
Math 314 Fall 2013 Homework 6 Solutions

• There are 6 problems, each 5 points. Total 30 points.

• Please justify all your answers through proof or counterexample.

Question 1. Let f(x) = |x|. Prove by definition that f(x) is a continuous function (that is f(x) is
continuous at every x0∈R).

Solution. For any ε > 0, take δ = ε. Then for every x satisfying |x− x0|<δ, we have

|f(x)− f(x0)|= ||x| − |x0||6 |x− x0|< δ = ε (1)

where the inequality ||x| − |x0||6 |x− x0| is triangle inequality. Therefore f(x) is continuous at x0.

Question 2. Let f(x) =

{

exp
[

−
1

x4

]

x� 0

0 x= 0
. Prove (by definition when necessary) that f is a continuous

function.

Solution. Let x0∈R. We prove that f(x) is continuous at x0. Two cases.

• x0� 0. In this case,

1. 1 is continuous at x0; x
4 is continuous at x0. Furthermore if x0� 0 we have x0

4� 0. Consequently
the ratio

1

x4
is continuous at x0.

2. e−x is a continuous function therefore the composite function exp
[

−
1

|x|

]

is continuous at every

x0� 0.

• x0 = 0. We prove by definition. For any ε > 0, there are two cases.

1. If ε < 1, take δ < (−ln ε)−1/4, then we have, for all x satisfying |x− 0|<δ,

|f(x)− f(0)|= exp

[

−
1

x4

]

< exp

(

−
1

δ

)

< ε. (2)

2. (not required for this homework or midterm, but will be required after midterm)
If ε > 1, take δ = 1. Then for all x satisfying |x− 0|< δ,

|f(x)− f(0)|= exp

[

−
1

x4

]

< exp (−1) < 1 6 ε. (3)

Therefore f(x) is also continuous at x0 =0.

Question 3. Assume there is δ0>0 such that h(x)6 f(x)6 g(x) for all x∈ (x0− δ0, x0+ δ0). Further assume
that h, g are continuous at x0 with h(x0) = g(x0). Prove that f(x) is also continuous at x0.

Solution. We prove that if there is δ0 > 0 such that h(x)6 f(x)6 g(x) for all x∈ (x0− δ0, x0 + δ0). Further
assume that h, g are continuous at x0 and h(x0) = g(x0), then f is continuous at x0.

Since h, g are continuous, we have

lim
x� x0

h(x)= h(x0)= g(x0)= lim
x� x0

g(x). (4)

Application of Squeeze theorem gives

lim
x� x0

f(x) =h(x0)= g(x0). (5)

But since x0∈ (x0− δ0, x0 + δ0), h(x0)6 f(x0)6 g(x0) together with h(x0)= g(x0)� f(x0)=h(x0)= g(x0).
Summarizing, we have

lim
x� x0

f(x)= f(x0) (6)
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that is f(x) continuous at x0.

Question 4. Let f(x)= x6 +5 x5− 4 x3 + 10x2 + 7x− 1. Prove that there is a∈R such that f(a) =0.

Solution. Clearly f(0) =−1 < 0. On the other hand we have f(1) = 18> 0. Since f(x) is continuous, it is
continuous on [0, 1], by Intermediate Value Theorem we have the existence of a∈ (0, 1) such that f(a)=0.

Question 5. Let A, B ⊆ R. Further assume that there is m > 0 such that for every b ∈ B, |b| < m. Let
C 7 {a + bO a∈A, b∈B}. Prove that supA−m 6 supC 6 supA+ m.

Solution.

• We prove that supA+m is an upper bound of C. For any c∈C, by definition there are a∈A, b∈B

such that c = a + b < sup A + m. Therefore sup A + m is an upper bound of C and by definition
supC 6 supA +m.

• We prove supA6 supC +m. For any a∈A, take an arbitrary b∈B. Then we have

a + b∈C� a + b 6 supC� a 6 supC − b� a 6 supC + m. (7)

Thus supC + m is an upper bound of A and consequently supA6 supC +m� supA−m 6 supC.

Question 6. Let {xn} and {yn} be sequences of real numbers. Assume limn→∞ yn =0. Prove:

limsup
n�∞

(xn + yn)= limsup
n�∞

xn. (8)

Solution. For any ε > 0, there is N ∈N such that for all n > N , |yn|< ε. Now for every k > n, we have

xk + yk 6 sup
k>n

xk + |yk|6 sup
k>n

xk + ε; (9)

On the other hand,

xk = xk + yk − yk 6 sup
k>n

(xk + yk)+ |yk|6 sup
k>n

(xk + yk) + ε. (10)

Thus for all n > N we have

sup
k>n

xk − ε6 sup
k>n

(xk + yk)6 sup
k>n

xk + ε. (11)

Taking limit n� ∞, we have

limsup
n�∞

xn− ε 6 limsup
n�∞

(xn + yn)< limsup
n�∞

xn + ε (12)

following Comparison Theorem. Note that this holds for every ε > 0.
Now assume limsupn�∞ (xn + yn)� limsupn�∞xn. There are two cases.

• limsupn�∞ (xn + yn)> limsupn�∞ xn. Taking ε=
limsupn�∞ (xn + yn)− limsupn�∞ xn

2
we have

limsup
n�∞

(xn + yn)< limsup
n�∞

xn + ε=
limsupn�∞ (xn + yn) + limsupn�∞xn

2
< limsup

n�∞

(xn + yn) (13)

contradiction.

• limsupn�∞ (xn + yn)< limsupn�∞ xn. Taking ε=
limsupn�∞ xn − limsupn�∞ (xn + yn)

2
we have

limsup
n�∞

(xn + yn)> limsup
n�∞

xn− ε=
limsupn�∞ (xn + yn)+ limsupn�∞xn

2
> limsup

n�∞

(xn + yn) (14)

contradiction.

Therefore limsupn�∞ (xn + yn) = limsupn�∞xn.

Remark. Alternatively, one can prove as follows. On one hand we have

limsup
n→∞

(xn + yn) 6 limsup
n→∞

xn + limsup
n→∞

yn = limsup
n→∞

xn + lim
n→∞

yn = limsup
n→∞

xn; (15)
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Note that the first inequality has been proved in HW4, and the first equality is because limn→∞yn exists;
On the other hand, we have

limsup
n→∞

xn = limsup
n→∞

[(xn + yn) + (−yn)] 6 limsup
n→∞

(xn + yn) + limsup
n→∞

(−yn) = limsup
n→∞

(xn + yn) + lim
n→∞

(−yn) =

limsup
n→∞

(xn + yn). (16)
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