
Math 314 Fall 2013 Homework 7 Solutions

Due Wednesday Nov. 6 5pm in Assignment Box (CAB 3rd Floor)

• There are 6 problems, each 5 points. Total 30 points.

• Please justify all your answers through proof or counterexample.

Question 1. Let g(x) be continuous at x0=0. Prove that f(x)=

{

g(x) sin
1

x
x� 0

0 x= 0
is continuous at x0=0

if and only if g(0)= 0.

Solution.

1. “If”. g(0)= 0 then f(x) is continuous at x0 = 0.
Take any ε > 0. Since g(x) is continuous at x0 = 0, there is δ > 0 such that for all |x − 0| < δ,

|g(x)− 0|< ε.
For these same |x− 0|< δ, we have

|f(x)− f(0)|=

∣

∣

∣

∣

g(x) sin
1

x

∣

∣

∣

∣

6 |g(x)|< ε. (1)

Therefore f(x) is continuous at x0 = 0.

2. “Only if”. g(0)� 0 then f(x) is not continuous at x0 = 0.
We show that in this case limx� 0f(x) does not exist, thus f(x) cannot be continuous at 0. Take

xn =
1

n π
, yn =

1

2 n π + π/2
for n∈N, we have xn, yn� 0, xn→ 0, yn→ 0,

f(xn)= 0� 0, f(yn)= g(yn)� g(0)� 0. (2)

Thus we have found two subsequences with different limits, and therefore limx� 0f(x) does not exist.

Remark. (Other proofs for the “only if” part)

• Method 1. Assume the contrary, that is limx→0f(x)=0. Then since limx→0g(x)= g(0)� 0, we have

lim
x→0

sin
1

x
= lim

x→0

f(x)

g(x)
=

0

g(0)
= 0 (3)

which contradicts the fact that limx→0sin
1

x
does not exist.

• Method 2. Assume f(x) is continuous at 0, then for any xn� 0, xn � 0, f(xn)� f(0) = 0. Take
xn =

1

2 n π + π/2
. Then f(xn) = g(xn). We conclude g(xn)� 0. But g is continuous at x = 0, so

g(0) = limx� 0g(x) =0.

Question 2. Prove by definition of limit that limx→x0

f(x)− f(x0)

x −x0

exists and is finite if and only if

limh→0
f(x0 + h)− f(x0)

h
exists and is finite.

Solution.

• “If”.

Assuming limh→0
f(x0 + h)− f(x0)

h
exists and is finite, we prove limx� x0

f(x)− f(x0)

x −x0

exists and is
finite.

Denote L8 limh→0
f(x0 + h)− f(x0)

h
.

For any ε > 0, there is δ1 > 0 such that for any 0< |h|< δ1,
∣

∣

∣

∣

f(x0 + h)− f(x0)

h
−L

∣

∣

∣

∣

<ε. (4)

1



Now take δ = δ1. For any 0< |x− x0|< δ = δ1, we have

∣

∣

∣

∣

f(x)− f(x0)

x−x0
−L

∣

∣

∣

∣

=

∣

∣

∣

∣

f(x0 + (x− x0))− f(x0)

x− x0
−L

∣

∣

∣

∣

< ε (5)

and therefore limh→0
f(x)− f(x0)

x − x0

=L is finite.

• “Only if”.

Assuming limh→0
f(x)− f(x0)

x − x0

exists and is finite, we prove limh→0
f(x0 + h)− f(x0)

h
exists and is finite.

Denote L8 imh→0
f(x)− f(x0)

x − x0

.

For any ε > 0 there is δ2 > 0 such that for any 0< |x− x0|<δ2,

∣

∣

∣

∣

f(x)− f(x0)

x− x0
−L

∣

∣

∣

∣

<ε. (6)

Now set δ = δ2. For any h satisfying 0 < |h|< δ, we have 0< |(x0 + h)− x0|<δ = δ2. Therefore

∣

∣

∣

∣

f(x0 + h)− f(x0)

h
−L

∣

∣

∣

∣

=

∣

∣

∣

∣

f(x0 + h)− f(x0)

(x0 +h)−x0
−L

∣

∣

∣

∣

<ε. (7)

Therefore limh→0
f(x0 + h)− f(x0)

h
= L.

