has the same order-type as Z. (Hint:12 )

Exercise 15. Re-order (0; 1] so that it has the same order-type as [0; 100) equipped with the natural order.
(Hint:13 )

9. Assume otherwise, then there is f :N 7!Q order-preserving. Consider f(1).
10. Assume they are. There is r 2Q between f(0); f(1).
11. Let f :A 7!B be a bijection. Then order B as follows: b16b2 is de�ned by f¡1(b1)6 f¡1(b2).
12. ���< 4< 2< 1< 3< 5< ���.
13. x; y 2 (0; 1], x� y() x> y.
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2. Segmental Sets

2.1. The construction of N

von Neumann suggested the following construction of the set of natural numbers starting from the
empty set ?.14

Definition 20. De�ne iteratively:

0 :=?; 1 := f0g; 2 := f0; 1g; 3 := f0; 1; 2g; ::: (13)

In general,

n+1 := f1; 2; :::; ng: (14)

Exercise 16. Prove that N as de�ned above is well-ordered. (Hint:15 )

We see that in fact

1= f?g; 2= f?; f?gg; 3= f?; f?g; f?; f?ggg (15)

and so on.

Theorem 21. N, as constructed above, satis�es the following:

m;n2N; m<n()m2n: (16)

Proof. Exercise. �

Problem 1. Verify that the N de�ned above satis�es Peano's �ve axioms.

2.2. Segments

Definition 22. Let (X;6) be well-ordered. Then for any a2X, the subset

Xa := fx2Xjx<ag (17)

is called a �segment� of X.

Theorem 23. Let (X; 6) be well-ordered. Let Xa be a segement of X. Then X and Xa are not
similar.

Proof. Assume the contrary, that is there is a similarity mapping (ordinal isomorphism) f :X 7!Xa.
Now set x0 := a, and x1 := f(a)2Xa. Clearly x1<x0. Now de�ne

x2: =f(x1); :::; xn := f(xn¡1); ::: (18)

we have x0 > x1 > x2 > ��� which form a non-empty subset of X without a least element, thus
contradicting the hypothesis that (X;6) is well-ordered. �

14. It turns out that, if there is a set, then there must be empty set. To see this, let A be a set. Now we de�ne B := fx2A:
x=/ xg. Clearly B has no element and is therefore the empty set.

15. Take intersection.
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2.3. Segmental sets

Definition 24. (Segmental set) A well-ordered set (X;6) is said to be �segmental� if and only if

8a2X; a=Xa := fb2Xj b<ag: (19)

Example 25. N is segmental.

On �rst encounter (19) may be hard to understand or may even look nonsensical � how can
an element a be equal to a subset Xa? The reason for this di�culty in understanding is that we
usually think of elements of a set as �atoms�, which can aggregate to form subsets and so on.
However, in the set-theoretic approach to mathematics, there is nothing but sets, sets of sets,
sets of sets of sets, .... Therefore relations like (19) makes perfect sense.

Everything are sets!

Remark 26. Note that in this de�nition, the order relation is already �encoded� in the elements
themselves � every element �carries� all the elements that smaller than it. Therefore for segmental
sets, there is no need to specify the order relation 6 anymore.

Exercise 17. Let (X; 6X) and (Y ; 6 Y ) be segmental. Let a; b 2 X \ Y (set intersection, ignoring the order
relation). Then

a<X b() a<Y b: (20)

(Hint:16 )

Thus from now on we will omit 6 when talking about segmental sets.

Theorem 27. Let X be segmental. Let Y � X be a proper subset (that is Y ( X). Then Y is a
segment of X if and only if Y is segmental.

Proof.

� If.
Since Y is a proper subset of X, Z :=X ¡ Y is non-empty. Because X is well-ordered,

Z has a least element a. We now prove that Y =Xa.

� Y �Xa. Take any b2Y . Note that as both X; Y are segmental, we have

Xb= b=Yb: (21)

Since a2X ¡Y clearly b=/ a. If b > a, then we have a2Xb=Yb which by de�nition
means a2Y . Contradiction. Therefore b<a=) b2Xa.

� Xa�Y . Since a is the least element in Z, we have, for any x2X,

x2Z =)x> a: (22)

Therefore

Xa\Z =?=)Xa�Y : (23)

� Only if.

