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e The Final is cumulative. Please also review

material before midterm.

This review may not cover all possible
topics for the midterm exam. Please
also review lecture notes and homework
problems.

To get the most out of these problems,
clearly write down (instead of mumble or
think) your complete answers (instead of a
few lines of the main idea), in full sentences
(instead of formulas connected by arrows).
And then compare with the solutions when
they are posted.

If don’t know where to start, write down all
definitions involved.

If have no idea what to do, try proof by
contradiction. Start by writing down the
assumption in logical statements.

e “Justify” means: if true, provide a proof; if

false, give a counterexample.



L.

1.

Differentiation: Definitions

Concepts and theorems

e Definitions.

— f is differentiable at xp € R:

lim f(@) — f(zo) (1)
T—X( T — X0
exists and is finite. (f is not

differentiable at xg if the limit is 0o).
— f is a differentiable function:
f is differentiable at

every xg in its domain.

Example 1. sinz,cosz,e”, Inz, 1/
are differentiable functions.

e Prove differentiability by definition.

— Prove f is differentiable at xq:

1. Write £@=10) op faoth) = fa),
T —x0

simplify if possible;

that limit

the
%ﬁxo) or equivalently
f(xo+h) — f(zo)
h

2. Prove

hmm—mg

limy,—o exists and is

finite.

— Prove f is a differentiable function.

Take any x¢ in the domain of f.
Then prove f is differentiable at x.

2

Exercise 1. Prove f(xz)=x?is a differentiable

function.

e Prove non-differentiability by definition.
— Prove f is not differentiable at xq:

Write f@) = flzo) or

T — o

, simplify if possible;

1. Write
f(zo+h) — f(z0)
h

2. Prove that the limit
lim, .., %ﬁxo) or equivalently
limp,—o w does not

exist.

— Prove f is not a differentiable function:

1. Understand the behavior of f and
make an educated guess of zg.

2. Prove f is not differentiable at xg.

1
Exercise 2. Let f(z) = { ©® (<) 50750.
0 z=0

Prove that f(z) is not a differentiable function.

2. Solutions to exercises

EXERCISE 1. f(z) = 22 is defined for all
z € R so its domain is R. Take any zg €
R, write

_ 2_ .2
T —Tg T — To
Taking limit x— x¢ we see
lim L&) = fo) To (3)
T—x0 Tr — X0

is finite so f is differentiable at zg.
Therfore f is differentiable.

EXERCISE 2. By looking at the function
(or by applying Chain rule) we realize
that we should try zp=0.

Write
fz) = K ):COS 1 (4)
z—0
Taking z,, = ﬁ, Yp = m we have

limy,— oop=limpy— 0oy =0, Yne€N,z,#0, yp#
. 1 . 1
09 11mn—>oocos <_) == 1, 11mn_)OOCOS (y_> = —

f(@) = f(z0)
r —xg
therefore f is not differentiable at xg.
Consequently f is not a differentiable

function.

1 so limg_.g4, does not exist and

3. Problems

Problem 1. Let g(z) be differentiable at =0 and
1
g(x)sin~ x#0 is
0 z=0
differentiable at zo=0 if and only if ¢’(0) =0.
Problem 2. Let f(z) = |z + 1] + =. Let g = —1.
Prove that lim,_¢ W =1 but f(z) is
not differentiable at x.

g(0) = 0. Prove that f(z) =



M. Differentiation: Arithmetics

Here emphasize Leibniz rule and how to
differentiate ratios.

1. Concepts and theorems

e Differentiability of sum, difference, product,
ratio.

Let f, g be differentiable at xg. Then

— f &£ g is differentiable at z, with

(f £9)' (o) = f'(wo) £ ¢'(z0);  (5)

— For ¢ € R, ¢ f is differentiable at g,
with

(c f)(z0) = c f'(z0). (6)

— (Leibniz rule) fg is differentiable at
o, with derivative
f(@o) g'(wo) + f'(z0) g(0)- (7)

— If g(zo) # 0 then f/g is differentiable
at xo with derivative

f'(z0) g(x0) — f(x0) g'(20)
9(0)? '

(8)

Exercise 3. Apply Leibniz rule to f=g(f/9g)
to derive (8).

Exercise 4. Let

f@) =y (9)

Calculate f'(0).

