Math 317 Winter 2014 Homework 4 Solutions
Due FEB. 26 2P
e This homework consists of 6 problems of 5 points each. The total is 30.

e You need to fully justify your answers.

1 >0
Question 1. Calculate the Fourier expansion of the function f(xr)=< 0 x=0 on [—m,n|. Then
-1 =<0
use the expansion to prove
T~ (D"
4 nz_:o 2n+1° (1)
Solution. We have
1 s 1 ™ 0
= — f(x) cosnxdx:; cos (nz)dx — cos (nz)dx | =0; (2)
-7 0 -7
1 (7 .
b, = - f(x)sin(nx)dz

—T

_ H/OW sin(naz)dx—/—i sin(nx)dx]

= % [1 —cos(nm)]
21— (~1)]

nm

Thus we have
4 sin(2m—-1)x
= . 4
7T Zl 2m—1 ( )
m=

Now notice that f(x) satisfies the Holder condition on {%, %}, therefore

o(5)-13 &

The conclusion then follows.

Question 2. Let f(x) be an even function, that is Yx € R, f(z) = f(—x). Prove that its Fourier
expansion on [—L, L] is given by

a nmw 2 (L

0 _

7+Zl tn COS =7 a"f/o f@)
n=

(6)



2 MATH 317 WINTER 2014 HOMEWORK 4 SOLUTIONS

Solution. We have

ap =

[ L 0
/0 f(x) cos nzxdx—i—/_L f(x)cosnzxdx]

W nmwr .o 0 e nm(-x) ..
-/0 f(x) cos 7 dz /_Lf( x) 08— d( :E)]

=

=

=

[ /L L
/()f(x)cosnzxdx+/() f(x)cosnzxdx]

_ %/OL f(w) cos "TE da (7)

Similarly we prove b, =0.

Question 3. Let f(x) be odd and f(x)=1—cos2x for x>0. Ezpand f(z) to its Fourier series on
[—7, 7.

Solution. As f(x) is odd, similar to the previous problem we have a, = 0. Now we calculate b,
We compute for n=1,2,3, ...

b, = 2/ (1 —cos2z)sin(nx)dx
T Jo

= 2/ sin(na:)da;—z/ sin (nx) cos (2x) dx
0 0

= —nlwcos(nx)w—%/ [sin (n+2) x +sin (n —2) z] dx
= l[l—(—l)"]—l/oﬂ sin(n+2)a;da;—%/0ﬂ sin (n — 2) z dz. (8)

nim m

We evaluate

7rsim(n—i—2)at7dat;:— 1 cos(n+2)x|”:L1)n+2 9)
0 n+2 0 n+2
For the last term, there are two cases.
o Ifn=2 thensin(n—2)z=0 and
/ sin (n —2) zdz =0. (10)
o If n#2, we compute 0
T 1 . 1—(=1)"2
/0 sm(n—2)xdx:—n_2cos(n—2)x|0:é—_%. (11)

Putting everything together, we have

- (2-4) 0 ae

n n+2
n — .

2 1 1 1—(=1)"

<z—n_z—n+z> T2

Question 4. Let f(x) be integrable on [—m,7w|. Assume that its Fourier expansion on [—m,m| is

g+z [0-cos (nx) +0-sin (nz)]. (13)

n=1
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Let xo€ (—m,m). Prove that, if f(z) is continuous at xq, then f(xo)=0. (Hint: Consider for large k
f(@) [p(=)]* dz (14)

with p(x) =€+ cosx for appropriate € >0.)