16. a<X b by de�nition is a2 b. a<Y b by de�nition is also a2 b. This result may be easier to understand if we realize the
later result that there is exactly one increasing sequence of segmental sets, starting from ?; f?g; f?; f?gg; ::::
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Let Y =Xa. Take any b2Y . Then b<a and thus

Yb := fy 2Y j y < bg= fx2Xjx<a; x< bg= fx2Xjx< bg=Xb= b: (24)

Thus ends the proof. �

Theorem 28. Let X and Y be segmental sets. Then X \Y is also segmental.

Proof. For any a2X \Y , we have Xa= a=Ya=)Xa=Ya�X \Y =) a=(X \Y )a. �

Theorem 29. Let X; Y be segmental sets. Then exactly one of the following three holds:

X =Y ; 9b2Y ;X =Yb; 9a2X; Y =Xa: (25)

Proof. We assume X =/ Y , and try to prove that either X \Y =Y or X \Y =X.
Assume the contrary, that is X \Y (Y and X \Y (X. Then Xa=X \Y =Yb for some a2X;

b2Y . But since X; Y are segmental, we have

a=Xa=Yb= b=)a= b2X \Y : (26)

Contradiction! �

Remark 30. In particular, we have, for any in�nite segmental set X, N�X.

Exercise 18. Let X be any non-empty segmental set. Prove that ?2X . (Hint:17 )

Exercise 19. Let X; Y be segmental. Assume that they are similar. Then X =Y . (Hint:18 )

Theorem 31. Every well-ordered set is similar to one and only one segmental set.

Proof. The �only one� part follows immediately from Exercise 19. Now we show that if (X;6) is
a well-ordered set, then X is similar to some segmental set Y . This is done through construction
of the similarity mapping f :X 7!Y using trans�nite induction19 in two steps.

i. Since (X;6) is well-ordered, there is a least element a. We de�ne

f(a)=?: (27)

ii. Now assume that f has been de�ned for a segment Xa, then f(Xa) is also a segment of Y
which means f(Xa)=Yb for some b. We de�ne now

f(a)= b: (28)

By trans�nite induction f is de�ned on the whole X. The remaining part of the proof is left as
exercise. �

Exercise 20. Finish the proof for the theorem.

17. Segmental sets are well-ordered. Consider the least element a= fb2X; b<ag.
18. Otherwise we have a segmental set similar to its own segment.

19. See �4.2.
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3. Ordinal Numbers and Ordinal Arithmetics

3.1. Ordinal numbers

Definition 32. (Ordinal number) Let X be any well-ordered set. The unique segmental set
similar to X is called the ordinal number of X, and denoted Ord(X).

It is clear that

� Two well-ordered sets are similar if and only if they have the same ordinal number;

� If two well-ordered sets are not similar, then one is similar to a segment of the other, or
equivalently the ordinal number of one set is strictly smaller than the ordinal number of the
other.

Notation 33. We will use lower case Greek letters to denote ordinal numbers.

Example 34. N is a segmental set and is therefore an ordinal number. We denote it by !. Then
the set

f1; 2; 3; :::; !g (29)

is also segmental and we denote it by !+1. And so on.
Thus we count

1; 2; 3; :::; n; :::; !; !+1; ::: (30)

Definition 35. (Comparison of ordinal numbers) Let �; � be ordinal numbers. We de�ne
�< � by �� �, and �> � by � <�.

Exercise 21. �< � if and only if �2 �.

Theorem 36. Consider the class W of all ordinal numbers. It is segmental.

Proof. We �rst proveW is well-ordered. Let U be any non-empty subset of W . If U does not have
a least element, we could �nd x0�x1�x2� ���. But since each xi is segmental, we have

x03x13x23 ��� (31)

This contradicts the axiom of foundation in the ZF Axiom system.
Now we prove W is segmental. Let x2W , we try to prove x=Wx := fy 2W; y�xg.

� x�Wx. Take any z2x. Since x is segmental, z=xz is a segmental proper subset of x. Thus
z is also an ordinal number and therefore z 2W . Therefore z 2Wx.

