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4. Differentiation

4.1. Derivatives.

4.1.1. Definition.

Definition 4.1. Let f be a real function. At a point x0 inside its domain, if the limit

lim
x� x0

f(x)− f(x0)

x− x0
(4.1)

exists, we say f is differentiable at x0, and call the limit its derivative at x0, denoted f ′(x0). If the limit
does not exist, we say f is not differentiable at x0. If f is differentiable at all x∈E where E ⊆R, we say f

is differentiable on E. If f is differentiable at every point of its domain, we say f is differentiable.

Remark 4.2. Equivalently, one can define differentiability through the limit

lim
δ� 0

f(x0 + δ)− f(x0)

δ
. (4.2)

That is f is differentiable at x0 if the above limit exists.

Remark 4.3. Recall that in the definition of limits, we require 0< |x−x0|. This is crucial in the limit (4.1)
since at x = x0 we have

0

0
.

Example 4.4. Let f(x)= xn with n∈N∪{0}. Study its differetiability.

Solution. When n =0 we have f(x) =1 for all x. Then for every x0∈R,

lim
x� x0

f(x)− f(x0)

x− x0
= lim

x� x0

0 = 0. (4.3)

So (x0)′= 0.

When n = 1 we have f(x)= x. For every x0∈R,

lim
x� x0

f(x)− f(x0)

x− x0
= lim

x� x0

x− x0

x− x0
= lim

x� x0

1 =1. (4.4)

So (x1)′= 1.

For n > 2 we have for every x0∈R,

lim
x� x0

f(x)− f(x0)

x−x0
= lim

x� x0

xn − x0
n

x− x0
= lim

x� x0

(xn−1 + xn−2 x0 +
 +x x0
n−2 + x0

n−1) =n x0
n−1. (4.5)

Therefore (xn)′= n xn−1.

From the above it is easy to obtain

Lemma 4.5. (Derivative of constant functions) Let f(x)= a for all x in its domain. Then f ′(x) =0.

Proof. Left as exercise. �

Lemma 4.6. (Differentiable functions are continuous) If f(x) is differentiable at x0, then f(x) is
continuous at x0.

Proof. Since f(x) is differentiable at x0, we have by definition

lim
x� x0

f(x)− f(x0)

x−x0
= L∈R (4.6)



Now write

f(x)= f(x0)+ (x−x0)
f(x)− f(x0)

x− x0
(4.7)

and take limit x� x0, we have

lim
x→x0

f(x)= f(x0)+
[

lim
x→x0

x− x0

]

[

lim
x→x0

f(x)− f(x0)

x− x0

]

= f(x0)+ 0 ·L = f(x0) (4.8)

Therefore f(x) is continuous at x0. �

Remark 4.7. Note that one can also prove using definition as follows. Since f(x) is differentiable at x0, we
have by definition

lim
x� x0

f(x)− f(x0)

x−x0
= L∈R (4.9)

Take δ1 > 0 such that for all 0< |x− x0|< δ1,
∣

∣

∣

∣

f(x)− f(x0)

x− x0
−L

∣

∣

∣

∣

< 1� |f(x)− f(x0)|< (|L|+ 1) |x− x0|. (4.10)

Now for any ε > 0, take δ =min

{

δ1,
ε

|L|+ 1

}

. We have, for all 0< |x−x0|< δ,

|f(x)− f(x0)|< (|L|+1) |x−x0|< (|L|+1) δ 6 ε. (4.11)

4.1.2. Operations of derivatives.

Theorem 4.8. (Arithmetics of derivatives) Let f , g be differentiable at x0. Then

a) f ± g is differentiable at x0 with (f ± g)′(x0)= f ′(x0)± g ′(x0).

b) (Leibniz rule) f g is differentiable at x0 with (f g)′(x0)= f ′(x0) g(x0) + f(x0) g ′(x0).

c) If g(x0)� 0, then f/g is differentiable at x0 with
(

f

g

)′

(x0)=
f ′(x0) g(x0)− f(x0) g ′(x0)

g(x0)2
. (4.12)

Proof.

a) We have
(f + g)(x)− (f + g)(x0)

x− x0
=

f(x)− f(x0)

x−x0
+

g(x)− g(x0)

x− x0
. (4.13)

