
Math 317 Winter 2014 Homework 1 Solutions

Due Wednesday Jan. 15, 2014 2pm

• This homework consists of 6 problems of 5 points each. The total is 30.

• You need to fully justify your answers.

Question 1. Are the following series convergent or divergent? Justify your answers.
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Solution.

• For the first series, apply the ratio test:
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the series converges.

• For the second series we notice
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Thus we have
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Since limn�∞sn =∞, we have by definition of series convergence
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• Althernative method for the 2nd series. We prove:

∀n> 1,
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All we need to show is n+ 1
√

<2 n
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= 4 n
√

which immediately follows from 4 n− (n+1)=
3n− 1 > 0 for all n> 1. Now since the generalized harmonic series
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Question 2. Let
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bn be non-negative series with an>0, bn >0 for all n∈N. Further
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Solution. From the assumption we have (note that a1 > 0 is used here)
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In general we have
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for all n∈N.
Now for any ε > 0, since
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∣

∣

∣

∣

∣

∑

k=n+1

m

bk

∣

∣

∣

∣

∣

<
bN0

aN0

ε. (11)

Take N =max {N0,N1}. We have for all m >n >N , (Note that we need the positivity of ak in the
first inequality below)
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Therefore
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an converges.

Question 3. Prove by definition, without using improper integrals, that
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Proof. We have
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Now for any M > 0, since
{
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is not bounded from above, there is n0 ∈ N such that
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k
>M . This gives
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and therefore {Sn} is not bounded from above which means
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Question 4. Prove that if
∑

n=1
∞

an is a convergent series of positive numbers, then so is
∑

n=1
∞ (an)

n/(n+1)(Note that this gives another proof of the fact that there can be not “largest”
convergent series) (Hint: 1)
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Proof. We prove that an
n/(n+1)

6 2 an +2−n. Note that this is equivalent to proving for any a> 0,

a6 2 a1+1/n + 2−n. (19)

We apply Young’s inequality: a, b > 0, 1/p +1/q = 1, then

a b6
ap

p
+

bq

q
. (20)

We have
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follows from this fact together with that
∑

n=1
∞ (an)

n/(n+1) is non-negative. �

Question 5. Let an > 0. Assume that
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Proof. There are two cases.

• {an} is bounded. That is there is M > 0 such that ∀n∈N,0<an <M . In this case we have
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and divergence follows from the divergence of
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• {an} is not bounded. Thus for every k ∈N that is ank
> k. This gives
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Thus limn→∞
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=0 does not hold and the series cannot converge. �

Question 6. Assume
∑
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∞

an converges. Prove that
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n
must also converge.

Proof. We prove that the series is Cauchy.
Let ε>0 be arbitrary. Since
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1. Apply Young’s inequality to obtain a
n

n/(n+1)
6C1 an + C2 bn.
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Thus
∑

n=1
∞ an

n
is Cauchy and therefore converges. �
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