� Wx�x. Take any z2Wx. By de�nition we have z�x and z is a segmental set. By Theorem
29 z= xz 2x. �

Remark 37. Note that although all segments of W are sets, W itself is not a set. Otherwise it
would be an ordinal number. Denote this number by �. We have W is similar to its own segment
W� which contradicts Theorem 23.
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Now we can count and index any well-ordered set: Let (A;6) be well-ordered. Then there is a
unique ordinal number � for it. Then we can index the elements in A as

A= fa�j � 2W�g: (32)

3.2. Addition
Note that for every ordinal number �, we can de�ne its �successor� �0 (or �+1) as the least element
of B := f� 2W j � >�g. In fact, �0=�[ f�g. From this clearly one can de�ne addition and then
multiplication (just like what we did last semester for N) through trans�nite induction20. However,
it is more practical to use the following de�nition.

Definition 38. Let A; B be two disjoint totally ordered sets. The �ordered union� hA[Bi is the
set A[B with the order

x< y() [x; y 2A; x<A y; or x; y 2B; x<B y or x2A; y 2B]: (33)

The generalization to more than two sets is straightforward.

Exercise 22. Prove that hN¡[Ni is similar to Z. Here N¡1 := f���;¡3;¡2;¡1g.

Exercise 23. Prove that, if A; B are well-ordered, then so is hA[Bi.

Definition 39. Let �=Ord(A); �=Ord(B) and A;B disjoint. Then

�+ � :=Ord(hA[Bi): (34)

Exercise 24. Prove that � + � is well-de�ned. That is it does not depend on the choices of A; B (as long as
A\B=?).

Example 40. We have

1+!=!=/ !+1: (35)

Exercise 25. Let n2N. Prove that n+!=!. Do we have !+2=(!+1)+1? Justify your answer.

Theorem 41. Addition of ordinal numbers is associative:

(�+ �)+ 
=�+(�+ 
): (36)

Proof. Exercise. �

Now our counting ability is extended:

0; 1; 2; :::; !; !+1; !+2; :::; !+!; !+!+1; ::: (37)

3.3. Multiplication

Definition 42. Let �; � be ordinal numbers. We de�ne

� � � :=
X
�<�

�� (38)

20. �4.2.
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where ��=� for all � < �.

Example 43. Let �=Ord[(0; 1)]. Then for any n2N, we have

(1+�) �n=1+�: (39)

Furthermore if ! := [N], we have

(1+�) �!=1+� (40)

Exercise 26. Prove the following.

a) 1 �!=!=! � 1;

b) 2 �!=!; ! � 2=!+!;

c) (!+1) �!=! �!; ! � (!+1)=! �!+!.

Exercise 27. Prove

� � (�+ 
)=� � �+� � 
; (41)

Show that it is possible that

(�+ �) � 
=/ � � 
+ � � 
: (42)

Theorem 44. Multiplication is associative:

(� � �) � 
=� � (� � 
): (43)

3.4. Power

Definition 45. The power �� is de�ned successively as follows:

� If �=0, then �0=1, ��=0 for all other �;

� If �> 0, then �0=1; ��+1=�� ��, ��= lim�<��
� if � does not have a predecessor.

Example 46. We have

!2=! �!; !3=! �! �!; !!= lim
n<!

!n: (44)

We also have

2!= lim
n<!

2n=!: (45)

Exercise 28. Let n2N. Prove that n!=!.

Theorem 47. We have

�� ��
=��+
; (��)
=�� �
: (46)

Exercise 29. Show that �
 � �
=(��)
 may not hold.

Example 48. We have

2! �!!=! �!!=!1+!=!!: (47)
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4. Advanced Topics, Notes, and Comments

4.1. A brief history of set theory
� Dauben, Joseph W., The development of Cantorian set theory , in From the Calculus to Set Theory, 1630 -

1910: An Introductory History , edited by I. Grattan-Guinness, pp. 181 � 219.

� Lavine, Shaughan, Understanding the In�nite , Harvard University Press, 1994.

Set theory grew out of Georg Cantor's e�ort to understand the real numbers, Richard Dedekind and
Peano's e�ort to reduce Analysis to Arithmetics, and Gottlob Frege's e�ort to reduce Arithmetics
to Logic.

4.1.1. Cantor

Georg Cantor did his Dissertation and Habilitationsschrift, in 1867 and 1869 respectively, under
Kummer and Kronecker, in number theory. In 1869 he became Privatdozent in the University of
Halle and met Eduard Heine, who was studying the following problem:

Given two trigonometric series

a0
2
+

X
n=1

1

[an cos (n x)+ bn sin (n x)];
A0
2
+

X
n=1

1

[An cos (n x)+Bn sin (n x)]; (48)

assume that they converge to the same function f(x) on [¡�; �]. Does it follow that
an=An; bn=Bn for all n?