2. Solutions to exercises
Exercise 3. Let h(z):= %. Then we have

f(z)=h(z) g(r) and Leibniz rule gives

f'(zo) = h'(x0) g(xo) + h(zo) g' (o)
= h'(z0) g(wo) +
Z: gg; o/(z0) (10)

and (8) follows.

Exercise 4. We apply the ratio
differentiation rule followed by Leibniz
rule:

(e*sinx) cosz — (e*sinz) (cosx)’

/ _
filz) = (cos x)?
(e*sinx + e* cosx) cosx
(cos x)
e® (sin x)?
(cos x)?
_ e®(sinz+cosw) € (sinz)?
N cos T (cosx)?

Setting =0 we obtain f/(0)=1.

3. Problems



N. Differentiation: Chain Rule

1.

Concepts and theorems

e Chain rule: If

1. f is differentiable at xq;

2. g is differentiable at f(xo),

then (go f)(z):= g(f(x)) is differentiable
at zg and

(g0 f)(zo) = g'(f(x0)) f'(x0). (11)

Remark. Note that ¢'(f(zo)) means
first calculating the function ¢’ and then
evaluate it at the point f(xo).

Exercise 5. Prove that f(x) = exp [—1/z7
is differentiable at every x # 0 and find f'(z)
there.

Exercise 6. Let f(z) = (175;2)3 Calculate
f'(z) for x#+ £1.

e Inverse function. If
1. f is differentiable at xq;
2. g is the inverse function of f;

3. (o) £0,
then ¢(y) is differentiable at yo= f(z0) with
1

! . 1 _
9= Fla) = gy P

Exercise 7. Let f(z) =5z + sinz. Let g(z)
be its inverse function (for now we assume its
existence). Calculate g’(0).

Exercise 8. Let f(xz) =2z — sinx defined on
R. Let g(x) be its inverse function. Calculate

9'(0), g'(m —1).

2. Solutions to exercises

Exercise 5. We know that e® is
differentiable at every x € R and ~—L s

3
differentiable at every x # 0. Therefore
the composite function exp [~1/2%] is

differentiable at every x#0.
Next calculate

(exp[-1/27%])" = exp’(~1/2°) (~1/27)'
= exp(—1/2%) [-(1/2%)]
= exp(—1/2°) [3/2"]

3exp(—1/23
%. (13)

Exercise 6. We have
1+22\? (1422
/ _
fll) = 3<1—x2> <1—x2

- (15 ()

122 (1+ 22)?
Exercise 7. We have
, 1

where 79 = ¢g(0) or equivalently f(zg) =0.
Since f(0)=0 we see xp=0.
f'(z)=5+cosz= f'(0)=6. So g’(O):%.
Exercise 8. We have f/(z) = 2 — cos = >
1 > 0 so g exists and is differentiable.

We have

g =1/ @)= 5—— (16)

— COST

so all we need to do is to figure out
x1, Tz such that f(z1) =0 and f(z2) =7 —
1. It’s easily seen that z; =0, o = 7/2.
Therefore

g'(0)=1, J(r—1)= % (17)

3. Problems



0. Differentiable Functions

1.

Concepts and theorems

e f is differentiableat o = f is continuous
at xg.

e Local maximizer/minimizer.

— 1z is local maximizer: 3§ >0, Vz € (xg—
§,20+0), f(x) < f(wo);

— o is local minimizer: 3§ >0, Va € (xo—

d,20+9), f(x) > f(xo).
— If

1. z¢is a local minimizer or maximizer
for f;

2. f is differentiable at xg;
then f’(z9)=0.

Exercise 9. Let f(z) = z? sin = Prove or
disprove the following claim:

The local maximizers are x =
(2n+1/2) 7 for n€Z.

e MVT: If
1. f is continuous on [a, b];

2. f is differentiable on (a,b);
Then 3¢ € (a, b) such that

e Cauchy’s MVT: If
1. f, g are continuous on [a, b,

2. f, g are differentiable on (a,b),

3. g(a)# g(b),
then 3¢ € (a,b) such that

fla) = F(b) _ S'(€). (19)

e Monotonicity: f differentiable. Then
— [ increasing <= f'>0;
— f decreasing <— f'<0;
— f'>0= f strictly increasing;
— f'<0= f strictly decreasing;

— fis constant <= f’=0.
Note that f strictly increasing/decreasing

on (a,b) does not imply f'>0/<0 on (a,b)!