Since

lim
x→x0

[

f(x)− f(x0)

x− x0
+

g(x)− g(x0)

x−x0

]

= f ′(x0)+ g ′(x0) (4.14)

The limit
(f + g)(x)− (f + g)(x0)

x− x0
(4.15)

also exists and equals f ′(x0)+ g ′(x0). The case f − g can be proved similarly.

b) We have
(f g)(x)− (f g)(x0)

x−x0
= f(x)

g(x)− g(x0)

x−x0
+ g(x0)

f(x)− f(x0)

x− x0
. (4.16)

Since

lim
x→x0

f(x) = f(x0); lim
x→x0

g(x)− g(x0)

x−x0
= g ′(x0); lim

x→x0

f(x)− f(x0)

x−x0
= f ′(x0) (4.17)

we reach

lim
x→x0

(f g)(x)− (f g)(x0)

x−x0
= f(x0) g ′(x0)+ f ′(x0) g(x0). (4.18)



c) We only prove the last one. In light of b), it suffices to prove
(

1

g

)′

=−
g ′(x0)

g2(x0)
. (4.19)

Write
1

g(x)
−

1

g(x0)

x−x0
=−

g(x)− g(x0)

x −x0

g(x) g(x0)
. (4.20)

Note that both the denominator and the numerator have limits, and furthermore the limit of the
denominator is not 0. So we have the limit of the ratio exists and

lim
x� x0



−

g(x)− g(x0)

x −x0

g(x) g(x0)



=−
limx� x0

g(x)− g(x0)

x − x0

limx� x0g(x) g(x0)
=−

g ′(x0)

g(x0)2
. (4.21)

Thus ends the proof. �

Example 4.9. Compute (x−n)′ for n∈N.
Solution. Note that the domain of x−n is R\{0}. For any x0∈R\{0} we have x0

n� 0, so

(x−n)′(x0) =

(

1

xn

)′

(x0)=−
(xn)′O x=x0

(xn)2O x=x0

=−n x0
−n−1. (4.22)

So (x−n)′=−n x−n−1.

Theorem 4.10. (Chain rule) If f is differentiable at x0 and g is differentiable at f(x0), then the composite
function g ◦ f is differentiable at x0 and satisfy

(g ◦ f)′(x0)= g ′(f(x0)) f ′(x0). (4.23)

Proof. Set

h(y)7 





g(y)− g(f(x0))

y − f(x0)
y� f(x0)

g ′(f(x0)) y = f(x0)

. (4.24)

Then we have h(y) satisfying limy� f(x0)h(y)= h(f(x0)).
Now write

(g ◦ f)(x)− (g ◦ f)(x0)

x− x0
= h(f(x))

f(x)− f(x0)

x− x0
. (4.25)

By Lemma 4.6 we have limx� x0
f(x)= f(x0). Thus taking limit of both sides of (4.25) we reach

lim
x� x0

(g ◦ f)(x)− (g ◦ f)(x0)

x−x0
=

(

lim
x� x0

h(f(x))
)

(

lim
x� x0

f(x)− f(x0)

x− x0

)

= h(f(x0)) f ′(x0) (4.26)

and the proof ends. �

Remark 4.11. Naturally one may want to prove through

(g ◦ f)(x)− (g ◦ f)(x0)

x− x0
=

g(f(x))− g(f(x0))

f(x)− f(x0)

f(x)− f(x0)

x− x0
(4.27)

and try to show

lim
x� x0

g(f(x))− g(f(x0))

f(x)− f(x0)
= g ′(f(x0)). (4.28)

However this does not work because it may happen that f(x)− f(x0) = 0. The above trick overcomes this
difficulty.

Theorem 4.12. (Derivative of inverse function) Let f be differentiable at x0 with f ′(x0) � 0. Then
if f has an inverse function g, then g is differentiable at y0 = f(x0) and satisfies g ′(f(x0)) = 1/f ′(x0) or
equivalently g ′(y0) =1/f ′(g(y0)).



Proof. Since f has an inverse function, f is either strictly increasing or strictly decreasing. Furthermore g

is continuous, and also strictly increasing or decreasing.