Solution. Assume f(zg) # 0. Wlog we consider zp =0 and m:= f(0) > 0. (When z¢+# 0 we can
either define F'(x):= f(x + x¢) or use p(x) =&+ cos (z — xy))
Since f is continuous at 0, there is §; >0 such that f(z)> % for all |x| < 41, and d2 > d1 such that
f(z) >0 for all |x| < d2. Now take £ >0 such that there is g9 >0 such that p(z):=¢e+ cosx satisfies
>1+4¢p |z|<d
p(x)y <l-co |z|=202 . (15)
>0 |33| S (51, (52)

Now that for such p we have in fact,
Ip(z)|<1—e0,  |z|>02 (16)

Now since the Fourier expansion of f(z) is 0,

s

f(@) [p(z)]*dz=0 (17)
for all k€ N. o
On the other hand, we have
™ 01
@) [p(z))Fda = g f(@) [p(2)]* dz

T X k X
*/51<|x<52 f(@) [p@)]Fd

+f @ b)) da
|z 262
= A+B+C. (18)
Now by our choices of §1, 2, we have

A>251%(1+50)’“, B>0, |C|<27M (1—¢go)* (19)

where M :=sup[_, | f(z)| is finite due to the integrability of f. Thus

f(x) [p(z)]Fdx = 61m (14e0)* — 27 M (1 — o). (20)
Taking -
27T M
k> 10g|(1420)/(1-c0)] ( 5 ) (21)
m
we have for this k, i
f(@) [p(2)]* dz >0, (22)

thus contradicting (17). o
Remark. A slightly different (maybe a bit more transparent) proof is as follows.

Since f(z) is continuous at 0, there is 6 > 0 such that f(x) > 0 for all |z| < §. Now take
€=1—cosd. Furthermore take d; < ¢ such that

1+cosd

5 (23)

cos 01 =



Now consider f\x|<6 , f&
1 1
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clal<o S eizs -

Question 5. A sequence {K,} are called “good kernels” if and only if the following hold:

All the K,,’s are even;

For anyneN, [ Ky(z)dz=1;

There is M >0 such that for everyneN, [ |Kp(x)|de < M;
For any § >0, lim,, 00 f\:v\>5 | Ky ()| do = 0.

Let f(x):R— R be continuous and with period 2.
a) Prove that fy(z):= f:r K(x —t) f(t)dt converges to f(x) uniformly.

b)

(Extra 1 pt) Prove that the Dirichlet kernel is not “good”.

Solution.

a) Let £ >0 be arbitrary. As f(z) is continuous on [-27,27] there is 6 >0 such that

&
2M
Now since f(x) is periodic with period 27, for any z, y € R, there are x/, y’ € [-2 7,2 7] such
that

Ve,yel-2m,2n],  |z—y|<d=|[f(z) - fly)< (24)

f@)=f@), [(y)=fy), 2" =y <]z =yl (25)
Thus for the above § we have
VeyeR,  |e—yl<d=|f(@) - f) <537 (26)
As f(x) is continuous and periodic, it is bounded. That is there is M; > 0 such that
Va e R, | f(z)| < M. (27)

Next for the ¢ chosen above, since lim,,_ f\$\>5 |Kp(x)| dz =0 there is N € N such that

Vn>N, / | Ko(2)| do < ——. (28)
2| > 4 M,
Now for any such n and any = € [—m, 7|, we have
)= 1)) = | [ a0 s ar- [7 Koo 5@ a1

™

= [ Ko ) - 1) dt'

—T
™

- Ky(u) [f(z —u) — f(z)] du

—T

< / Kn()] | £ — ) — f(2)| du

—T

)
— / Kn()| | f(2 —u) — f(z)] du+ / 1K) |z — w) — f(z)] du
1) |x|>6

e ™
< —— K, (u du+2M/ K, (u)|du
537 | 1) [, )

g g
2M'M+2M1’4M1
E.