Exercise 10. Let f(z) =3z + 2% + 2 sin z.
Prove that f is strictly increasing on R.

2. Solutions to exercises

Exercise 9. The claim is false. Since
f(z) is differentiable, its local
maximizers must satisfy f/(z)=0:

0= (2%sinz)’ =2zsinz +2?cosz. (20)
We check
f'Cnr+7/2)=An+1)7#0 (21)

so z = (2 n + 1/2) 7 cannot be local
maximizers.

Exercise 10. We calculate

f(®)=3+32%+2cosz>1>0 (22)

so f is strictly increasing on R.

3. Problems

Problem 3. Let f be continuous and differentiable
onR. Iflim, oo f(x)=lim,_, o f(x), then there
is £ €R such that f/(£)=0.

Problem 4. Prove

sinx
T

<1

2
<
™

for all 0 < =z < w/2. (Hint: Show f(z) =
decreasing).




P. L’Hospital

1. Concepts and theorems

o Let g€ (a,b). Try to If

1. f(x), g(x) are differentiable on (a,b) —

{zo};

3. limw_m)% exists;

4. ¢'(z)#0 for z € (a,b) — {zo};
Then

f(x

~

lim L&),

lim
Tr—>X0 g/($)

T—>X( g($)

(24)

Exercise 11. Calculate
lim ————— (25)

using L’Hospital’s rule.
Exercise 12. Calculate

. 1—cos?z
lim

—_ 26
r—0+/1422—-1 (26)

using L’Hospital’s rule.

2. Solutions to exercises

Exercise 11. Now that sin x — z and
2% satisfies 1-4. Therefore the limit

equals lim;_,q % if the latter
exists. Since cos # — 1 and 3 z? still

satisfies 1-4, the original limit would

—sinz
6x
As —sinx and 6 x still satisfies 1-4, we

can apply L’Hospital again to obtain

if this limit exists.

equal lim, .o

—cosz 1

i =——. 27
a0 6 6 @0
Therefore
i ST 1 es)
x—0 flfg 6

Exercise 12. We first check that

lim0 (1 — cos’r) = lim0 (Vi+az? — 1) =
0 (29)

so we should apply L’Hospital’s rule.

lim 1—cos’z lim 2coszsinx
e—0/1+2%2—1 e—0 /1 + a2
— m 2cosx
z—0 V1422
= (30)
Not i that li 2cosx _2_2 W
oTice a 1My 0 ﬁ =71 = . e
only need to find lim,_ ¢ Slzm. Applying
L’Hospital’s rule again:
lim 228 = lim 2T =1, (31)
z—0 T z—0 1
So finally we conclude
o2
lim L5 _ (32)
z—0+1+22-1

3. Problems



Q. Taylor Expansion 2. Solutions to exercises

Exercise 13. We prove by induction that

1. Concepts and theorems f(")(a;) =2"¢2%  Denote the claim by P(n).
The base case P(1): f'(x)=2¢%.
e Higher order derivatives: Denote f(o)(x) = Assume f(")(;g) =2"¢e2%, By definition
x).
f( ) f(n+1)($) — (2n e2x)/: on+1 62:”. (38)

VYn €N, f(x) is n-th differentiable if and
only if f"~Y(z) exists and is differentiable Thus P(n)= P(n+1).