Fourier proved that this must be the case. But later Heine realized in 1870 that Fourier had
assumed uniform convergence and proceed to prove that the conclusion still holds when uniform
convergence occurs only �almost everywhere�. Heine suggested this problem to Cantor.

In 1870 Cantor relaxed the condition to everywhere convergence.
In 1871 Then Cantor moved on to prove that the conclusion still holds when the two series di�er

at �nitely many points.
Later in 1872 Cantor realized that in�nitely many exceptional points could be allowed. More

speci�cally, he de�ned for any set S, its �derived set�

S 0 := fAll limit points of Sg: (49)

Then he de�ned higher order derived sets:

S 00 := (S 0)0; ; S(n+1) :=
¡
S(n)

�0; ::: (50)

Exercise 30. Cantor made the following de�nitions in 1879. Prove that they are equivalent to the de�nitions
used today.

� A set P is dense in (a; b): (a; b)�P 0;
� A set P is isolated: P \P 0=?;
� A set P is closed: P \P 0=P 0.

With these new de�nitions, he proved:

Theorem. Let E be the set of points where the two series di�er. Assume that there is n2N such
that E(n) is �nite, then an=An; bn=Bn for all n.

Exercise 31. Find a set E �R such that E;E(1) are in�nite, but E(2) is �nite.

Now Cantor naturally wondered, what if we de�ne

S(1) :=\S(n); (51)
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and then

S(1+1) :=
¡
S(1)

�0 (52)

and so on?

Exercise 32. Let S be closed. Prove that

S ¡S(1) := fx2Sjx2/ S(1)g (53)

is countable.

By then his interest shifted from Fourier series to properties of sets of real numbers, and the
characteriztion of the continuum R itself.

Exercise 33. If we replace trigonometric series by power series, what kind of result can you prove? Can you
explain why this �uniqueness of power series� problem does not seem to lead to any major mathematical discovery?

Remark 49. The uniqueness problem for Trigonometric series was more or less completely settled
by Henri Lebesgue through his generalized integration theory and the core of this new theory:
Theorem of Dominated Convergence.

Cantor �rst pondered over the problem of comparing sizes of sets, in particulr N and R. In 1873
he wrote to Dedekind asking for help, while Dedekind replied that he saw no reason why N and
R should not have the same cardinality. But very soon Cantor proved that N<R using the least
upper bound property of R.

Next Cantor tried to understand the relation between RN and R. A problem that shocked his
friends as ridiculous. He �nally proved in 1877 that RN�R.

Cantor then tried very hard to prove the Continuum Hypothesis but only with limited success.
His idea was to understand the continuum through perfect sets. At �rst he thought that any perfect
set would contain an interval and therefore has cardinality c.

Exercise 34. Let S �R. Prove that if S contains an open interval, then S�R.

Exercise 35. Prove that the Cantor set is a perfect set that does not contain any open interval.

Later Cantor managed to prove that, for any closed set S, there is a countable ordinal � such that

S(�)=S(�+1) (54)

which means S(�) is perfect. He then proved that any perfect set is either empty or having cardinality
c. Thus he has proved:

Every closed set in R has cardinality c.

Exercise 36. Why proving S(�)�R is enough?

In 1885 Cantor claimed that pure mathematics is nothing other than pure set theory. Later in
1895-97 he �nally established a complete theory of cardinal and ordinal arithmetics. In particular
he was �nally able to related c to the @'s:

c=2@0: (55)

4.1.2. Zermelo-Fraenkel Axioms

Ernst Zermelo, as a logician, could not bear with Cantor's lack of rigor in the de�nitions and tried
to put everything on a solid foundation. In light of the various paradoxes, Zermelo proposed a
Axiomatic approach which basically tries to generate all the sets that mathematics will ever need
from a list of Axioms.

1. Axiom of extensionality.

8x (x2 a()x2 b)=) a= b: (56)
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2. Axiom of elementary sets.

� There is a set with no element. Denote by ?;

� For any set a, there is a set fag whose only element is a;

� For any sets a; b, there is a set fa; bg whose only elements are a; b.