(29)
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Thus ends the proof.
b) We check the conditions one by one.
e Dy is even;

e As Dy(x) :%—F%Zi\le cos (nx) it is clear that [ " Dy(x)dz=1;

e We have
. 2N+1
sin —-—ux
Dn(z)=——=—F— (30)
27‘(’81115
Therefore we have
. 2N+1
7 ™ [sin=—; x‘
[ i@l = [T
-7 0 sin o
271/(2N+1) ‘SiH2N2+1l“ 213:1 sin2N2+1 ‘
> / R O / IER P
0 sin 5 2]311 sin o
- . 2N+1
22NN+1 ‘sm 5 x‘
+ — dx
2(N—-1)m SIn —
2N+
T sin2N2+ x‘ o sinzN;lzL“
> / de—i—---—i—/ N—da:
0 - 2(N—-1)m ™
2N+1 2N+1 2N +1
27
2N +1 1 1 aNF1 IN+1
= 14 = e —
p- < —1—2—{— —i—N)/O sin 5 dx
2 1 1 T
4 1 1
= —1+=+-+=| 31
7T< +2+ +N> (31)
. 2N+1 | . C o . 27
In the above we have used the fact that ‘sm 5 x‘ is periodic with period INTT
Now it’s clear that
lim |Dn(z)|de = oo. (32)
N—oo J_x

e Similarly, we can prove that for any 6 >0, lim,_, f\w\>5 |Dn(z)| do = oo.

Question 6. A set S C RY is called “perfect” if and only if S = 8" :={x € RN| 3z, € S, v, # z,
lim,,_, ooy, = }. Prove that perfect sets are uncountable.

Solution. Assume S = {x1, x2, ...} is countable. Since S is perfect, there is a compact interval I
such that z; € I§, and I§N S is infinite.

Now take Iy C I§ such that
o I'NS+g,
° J,‘l¢[1;

o diam([;) < diam(lo)

2
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As S is perfect, S N I{ is infinite. Now repeat the above process, we obtain a sequence of nested
intervals I,11 C I such that

Vn, Tn ¢ In=— x, ¢ I, whenever m>n, I;NS+ o, diam(Ip41) <dlamT(In)‘ (33)
By the nested interval theorem there is a unique point € R such that
x=Np=11y. (34)

Since xy, ¢ I, whenever m > n, we see that Vn € N, z, ¢ NI, which means x ¢ S. However by
construction of I, we have I NS +# & for all n which means z € S’= 5. Contradiction.

Question 7. (Extra 3 pts) Consider two power series at t=0. Let E:={z eR| Y a, 2" =
ZZOZO by, ™ < oco}. Find the weakest condition on E to guarantee an = by for all n. Justify your
answer using material from 117 — 317 only.

Solution. The weakest condition on E is E has a limit point in (—R, R), where R:=sup,ep |z|.
Note that as F has a limit point, it must contain infinitely many points and consequently R > 0.

e We see that both series have radius of convergence at least R. This means, if we set

Az):= f: anx™ — i by z™, (35)
n=0 n=0

then A(z) is defined on (—R, R), satisfying A(z)=0 on E.
e Now by properties of power series, if R >0, we have, for x € (—R, R),

A@)=3" (an—by) o )
and furthermore n=0
A(")(O)
an b =" (37)

Therefore all we need is to find the smallest E guaranteeing A™(0) =0 for all n € N.

e Necessity. Assume otherwise, then either E is finite or the only limit point(s) of E is R (or
—R, or both — as by Bolzano-Weierstrass £ must have at least one limit point).
In the former case, assume F ={z1, ...,y }. Then we set A(z)=(x —x1)-(x — zp,).
In the latter case, one counter-example is

A(z) =sin <ﬁ> exp (-ﬁ) (38)

e Sufficiency. All we need to prove is the following:

Let f(x)=Y", an " with radius of convergence R >0. Assume there are
Zn € (—R, R) such that f(z,)=0 and lim,_,coxp=7€(—R, R), then a, =0 for
alln=0,1,2,....

Wilog r > 0. For simplicity of presentation we will assume r <1 < R. Note that this can
always be achieved through a change of variable z = L x for appropriate L > 0. Also note
that it suffices to prove f(x)=0 for all x in some open interval containing 0.