at xg. Denote Therefore f(™(z) = 2" e?* and
consequently f((0)=2".
£ (20) = (f("_l))/(azo). (33) Exercise 14. We have
f(0)=tan0=0; (39)
Exercise 13. Let n € N. Let f(z) = %2
Calculate f((0) for all n € N. Justify your , sinz \’ 1
answer. f (x) - cos T - (COS :L,)2 ° (40)
so
e Let f(z) be n-th differentiable. F1(0)=1; (a1)
— Define its Taylor polynomial of degree 1 ' 9sing
: "(z) = = 42
n at xg as: () <(cos x)2> (cos2)? (42)
P,(z) = f(xo) + f/(xo)($ —x0) + -+ so f”(O) —0;
f(n)(l‘o) ( n 2 2 (si )2
= (z —z0)™ (34) () = SIE)” 43
n! () (cos x)? (cosx)* (43)
— The difference: Therefore the expansion is
Ry(x) = f(z) — Pu(x) (35) sinz 2 (cos €)2+6(sin€)? ] 2*
=z —_. (44)
cos T (cos &)4 6
is called the “remainder” at x.
Exercise 15. We calculate:
— R,(z) can be represented through 1
several different formulas. The most f(1)= bX (45)
popular one is the “Lagrange form”
. 2x 1
formula: fl(x)= _—(1 g = f'(1)= —3 (46)
If fis (n+1)-th differentiable, then
62%—2 1
" _ Yy =4 " 1):_‘ 47)
24z (1 —2?)
" _
where ¢ satisfies 0 < |£ — x| < |z — xg|. ()= (14 x2)4 (48)
Exercise 14. Calculate the Taylor expansion Therefore the expansion is
with Lagrange form of remainder to degree 2 1 1 C1)2 Ag(1_g?
at £o=0 for f(z)=tanz. §—I2 +(:c 1 ) + (51:52()54) (xz —1)3. (49)
Exercise 15. Calculate Taylor expansion to
degree 2 with Lagrange form of remainder at
zo=1 for 3. Problems

fx)= (37)

1422



R. Definition of Riemann Integration

1.

Concepts and Theorems.

e (Partition) Let a, b € R with a < b. A
partition of the interval [a, 0] is the set of
points P = {z, z1,..., 2, } such that

a=x0<x1 < <xp=D>. (50)
e (Upper/Lower Riemann sums)
U(f,P):=Y " Mi(f)(xj—zj1)  (51)
j=1
L(f, P):=) mi(f)(zj—xj—1)  (52)
j=1
where
M;(f) = sup }f(w) (53)
TET;—1,T;
mif) = it ). (54)
TE[w;_1,7;]
e (Upper/lower Riemann integrals)
U =mfH{U(f, P} (55)
L(f)::ﬂ}l)p {L(f,P)}. (56)

¢ (Riemann integrability)

Integrable if and only if U(f) = L(f).
When integrable,

b
[ r@a=vin=cn. @D
e Proving integrability by definition:
Choose appropriate partitions P, such

that

lim U(f, P,)= lim L(f,P,).

n—oo n—oo

(58)

Exercise 16. Prove by definition that

c =0

0 z#0 (59)

ra)={

is Riemann integrable on [0, 1], no matter what c is.

2. Solutions to Exercises.

Exercise 16. Let P,={0=zo<x1<--<zp=

1} be such that xi:%. Then we have
inf f(x) = —|c| (60)
IG[Ii,Ii+1]
for 1=0 and =0 for all other 2’s.
Similarly
sup  f(z)<|c| (61)
IEE[ZBZ',.CE,L'+1]
for t=0 and =0 for all other i’s.
Therefore
e py<ogry<ds e
By definition
L(f,Pn) SL(f)<U(f) <U(f, Pn). (63)
Thus
<o <ld (64)
n n

Taking limit n — 00, by comparison
theorem we have

0<L(f)<SU(f) <0 (65)
which gives L(f) = U(f) = 0 and

integrability follows.

3. Problems.

Problem 5. Let f(x) be integrable on [a, b]. Let
c€R. Prove by definition that ¢ f(z) is integrable
and jf (cf)(x)dz=c j; f(z) dz. (Note that you
need to discuss the sign of ¢)

Problem 6. Let f(z) be integrable on [a,b]. Prove
by definition of limit that

lim /z () dt:/l.b F(x) da. (66)

z—b— [,



S.

1.

Criteria and properties

Concepts and Theorems

e Integrability: f is integrable on [a,b] if and
only if

— For every € > 0, there is a partition P
such that U(f,P)—L(f,P)<e; or

— There is a sequence of partitions P,
such that lim,_ [U(f, P,) — L(f,
P,)]=0.

e fisintegrable on [a,b] if f is continuous on
[a,b].

— Note that f needs to be continuous on
the closed interval;

— Note that the converse: f is integrable
on [a,b] only if f is continuous on [a,b],
is false.

Exercise 17. Find a function f that is

integrable on [0, 1] but is not continuous
on [0, 1]. Justify.

e Properties. Let c€ R and f, g be integrable
on [a,b]. Then so are |f|,cf, f* g, fg.