3. Axiom of selection of subsets (Aussonderung). For any set a and any propositional function
(meeting some mild conditions), there is a set b such that

x2 b() (x2 a and �(x) is true): (57)

4. Axiom of the power set. For any set a there is a set P(A) such that

x2P(A)()x� a: (58)

5. Axiom of the union. For any set a, there is a set [a such that

x2[a()9y 2 a; x2 y: (59)

6. Axiom of choice. If a is a set, and the elements of a are all non-empty and no two of them
have any element in common, then there is a set c satisfying

8x2 a; c\x has exactly one element. (60)

7. Axiom of in�nity. There is a set a such that ?2 a, and such that

8e2 a; feg2 a: (61)

8. Axiom of replacement. If a is a given set, and	(x; y) is a propositional function satisfying for
any x2 a, there is a unique y such that 	(x; y). Then there is a set a0 consisting of exactly
these y's.

9. Axiom of foundation (Fundierung). Let a be any non-empty set. Then there is e 2 a such
that e\ a=?.

Exercise 37. Prove that the Axiom of foundation excludes the following situation:

x03 x13x23x33 ��� 3xn3 ���: (62)

4.2. Trans�nite induction

Theorem 50. (Transfinite induction) Let (X;<) be a well-ordered set. Let E �X such that

i. The smallest element of X is a member of E;

ii. For any x2X, if 8y <x; y 2E, then x2E.

Then E=X.

Proof. Assume the contrary. Denote F := X ¡ E := fx 2Xj x 2/ Eg. Then F is non-empty and
there is f 2F such that

8y 2F ; y> f: (63)

Now since f 2/ E, it is not the smallest element in X. Thus the set fz 2X j z < f g is non-empty. By
(63) any such z 2E. Consequently f 2E. Contradiction. �
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Example 51. Let (X;<) be a well-ordered set. Let Y �X. Assume there is an order-preserving
bijection f :X 7!Y . Then x6 f(x).

Proof. Let E := fx2Xjx6 f(x)g�X. We prove that E=X by trans�nite induction. First this
obviously holds for the smallest element of X. Now let x2X. Assume that

8y <x; y2E=) y6 f(y): (64)

As f preserves order, we have

8y <x; y6 f(y)< f(x): (65)

Therefore x6 f(x). The conclusion now follows. �

Example 52. Let (X;<) and (Y ;�) be two well-ordered sets. Then the order-preserving bijection
from X 7!Y , if it exists, is unique.

Proof. Let f ; g be two such bijections. We prove 8x2X; f(x)= g(x). SetE :=fx2Xj f(x)= g(x)g.
First clearly the smallest element of X belongs to E. Now let x2X. Assume that

8y <x; y 2E that is f(y)= g(y): (66)

Thus we have

f(x)> (67)

�

Remark 53. Note that if X;Y are not well-ordered the conclusion does not hold. For example let
X =Y =Z and f(x)= x+1; g(x)= x+2.

We can also formulate trans�nite induction using ordinal numbers.

If P (�) is a form of statement that involves an unspeci�ed ordinal number �, and
if P (�) is true whenever P (�) is true for all � <�, then P (�) is true for every �.

Exercise 38. Where does the �base� step go?

4.3. More on Axiom of Choice

4.3.1. An example

First let's see how it is formally used.

Theorem 54. Let X be an in�nite set. Then there is Y �X such that Y �N.

Remark 55. Note that this cannot be proved by induction.

Proof. Let f :P(X)¡? 7!A be a choice function. Let C be the collection of all �nite subsets of
X. For any A2 C, since X is in�nite, X ¡A is non-empty and therefore we can de�ne a function
g: C 7!C by g(A) :=A[ff(X ¡A)g.

Now we apply trans�nite induction to de�ne a function U :! 7! C:

U(0)=?; ���; U(n+)=U(n)[ff(X ¡U(n))g: (68)

Then we set v(n) := f(X ¡U(n)). Here n+ is the successor of n.
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We �nally prove that v is one-to-one. Notice that

� v(n)2/ U(n);

� v(n)2U(n+).

From this it is clear thatm>n=) v(n)2U(m) butm2/ U(n). Consequently v(n)=/ v(m) whenever
m=/ n. Thus ends the proof. �

4.3.2. Zorn's Lemma

Definition 56. (Upper bound) Let (X; 6) be partially ordered. Let Y � X. Say x 2 X is an
upper bound of Y if and only if

8y 2Y ; y6x: (69)

Definition 57. (Chain) Let (X;6) be partially ordered. A subset Y �X is called a �chain� if and
only if (Y ;6) is totally ordered.

