MATH 314 FALL 2013 HOMEWORK 6 SOLUTIONS

e There are 6 problems, each 5 points. Total 30 points.
e Please justify all your answers through proof or counterexample.

Question 1. Let f(x) = |z|. Prove by definition that f(x) is a continuous function (that is f(x) is
continuous at every ro€R ).

Solution. For any € > 0, take 6 =¢. Then for every z satisfying |x — x| < J, we have
|f(@) = f(zo)| =lz] — |zo|| < [# — mo| <d=¢ (1)

where the inequality ||x| — |zo|| < |z — xo| is triangle inequality. Therefore f(z) is continuous at zg.

uestion 2. Let f(z) = exp[ _4] z#0 . Prove (by definition when necessary) that f is a continuous
0 Y (
x_

function.
Solution. Let zp € R. We prove that f(z) is continuous at xg. Two cases.
o 120#0. In this case,

1. 1is continuous at zo; z* is continuous at xo. Furthermore if 2+ 0 we have xé# 0. Consequently
L1 .
the ratio —ils continuous at xg.

2. e~ 7 is a continuous function therefore the composite function exp [_Fl\] is continuous at every
To 7& 0.
e 120=0. We prove by definition. For any & > 0, there are two cases.

1. If e <1, take 6 < (—Ine) =4, then we have, for all z satisfying |z — 0| <4,

50~ 1O =exp| - | <exp (-} ) <. )

2. (not required for this homework or midterm, but will be required after midterm)
If £ >1, take 6 =1. Then for all = satisfying |x — 0] <0,

() - F(0)| =exp [—ﬁ] <exp(-1)<l<e. 3)

Therefore f(z) is also continuous at xp=0.

Question 3. Assume there is 0o >0 such that h(z) < f(z) < g(x) for all x € (xg— do, o+ do). Further assume
that h, g are continuous at xo with h(xg) = g(xo). Prove that f(x) is also continuous at x.

Solution. We prove that if there is dg >0 such that h(z) < f(z) < g(z) for all z € (xg — do, o + do). Further
assume that h, g are continuous at x¢ and h(zg) = g(z¢), then f is continuous at x.
Since h, g are continuous, we have

lim h(z) = hze) = glao) = lim g(x). (4)

r— X0 T — X0

Application of Squeeze theorem gives

lim f(x)="h(zo) = g(wo). (5)

r—x0

But since xo € (20 — do, To + 0o), h(zo) < f(z0) < g(mo) together with h(zo) = g(zo) = f(x0) = h(z0) = g(x0).
Summarizing, we have

lim f(z)= f(zo) (6)

r— T
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that is f(x) continuous at .
Question 4. Let f(z)=a%+525— 4234+ 1022+ 72 — 1. Prove that there is a € R such that f(a)=0.

Solution. Clearly f(0)=—1<0. On the other hand we have f(1)=18> 0. Since f(z) is continuous, it is
continuous on [0, 1], by Intermediate Value Theorem we have the existence of a € (0,1) such that f(a)=0.

Question 5. Let A, B C R. Further assume that there is m > 0 such that for every b € B, |b|] < m. Let
C:={a+blac A,be B}. Prove that sup A—m <supC <sup A+m.

Solution.

e We prove that sup A +m is an upper bound of C. For any c € C, by definition there are a€ A,be B
such that ¢ =a + b < sup A + m. Therefore sup A + m is an upper bound of C' and by definition
sup C' <sup 4+ m.

e  We prove sup A <supC +m. For any a € A, take an arbitrary b € B. Then we have
a+beC=a+b<supC=a<supC —b=a<supC+m. (7)
Thus sup C + m is an upper bound of A and consequently sup A <supC'+m=—sup A —m <supC.
Question 6. Let {x,} and {y,} be sequences of real numbers. Assume lim, _, y,=0. Prove:

limsup (2, + yn) = limsup . (8)

n——:o0Q n——0Q

Solution. For any & > 0, there is N € N such that for all n > N, |y,| <e. Now for every k> n, we have

T+ yp <supxy + |yr| <sup ok +€; (9)
k>n k>n
On the other hand,
Tp=Tk+ Yk — Yr < SUp (Tr + yr) + [yr| <sup (2 4+ y1) +e. (10)
k>n k>n
Thus for all n > N we have
supxy — e < sup (zx + yr) < supxg + €. (11)
k>n k>n k>n
Taking limit n — oo, we have
limsup z,, — € < limsup (2, + y,,) <limsup z,, + ¢ (12)
n—oo n—o0 n—oo

following Comparison Theorem. Note that this holds for every & > 0.
Now assume limsupy, o (Tn, + ypn) # limsup,,— oo . There are two cases.

limsupsn, — oo (Tn + Yn) — limsupy, oo Tn,

5 we have

e limsup, o (n+ yn) > limsup,,_, . Taking e =

limsup (z,, + yn) <limsup z, +¢& = linsupn— oo (#n + Z/2n) + imsupy— o0 Tn <limsup (v, +y,) (13)

n——:o0 n——:o0 n——-:uo0

contradiction.

limsupn — oo Tr — liMsupp — oo (Tn + Yn)

3 we have

e limsup, . o (n + yn) <limsup,, o z,. Taking e =

limsup (z,, + y,) > limsupx,, —e= Hmsupn— oo (n + y2n) -+ Hmsupn— oo Zn >limsup (€, + yn)  (14)

n——0Q n——o0 n——:oQ

contradiction.

Therefore limsup,, . oo (T, + Yn) =limsup, ., oo Tn.

Remark. Alternatively, one can prove as follows. On one hand we have

limsup (z,, + y») < limsup z,, 4+ limsup y,, =limsup z,, + lim y, =limsup x,; (15)

n— oo

n—oo n—oo n—oo n—oo n—oo



Note that the first inequality has been proved in HW4, and the first equality is because lim,, . sy, exists;
On the other hand, we have

limsup z,, =limsup [(n, + Yn) + (—yn)] <limsup (2, + yn) + limsup (—y,) = limsup (x, + y,) + lim (—y,) =

n— 0o n— 0o n— 0o n— 0o n— 00 n—00

limsup (zy, + Yn)- (16)

n— 00