/ab flx)dz
b

[ enwar = e [ s

a

b
< / | f()] da

[ro@ar = [ @) w =

b
/ab 9(z) dz;

Note that there is
between fab flxz)  gx)

(! s@raz)( ! glw)dz)

relation
dx

no
and

e More properties. Let a < ¢ < b. Then f
is integrable on [a, b] if and only if f is
integrable on both [a, ¢] and [c, b].

e Composite function. If f is integrable and
g is continuous, then go f is integrable.

2. Solutions to Exercises

Exercise 17. Take f

1 z<1/2
{ 0 z>1/2"°
Obviously it is not continuous on [0, 1].
To justify its integrability, take P, =

n—1 1
{O,W,E,l}. Then
n—1 1
L(f.P)="5—= U(f,P)=5 (6D

We have lim,, .o [U(f, P,) — L(f, P,)] =0 so
f is integrable.

3. Problems



T.

1.

Fundamental Theorems of Calculus

Concepts and theorems
e FTC V1. If

1. f(x) is integrable on [a, b];

2. F(z) is continuous on |a, b];

3. Vx€(a,b), F'(x)=f(x),
then

b

/ F(z)dz = F(b) — F(a). (68)
e FTC V2:

— Part I If f(z) is integrable on [a, b],
then

Fz) = / F(t) dt (69)

is continuous on [a, b].
— Part II: If
1. f(z) is integrable on [a, b];

2. f(z) is continuous at zg € (a, b),

then F(x) as defined above is
differentiable at xy and
F'(xo) = f(x0). (70)
Exercise 18. Let F(z) := f::f et dt.
Calculate F'(z) and F"(x).
e Integration by parts: If
1. u(x),v(zx) are continuous on [a, b];
2. u'(x),v'(z) are integrable on [a, b];
Then
b b
/ uv’dz =u(b)v(b) — u(a)v(a) —/ u'vdz. (71)
Exercise 19. Calculate
1
/ x et dz. (72)
JO

e Change of variables: If

1. u(z) is continuous on [a, b];
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2. u(x) is differentiable on (a,b);
3. u'(x) is integrable on [a, b];

4. f(y) is continuous on I :=u([a,b));

Then

[ rwenwwa= [ ((:)

2. Solutions to exercises

flx)dz. (73)

Exercise 19. Set v=z,u'=e3*=u=¢37/3.

1 3z 1 3z
Te e
redder = b= —dzx
0 3

= . (74)
T et dt.

Exercise 18. Let G(x):= Then we

have G'(x)=¢e", and

2 0 2

z°+2 242
F(x):/ etdt+/ etdt:/ el dt —
0 sinz 0

sinz
/ el dt =G(2?+2) — G(sinz). (75)
0
This gives
Fl'(z) = G'(2?+2) (2*+2)’
—G'(sinx) (sinz)’

= 2pe” T2 ST o5y, (76)
Taking derivative again we have
F'(z) = (422 +2) e**+t2 4 [sinz — (cos z)?| es®®.  (77)

3. Problems

Problem 7. Calculate the following integrals:
e? d 4 vz e
11:./6 z(sz)‘l;b:.A e fdw;lgz/l 23 Inzdx (78)

Problem 8. Is the following calculation correct?
Justify your answer.

T 0
/ coszscdm:/ L“:O
0 Jo (1+t3)

where the change of variable is t =tan x.

(79)



U. Improper Integrals

1. Concepts and Theorems.

e Definition.
Let f: (a, b) — R is improperly
integrable on (a,b) if and only if

a) f is locally integrable: f is integrable
on every [c,d] C (a,b), and

b) lime—q+ <limd_>b_ fcd f(zx) dx) exists
and is finite.

Call this limit the improper
Riemann integral of f over (a, b),
denote it by

/ab f(z)dx.

Exercise 20. Prove that =/ is improperly
integrable on (0,1).

(80)

e Properties

a) Integrable on [a, b] = improperly
integrable on (a, b) and its improper
integral equals its Riemann integral.

b) If f is integrable on [a, d] for every
d € (a,b), then its improper integral

/abf(x)dx_dl_i,nz_/adf(x) & (81)

If f is integrable on [c, b] for every
c€ (a,b), then its improper integral

/b f(z)dx= hm+ ’ f(z)dz (82)

c) If f is improperly integrable on (a,b),
then the order of limit taking does not

matter:
d
s (e [0
. . d
i (i [ o)

b
_ / F(z) da. (83)
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Exercise 21. Prove that if f is integrable on
[a, b] then it is improperly integrable on (a,b).