Let y0 = f(x0). We compute

g(y)− g(y0)

y − y0
=

g(y)− g(y0)

f(g(y))− f(g(y0))
=

(

f(g(y))− f(g(y0))

g(y)− g(y0)

)

−1

. (4.29)

Note that as f , g are both strictly increasing/decreasing, all the denominators in the above formula are
nonzero. To show that the limit exists, we recall that lim F (x) exists at x0 if for all xn� x0 the limit of
F (xn) exists.

Take yn� y0. By continuity of g we have g(yn)� g(y0). The differentiability of f at g(y0), that is

the existence of the limit limx� g(y0)
f(x)− f(g(y0))

x − g(y0)
, then gives

lim
n�∞

f(g(yn))− f(g(y0))

g(yn)− g(y0)
= f ′(g(y0))= f ′(x0)� 0. (4.30)

Thus ends the proof. �

Example 4.13. Assume that we are given tan′ (x)=
1

cos2x
, find arctan′ .

Solution. We have

arctan′ (y) =
1

tan′ (x)
= cos2 (x). (4.31)

What we need now is to represent cos2 (x) by y = tanx. It is clear that cos2x=
1

1+ y2 so arctan′ (y)=
1

1 + y2 .

Example 4.14. Assume that we are given (ex)′= ex. Find (lnx)′.

Solution. We have

(ln )′(y) =
1

(ex)′
=

1

ex
=

1

y
(4.32)

since y = ex.

Example 4.15. (f ′(x0) = 0) Consider f(x) = x3. Then g(y) = y1/3. We see that at x0 = 0, g is not
differentiable.

Theorem 4.16. (A Toy L’Hospital Rule) Let f , g be differentiable at x0, and furthermore f(x0)= g(x0)=
0. Then if g ′(x0)� 0, we have

lim
x� x0

f(x)

g(x)
=

f ′(x0)

g ′(x0)
. (4.33)

Proof. We have

lim
x� x0

f(x)

g(x)
= lim

x� x0

(f(x)− f(x0))/(x−x0)

(g(x)− g(x0))/(x−x0)
=

limx→x0

f(x)− f(x0)

x − x0

limx→x0

g(x)− g(x0)

x − x0

=
f ′(x0)

g ′(x0)
(4.34)

Thus ends the proof. �

Example 4.17. We have

lim
x→1

x2− 1

x− 1
=

(x2− 1)′O x=1

(x− 1)′O x=1
=

2

1
= 2. (4.35)

lim
x� 0

sin x

x
=

cos 0

1
=1. (4.36)

Remark 4.18. The applicability of the above Toy L’Hospital rule is limited. For example, it cannot deal

with limx� 0
1− sin x

x2 . We need the real L’Hospital rule for that.



4.2. Mean Value Theorem.

4.2.1. The Theorem.

Definition 4.19. (Local maximum/minimum) Let f : [a, b]� R be a real function. We say f has a local
maximum at x0 ∈ (a, b) if there exists some δ > 0 such that f(x) 6 f(x0) for all x ∈ (x0 − δ, x0 + δ). This
x0 is said to be a local maximizer. We say f has a local minimum at x0 if there exists some δ > 0 such that
f(x) > f(x0) for all x∈ (x0− δ, x0 + δ). This x0 is said to be a local minimizer.

Example 4.20. Let f(x) = 1 for all x ∈ R be the constant function. Then every x ∈ R is both a local
maximizer and a local minimizer.

Example 4.21. Consider f(x)= sin (1/x) defined over x� 0. Then its local maximums are
2

(4 k +1) π
, k ∈Z

while its local minimums are
2

(4 k + 3) π
, k ∈Z.

Theorem 4.22. If f is differentiable at its local maximizer or minimizer, then the derivative is 0 there.

Proof. Assume x0 is a local maximizer. Take xn∈ (x0, x0+δ) with limn�∞xn=x0. Since f is differentiable
at x0, we have

f ′(x0)= lim
x� x0

f(x)− f(x0)

x−x0
= lim

n�∞

f(xn)− f(x0)

x− x0
. (4.37)

But as f(xn)− f(x0) 6 0 for all n, by comparison theorem we reach f ′(x0) 6 0.