Since

limsup |a,|"/"= R~ <1, (39)

n—oo
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there is M >0 such that
Vn=0,1,2,.... |an|<M. (40)

Now let r1 € (r,1) be arbitrary. For any x € (—r1,r1) we estimate

Z (n—k+1)ana" F <M n(n—1)(n—k+1)rf* (1)
n==k n=~k

Notice that for any y € (0,1)

Z (42)

n=0

By the theory of termwise differentiation we have
1 (k) = n—k
<1Ty> —Z n(n—1)-(n—k+1)y" " (43)
Therefore

Consequently for any = € (—r1,71)

FARIC|
< . 4
k! (1 - T'l)k ( 5)
Next take any xo € (—r1,r1), we have, for any = € (—r1,71),
B A ) R A e
7 ;;) @) RSy
M k1
< ‘W (x —20)" 1. (46)
Therefore we have, for any = such that |z — x| <1 -7y,
Z (47)

Now by similar argument as in the “weaker sufficient conditions” below, the fact that f(x,)=0
and lim,,_, oo, =7 implies

") =0 (48)
for all n=0,1,2,.... Taking r = % and setting xo =7 in the above analysis, we see that
f(x)=0 (49)
1—r

for all z € (r —d(r),r+4(r)) where 6(r) = ——.
Finally notice that once this is done, we can replace r by a smaller number, say r —
and repeat the above analysis, concluding that

f(z)=0 (50)

)
2
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for all x € (r —26(r), r+246(r)). After finitely such iterations, we would have the desired
open set containing 0 and on which f(z) is identically 0. Since

_o (51)

n!

Aan
this means a,, =0 for all n.

e Weaker sufficient conditions with simpler proof: 0 € E and is a limit point of E. That
is there are x,, € E' such that x,# 0, lim;,_ o2, =0.

Proof. By assumption R > 0. In this case at least one of {z, >0} and {x,, <0} is infinite.
Wlog we assume there are infinitely many x, > 0. We can order them as

x1>x0 >0+ >0. (52)
Since 0 € £ we have
ag—by=A(0)=0. (53)
Now since A’(0) exists,
A(0) = Tim AL ;> :64(0> —0— a1 =by. (54)
Next by MVT, there are
§n € (Tn+1,2n) (55)
such that A’(&,) =0. Then since A”(0) exists we have
/ At
A7(0)= lim w —0— az=by. (56)
Now it is easy to prove by induction that a, ="b, for all n. ]

Question 8. (Extra 2 pts) Prove that Peano’s curve is continuous and onto from [0,1] to [0,1]%

Proof.
e Continuity. We see that
| fati1(@) = falz)[| < V237" (57)

for every n € N and z € [0, 1]. So by the M-test the convergence is uniform. Obviously each
fn(z) is continuous. Therefore the limit f(z) exists and is continuous.

e Onto. Consider any (z, y) € [0, 1]2. Then it belongs to at least one of the nine squares
constructed in Step 2. Thus there is t3 € [0, 1] such that

I fo(t2) = (2, )l < V237N (58)
Similarly we can get t3 € [0, 1] such that

159~ @l <% )~ @l < (59

Since [0, 1] is compact, by Bolzano-Weierstrass there is a subsequence
tn, — tw € [0, 1]. (60)
We will prove that f(t,)=(z,y).
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Let € >0 be arbitrary. Since f(t) is continuous there is § >0 such that

t—to] <O= () - FE < 5-

Set K1 € N be such that k> K1 = |t,, — to| <9.

On the other hand, as f,, — f uniformly, there is K3 € N such that

k>Ky=Va (0.1, | fuld) - SOl <3

Finally set K3 such that
v2 e
3" 3

Now take K :=max {K7, Ky, K3}. For every k> K, we have

2¢e

1f(t) = frn(ta) | < 5= 1 f(t0) = (2, y)ll <e.

Thus ends the proof.