We have the following

(Zorn's Lemma) Let (X; 6) be partially ordered. If every chain in X has an
upper bound, then X has a maximal element.

Theorem 58. Assuming the Axioms of the Zermelo-Fraenkel set theory, then Zorn's Lemma is
equivalent to Axiom of Choice.

Proof.

� ZF + Axiom of Choice implies Zorn's Lemma.
We follow (Halmos: Naive) and divide the proof into several steps.

1. First we identify (X;6) with some subset X of (P(X);�). Indeed, we can identify

x2X with s(x) := fy 2Xj y6 xg: (70)

Now the goal is to �nd a maximal set in S. From now on we identify (X; 6) with
(X;�).

2. Now let f be a choice function on X. For any A�X, let Â := fx2XjA[fxg�Xg.
Intuitively, Â are all those elements in X that can be appended to A to form a longer
chain. Now de�ne

g(A) :=A[ f
�
Â ¡A

	
(71)

and our goal is to �ndA such that g(A)=A, which means Â¡A=? orA is maximal.

3. We say a subcollection T of X is a �tower� if and only if

i. ?2J;

ii. If A2J then g(A)2J;

iii. if C is a chain in J, then [A2CA2 J.

It is clear thatX is a tower. Now let J0 be the intersection of all towers (and is therefore
the smallest tower). We will prove that J0 is a chain.
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4. Now say C 2 J0 is comparable if and only if for every A2 J0 di�erent from C, either
A�C or C �A. It is clear that ? is comparable.

Let C be any �xed comparable set. Let A2J0 be a proper subset of C, then clearly
g(A) is also a proper subset of C.

5. Now consider the collection U of all the sets A2J0 with either A�C or g(C)�A. We
can prove that U =J0 through proving U is a tower. This implies, if C is comparable,
then so is g(C). This implies that all the comparable sets in J0 form a tower and
consequently all the sets in J0 are comparable. Therefore J0 is a chain.

6. Finally, by iii in the de�nition of tower we have

A :=[B2J0B 2J0 (72)

Since g(A)2J0, g(A)�A and the proof ends.

� ZF + Zorn's Lemma implies Axiom of Choice.
We prove this through considering all functions such that dom f � P(X), ran f � X

and f(A) 2 A for all A 2 dom f . We order these functions by extension and apply Zorn's
Lemma. �

Exercise 39. Spot the mistake in the following proof of Zorn's Lemma without invoking Axiom of Choice:
Take any x02X . If x0 is maximal we are done. Otherwise we can �nd x1>x0 and fx0; x1g is a chain. Now

consider the collection C := fY �X is a chain, x02 Y g. Now let

Z :=[Y 2CY : (73)

By assumption there is a2X which is an upper bound of Z. It is clear that a must be maximal.

Problem 2. (Halmos: Naive) Prove that each of the following is equivalent to Zorn's Lemma.

a) Every partially ordered set has a maximal chain;

b) Every chain in a partially ordered set is included in some maximal chain;

c) Every partially ordered set in which each chin has a least upper bound has a maximal element.

Remark 59. Recall that �maximal� (cannot get any bigger) is di�erent from �greatest� (is the
biggest).

4.3.3. Well-ordering

Theorem 60. (Well-ordering theorem) Every set can be well-ordered.

Proof. For the set X, we consider the collection of all of its subsets that could be well-ordered:

W := f(A;6A)jA�X; (A;6A)] is well orderedg: (74)

We order W by �continuation�:

A well ordered set A is a continuation of a well-ordered set B if the following are
satis�ed:

i. B �A;

ii. B is a initial segment of A;

iii. The ordering on B is the same as the ordering on A.
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Then clearly every chain has a maximal element. Now apply Zorn's lemma, there is Y 2W that is
maximal. We see that it must hold that Y =X. �

Exercise 40. Fill in the details of the above proof.

Exercise 41. Prove that well-ordering theorem implies Axiom of Choice, and conclude that Axiom of Choice,
Well-ordering theorem, and Zorn's Lemma are all equivalent.