Question 3. Prove that f(x)= x3 is differentiable at every x0∈R by definition.

Solution. We have

f(x)− f(x0)

x− x0
=

x3− x0
3

x− x0
= x2 + x0 x+ x0

2. (8)

This is a polynomial of x since x0 is constant. Therefore

lim
x→x0

f(x)− f(x0)

x− x0
= lim

x→x0

[x2 + x0 x + x0
2] =x0

2 + x0
2 + x0

2 = 3x0
2. (9)

So f(x) is differentiable at x0.

Question 4. Given x′ =1. Use mathematical induction to prove

∀n∈N, (xn)′= nxn−1. (10)

Solution. Let P (n) be the statement: (xn)′=n xn−1.

• Base is already given.

• P (n)� P (n + 1). Assume (xn)′=n xn−1. By Leibniz rule we have

(xn+1)′= (xn ·x)′= (xn)′ ·x +xn ·x′= nxn−1 ·x+ xn =(n +1)xn. (11)

Thus ends the proof.

Question 5. Let f(x) be differentiable at x0∈R. Prove that the limit

lim
h→0

f(x0 + h)− f(x0− h)

2h
(12)

exists and equals f ′(x0).

Solution. As f(x) is differentiable at x0∈R, there is δ > 0 such that for all 0 < |x−x0|< δ,
∣

∣

∣

∣

f(x)− f(x0)

x− x0
− f ′(x0)

∣

∣

∣

∣

< ε. (13)

2 Math 314 Fall 2013 Homework 7 Solutions



Now for all 0 < |h|< δ, set y8 x0 + h, z = x0−h. Then we have

0 < |y − x0|< δ, 0 < |z − x0|< δ. (14)

This gives through triangle inequality:
∣

∣

∣

∣

f(x0 + h)− f(x0−h)

2h
− f ′(x0)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2

(

f(y)− f(x0)

y − x0
+

f(z)− f(x0)

z −x0

)

− f ′(x0)

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

(

f(y)− f(x0)

y − x0
− f ′(x0)

)

+

(

f(z)− f(x0)

z −x0
− f ′(x0)

)
∣

∣

∣

∣

6
1

2

[∣

∣

∣

∣

f(y)− f(x0)

y −x0
− f ′(x0)

∣

∣

∣

∣

+

∣

∣

∣

∣

f(z)− f(x0)

z − x0
− f ′(x0)

∣

∣

∣

∣

]

<
1

2
(ε + ε)= ε. (15)

Thus ends the proof.

Remark. Since “by definition” is not required, it is also OK to prove through:
Since f is differentiable at x0,

lim
h� 0

f(x0 + h)− f(x0)

h
= f ′(x0). (16)

This gives

lim
h� 0

f(x0− h)− f(x0)

−h
= f ′(x0). (17)

Therefore

lim
h→0

[

f(x0 +h)− f(x0)

h
+

f(x0− h)− f(x0)

−h

]

= 2 f ′(x0). (18)

Simplify the LHS we have

lim
h→0

f(x0 + h)− f(x0−h)

2h
= f ′(x0). (19)

Question 6. Let

f(x) =
exp (x3)

cos x
. (20)

Prove that f(x) is differentiable at 0 and calculate f ′(0).

Solution.
Since x3 and ex are differentiable at every x∈R, so is the composite function exp (x3). Furthermore cosx

is differentiable at every x∈R and cos 0 =1� 0. So f(x) is differentiable at x= 0.
We calculate

f ′(x) =
[exp (x3)]′ cos x− exp (x3) (cosx)′

(cos x)2

=
exp (x3) (x3)′ cos x + exp (x3) sinx

(cos x)2

=
3 x2 exp (x3) cosx + exp (x3) sinx

(cos x)2
. (21)

Setting x= 0 we have f ′(0) =0.
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