2. Solutions to exercises.

Exercise 20. Take any [¢, d] < (0, 1).
Since #~!/3 is continuous on [c, d], it
is integrable on [c, d]. We calculate,

through FTC Ver 1,

© i 3 2/3d_3 7 2/3  2/3
/ =V dx:§x/|cz§[d/ —Bl (8w

[

Now clearly

. . 3 2 3 2 3 3
lim | lim 2[d?/3—c?/ = —. (85)
c— 0+ |:d—>1— 2 [ ] 2
First we know that if
b], then it is
Now

Exercise 21.
f is integrable on [a,
integrable on every [¢, d] C (a, b)
consider

(86)

Fz):= / F(t) .

By FTC Ver 2 we know that F(x) is
continuous on [a,b]. Thus

d
s [0

— tim (lim (P(d) - F(0))
= lim (F(b) = F(c))

— F(b)— Fl(a). (87)

Thus f is improperly integrable on (a,
b). Finally by FTC Ver 1 we have

(88)

b
F(b) - Fla) = / £(t) dt.

3. Problems

Problem 9. Prove that, if f(z) is improperly
integrable on (a,b), then

d
lim {lim/ f(:c)dx]
d—b— | c—a+ /.

exists and equals f: f(z)dz.

(89)



Solutions to Problems

Problem 1.

e If. Since ¢'(0) = 0, by definition we

have
lim M:()ﬁlim M‘:Q, (90)
z—0 T r—0 xT
Now we have
xr—0 T T
< 9(x) 1
T
By Squeeze Theorem we have
lim M—o'—o (92)
rx—0 x—()

which by definition gives f/(0)=0.

e Only if.
We have
. g(@) . g(x)—g(0)
igﬂ) x AZEE% z—0 =9(0). 93
Now we have
@)= £0) _g@) . 1 (o0
z—0 T T
1 1
Now take Ty = ) Yn = m Then
T, YnF0 and limg, ooy =lim, . ooyn=0.
Therefore
n—oo Lp n—oo  Yn
Consequently
lim lifﬁljlllglzzoj (96)
n— oo $n—0
lim —f(yg) :g(o) = g/(0) (97)
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Since f is differentiable at 0, we
must have ¢'(0)=0.

Problem 2. For h>0, we have

flzo+h)=h+(-1+h)=—1+4+2h; (98)
flxo—h)=h+(-1—h)=-1; (99)
For h <0 we have
flxo+h)=(=h)+ (=1+h)=—1, (100)
fo—h)=(=h)+(—1—h)=—1—2h. (101)
Thus for all h we have
2h
and the limit is obviously also 1.
Now for h >0 we have
while for h<0 we have
f(x“h});f(xo):o. (104)
Therefore
lim f(IL'()—i— h) — f(xO) (105)
h—0 h
does not exist and f is not
differentiable at xzg.
Problem 3. Denote
L:= lim f(z)= lim f(z). (106)
Three cases.
e supger f(x) = infzer f(z) = L. Then
f(z) = L for all z and f'(§) = 0 for

every £ €R.

o supgerf(z) > L. Take {z,} C R

such that lim, oo f(7n) = supzerf(7).
Denote

. SWeenf(r) - L

0:= 9 (107)

Then

— As limg; o f(x) = L, there is R; >
0 such that |f(x) —L|<gp for all
z> Ry;



— As lim, o f(z) = L, there is
Ry > 0 such that |f(z) — L| < ¢
for all < —Ry;

— As limy oo f(z) =supgerf(z), there
is No € N such that |f(z) —
supzerf(z)| <ep for all n> Nj.

Summarizing, we have

Vn > Ny, — Ro<x, <Ry (108)
By Bolzano-Weierstrass there is a
subsequence r,, converging to some

£€R. Since f is continuous,

f(§) = lim f(xy,)=sup f(x). (109)

k—oo zeR

Thus ZToo is a maximizer of f and
consequently f/(§)=0.