4.4. Back to cardinal numbers
Our informal theory of cardinality leaves some important questions open. In particular, given any
two sets A;B, are their cardinalities always comparable?

Definition 61. (Cardinal numbers) A cardinal number is an ordinal number �, such that for
all �<�, � has strictly smaller cardinality than �.

Remark 62. In other words, a cardinal number is an ordinal number that is strictly bigger than
all its predecessors.

Example 63. De�ne

!1 := f�2W j� is countableg: (75)

Then !1 is the smallest (with respect to cardinality) uncountable ordinal number. When seen as a
cardinal number, we denote it by @1.

Proof. First we show !1 is uncountable. Assume otherwise, then !1=�2!1 which means !1 is its
own segment. Contradiction.

Now assume there is �<!1 that is uncountable. By de�nition of ordinal numbers we have �2!1.
Contradiction. �

Exercise 42. Prove that != f�2W j� is �niteg.

Now we can go on to denote the smallest (w.r.t. cardinality) ordinal number bigger (w.r.t.
cardinality) than !1 and !2 by !3 and de�ne the third in�nite cardinal number

@2 := !2: (76)

and then

@3; !3; @4; !4; ::: ;@!; !!; @!+1; !!+1; ::: (77)

Theorem 64. Assuming Axiom of Choice. Then any set A corresponds to a cardinal number @�
where �2W is an ordinal number.

Proof. Assuming AoC, then every set can be well-ordered and corresponds to an ordinal number. �

Theorem 65. Let �< � be ordinal numbers. Then

max (@�;@�)=@�+@�=@� � @�=@�: (78)

Exercise 43. Prove that for any ordinal �,

@�+@�=@�; @� � @�=@� (79)

and then use these to prove the above theorem.
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5. More Exercises and Problems

5.1. Basic exercises

5.1.1. Ordering

Exercise 44. Consider the set R2. We de�ne its ordering to be

(x1; x2)< (y1; y2)() [(x1<x2) or (x1=x2; y1< y2)]: (80)

A subset E �R2 is said to be �dense� with respect to this order if and only if for every pair (x1; x2)< (y1; y2),
there is (z1; z2)2E such that

(x1; x2)< (z1; z2)< (y1; y2): (81)

Prove

a) Q2 is not dense for this ordering;

b) There is no countable dense subset for this ordering.

(Hint:21 )

Exercise 45. Let an order on N�N be de�ned as

(a; b)6 (x; y)() (2 a+1) 2y6 (2x+1) 2b: (82)

Prove that N�N with this order is not well-ordered. (Hint:22 )

Exercise 46. Let X be the set of all in�nite sequeces fxngn=11 . De�ne

fxng< fyng (83)

as �either x0< y0; or x0= y0 but x1< y1; or x0= y0; x1= y1 but x2< y2...�. Is the set partially ordered? totally
ordered? well-ordered? (Hint:23 )

Exercise 47. Let X be the set of all functions f :R 7!R.

a) Let f 6 g be de�ned as 8x2R; f(x)6 g(x);

b) Let f 6 g be de�ned as f = g or limx!1 (f(x)/g(x))= 0.

(Hint:24 )

Exercise 48. Recall that a relation is de�ned through a set in X � Y . Try to imagine what the set looks like
when the relation is a �partial order�, �total order�, or �well order�.

5.1.2. Similarity

Exercise 49. Are [0; 1] and [0; 100], both equaipped with the natural order, of the same order-type? Justify.
(Hint:25 )

Exercise 50. Are [0; 1] and [0; 100), both equipped with the natural order, of the same order-type? Justify.
(Hint:26 )

Exercise 51. Find two totally ordered sets A; B. Such that A; B are not similar, but each is similar to a subset
of the other. (Hint:27 )

Exercise 52. Find a totally ordered set A and a similarity mapping f :A 7!A such that 8x2A; f(x)=/ x. (Hint:28 )

21.
¡
1; 2
p �

<
¡
2; 2
p �

; Any y02R, any dense set must have at least one element of the form (x; y0).

22. The ordering is the same as 2 a+1

2b
6 2x+1

2y
where the 6 is the usual �less than or equal�.

23. Totally orderred. Now well-ordered since R with usual ordering is not well-ordered.

24. partial order; partial order.

25. Yes. f(x)= 100x.

26. No. Consider f(1).

27. (0; 1) and [0; 1].

28. Z 7!Z, +1.
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Exercise 53. Prove that, a totally ordered set is well-ordered if and only if there is no in�nite descending
sequence. (Hint:29 )

Exercise 54. Let A; B be disjoint totally ordered sets. Prove

a) If A; B are similar then hA[Bi and hB [Ai are similar;

b) hA[Bi and hB [Ai being similar does not imply A; B are similar. (Hint:30 )

5.1.3. Ordinal numbers

Exercise 55. Re-order N to obtain !3. (Hint:31 )

Exercise 56. Prove the following.

a) !+1=/ !+2=/ !+3; (Hint:32 )

b) 1+!=2+!=3+!;

c) !+5+!=! � 2; (Hint:33 )

d) 3+!+!=! � 2.

Exercise 57. Find a set E of real numbers with natural ordering such that Ord(E)=!3 :=! �! �!. (Hint:34 )

5.2. More exercises
Exercise 58. Let X be well-ordered. Prove that it has least upper bound property, that is if A � X has an
upper bound, that is there is b 2X such that a 6 b for all a 2 A then there is a least upper bound, that is an
upper bound a0 such that any other upper bound a>a0. Does the converse hold? (Hint:35 )

Exercise 59. Re-order [0; 1] to have the same order-type as [0; 100) equipped with the natural order. (Hint:36 )

Exercise 60. Let A be a countable totally ordered set. Then there is a subset B �Q such that A and B (with
the natural order of Q) are similar. (Hint:37 )

Exercise 61. Let A be totally ordered. If every B �A has a �rst element, and a last element, then A is �nite.
(Hint:38 )

Exercise 62. Prove that X
n<!

n=!: (84)

Exercise 63. Try to de�ne an appropriate ordering on the set A�B so that

Ord(A�B)=Ord(A) �Ord(B): (85)

Exercise 64. Prove that

(�> 0; � > 
)=)� � � >� � 
 (86)

then conclude

(�> 0; � � �=� � 
)=) �= 
: (87)

29. a1>a2>a3> ��� would be a non-empty subset with no least element.

30. Try B= hA[Ai.
31. N3 7!N: (1; 1; 1); (1; 1; 2); (1; 2; 1); (2; 1; 1); :::.

32. Assume otherwise. Then there is a similarity mapping between 1; 2; :::; ! and 1; 2; :::; !; ! + 1. Clearly ! has to be
mapped to !+1. Consider which number could be mapped to !.

33. 1; 2; ::::; !; ! +1; :::; !+4; a1; a2; :::. Absorb the �5� into the 2nd !.

34. Note that 0; 1¡ 1/2; 1¡ 1/3; :::; 1; 2¡ 1/2; 2¡ 1/3; :::; 2; 3¡ 1/2; 3¡ 1/3; ::: gives !2.
35. R has least upper bound property.

36. Su�ces to re-order to [0; 1). We write [0; 1] = f0g [
h
[n=11

�
1

n+1
;
1

n

ii
. We map 0 to 0 2 [0; 1). Then re-order each�

1

n+1
;
1

n

i
to

h
1

n+1
;
1

n

�
.

37. List A= fa1; a2; :::g. Map a1 to any r12Q. If a2> (<)a1, map it to any r2> (<)r1. Map a3 to r3 such that the order
relation of r1; r2; r3 is the same as that of a1; a2; a3, and so on.

38. Let a1; b1 be the �rst and last elements of A. Let a2; b2 be the �rst and last elements of A¡fa1; b1g. And so on.
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Exercise 65. Prove that

a) (�> 0; � > 0)=)� � �>�; � � �> �;

b) (�> 0; � > 1)=)� � � >�.

5.3. Problems
Problem 3. We say a total ordering of a set A is �dense� if for any a=/ b, there is c in between. Prove that any
densely ordered set without a �rst and last element is similar to Q.39

Problem 4. Prove that, every denumerable totally ordered set is similar to a subset of Q with natural ordering.

Problem 5. Let �; �; 
 be ordinal numbers. Prove

a) �+ �=�+ 
=) �= 
;

b) If �> � then there is a unique 
 such that �= �+ 
;

c) If �> �; �1> �1, then �+�1> �+ �1. What about strict inequalities?

39. For proof see Hausdor�, Set Theory, Chapter 3, �11, Theorem IV.
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