Problem 4. Calculate

(110)

. / .
sinz \'  xcosz—sinx
T 2 '

sinz

To show that f(z) =
it’s enough to show g(z) =z cosz —sinz <
0 for 0 <z < m/2. Noticing that ¢(0) =0,
we calculate

is decreasing,

g'(xr) =cosx —xsinx —cos x = —x sin z <
0 for 0<x < /2. (111)

Therefore g is decreasing. Together with

g(0) = 0 we have g(z) = f’(z) < 0. This

implies f(z) is decreasing. Therefore
2251n(7r/2)<smx<sm5 (112)
™ /2 x 0

for all z €[, n/2]. Let 6—0 we reach

sin x
T

zg <1 (113)
s

for all O0<x<7/2.
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Problem 5. We discuss the three cases
c>0,¢c=0,¢c<0. When ¢=0 we have ¢ f =
0 is constant which is integrable.

e C > 0. Let P be an arbitrary
partition of [a,b]. We have

U@f,ﬂ==§:st]cﬂ@]Mj—

j=1 Tj—1,T;

xj_1| = Z c [[ sup ]f(:v)] |zj —xj_q] =
j=1 Tj—1,T;

cU(f,P). (114)

Taking infimum we have

Ul(e f) :i%f Ue f, P) :i%f cU(f, P)] =

cir;fU(f,P):cU(f). (115)

On the other hand,

n

L(cf,P)—Z[

inf ¢ f(x)] o, —

=1 L]
.’L‘j_1| :CL(f,P) (116)
which gives
L(cf)=cL(f). (117)

As f is integrable, we have U(f) =
L(f) = U(c f) = L(c f) soc f is
integrable with

[ e nw as =
c/ab f(z)da.

e C < 0. Let P be an arbitrary
partition of [a,b]. We have

WcﬁP)—§:L

Jj=1

(118)

sup ¢ f(x)] |z —

T 1,2;]

ﬂ@bw—%mz

n

xj_1|zzc[

J=1

inf
[zj-1,2;

cL(f,P). (119)



Taking infimum over all partitions
we have

Ule f) :i%f Ue f, P) :i%f [c L(f, P)] =

csup L(f,P)=cL(f). (120)
P
and similarly
L(cf)=cU(f). (121)

As f is integrable, we have U(f) =
L(f) = U(c f) = L(c f) soc f is
integrable with

[ e nw ar =

¢ / " H) de

Problem 6. Since f(z) is integrable on
[, b], it is bounded on [a, b]. That is
there is M >0 such that Vz€[a,b],|f(z)|<
M. Now for any ¢ > 0, take § := M€+1'
Then for any 0<b—x<J, we have

/: f(t)dt—/ab Ft)dt

(122)

b

/N
H\@
=
E

€. (123)
Problem 7.

e [;. Change of variable: y = u(x) =

Inz. Then we have

Il:/j v / (e ) e

= . (124)
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e [5. Change of variable: y =
vz . We have

4
12:/ e Vidr =
0
/u(4)
u(0)
2
= 2/ ye ¥Ydy
0
2
= 2/ y(—e™)'dy
0

=2 [y VB +

2
[
0

= 2[-2e2+1-e77
= 2-6e72  (125)

e Y2ydy

° ,[3.

Ig—/ Plnzdr =
1

We integrate by parts:

E$_ ,
/1 1 (Inz)'dx
4 e
= %—i r3dx
1
4
::3151. (126)

Problem 8. No. Since COS2{L'>% when z € (0,
w/4) we have

™ w/4 w/4
/ cos’z da:}/ cos?z dx>/ ld3t7:£>
0 0 0 2 8

0 (127)

so the calculation is not correct.

The problem is u(r) = tan =z is not
gifferentiable over (0,m).
Problem 9. We are given
d
lim | lim / f(z)dz |=LeR. (128)
c—a+ | d—b— J.

Take any zo€ (a,b). Then we have

/cd f(x)dx:/cxo f(g:)d:v+/x;i flx)dz. (129)

4
/ e @)/ (2) (2u(z)) da
0



Thus the existence of

d
lim flx)dz
d—b— J.

implies the existence of

lim /d f(z)d.

d—b—

Denote it by I(zp). Then clearly

lim
c—a+ Je

Z

’ flx)de =L — I(xg).

Now we have

d
(130&?31_lcﬁi§+ji f(=) dx]

(131)

(132)

lim [L — I(xo) +

d—b—
d

/ f(z)dz

xo
L — . I(x0) +
ERCE
L — I(x0) + I(xo)
L. (133)
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