Now take xn ∈ (x0− δ, x0) with limn→∞xn = x0. Similar argument as above gives f ′(x0) > 0. Therefore
f ′(x0)= 0.

The proof for the local minimizer case is similar and left as exercise. �

Remark 4.23. It may happen that f is not differentiable at its maximizer or minimizer. For example
f(x) = |x|.

Remark 4.24. Theorem 4.22 may be the most useful analysis theorem in real life, where the need for finding
maximizer/minimizer of certain functions (representing cost, profit, ...) is ever increasing.

Example 4.25. Consider f(x)=x sin (1/x). Then its local maximizers and minimizers can be obtained by
solving

0 = f ′(x)= sin (1/x)−
x

x2
cos (1/x)� tan (1/x)= 1/x. (4.38)

The solutions have to be obtained numerically as it is not possible to represent them using elementary
functions.

Theorem 4.26. (Rolle’s Theorem) Let f be continuous on [a,b] and differentiable on (a,b). If f(a)= f(b)
then there is ξ ∈ (a, b) such that f ′(ξ) =0.

Remark 4.27. Before proving the theorem, we illustrate the necessity of the assumptions.

• f is continuous on [a, b]. If not, f(x) =

{

x 06 x < 1
0 x= 1

.

• f is differentiable on (a, b). If not, f(x)= |x| over [−1, 1].

Proof. Since f is continuous on [a, b], there are xmin, xmax ∈ [a, b] such that f(xmin) is the minimum and
f(xmax) is the maximum. If one of them is different from a, b, then f ′ = 0 there due to Theorem 4.22.
Otherwise we have f(a)= f(b)= f(xmin)= f(xmax)� f(x) is constant on [a, b], consequently f ′(x)=0 for
all x∈ (a, b). �



Theorem 4.28. (Rolle over R) Let f be continuous and differentiable on R. If limx�+∞f(x) =
limx�−∞f(x), then there is ξ ∈R such that f ′(ξ)= 0.

Proof. We discuss three cases. Let limx�∞f = limx�−∞f = a. Consider A 7 supRf and B 7 infRf .
Since f is continuous on R, A, B ∈R cannot be infinity.4.1

If A =B = a, then f is constant and f ′(x)= 0 for all x∈R.

Otherwise, we have either A > a or B < a (or both). Assume A > a (the case B < a is similar). Take xn

such that f(xn)� supRf >a. Since lim|x|�∞f(x)= a, there is M > 0 such that f(x)< (supRf +a)/2 for

all |x|>M . Consequently there is N ∈N such that for all n >N , |xn|6M . Now apply Bolzano-Weierstrass
theorem, we have a subsequence xnk

� x0∈R. By continuity of f we have

f(x0)= lim
k�∞

f(xnk
)= sup

R

f(x) (4.39)

therefore x0 is a maximizer of f . Consequently f ′(x0)= 0. �

Theorem 4.29. (Mean Value Theorem) Let f be continuous on [a, b] and differentiable on (a, b). Then
there is a point ξ ∈ (a, b) such that

f ′(ξ)=
f(b)− f(a)

b− a
. (4.40)

Proof. Set g(x)= f(x)−
f(b)− f(a)

b − a
(x− a) and apply Rolle’s Theorem. �

Remark 4.30. When the interval has infinite size, the Mean Value Theorem may not hold (even if we accept
(f(b)− f(a))/∞= 0). An example is f(x)= arctanx.

4.2.2. Applications.

Theorem 4.31. Let f be defined over [a, b] ⊆ R. Here a, b can be extended real numbers. Suppose f is
continuous on [a, b] and differentiable on (a, b). Then

a) f is increasing if and only if f ′(x)> 0 for all x∈ (a, b); f is decreasing if and only if f ′(x)6 0 for all
x∈ (a, b).

b) f is strictly increasing if f ′(x)>0 for all x∈ (a, b); f is strictly decreasing if f ′(x)<0 for all x∈ (a, b).

c) f is a constant if and only if f ′(x)= 0 for all x∈ (a, b).

Proof.

a) We prove the increasing case here.

Let f be increasing, we show f ′(x) > 0. Take any x0∈ (a, b). Since f is increasing, f(x) > f(x0)
when x > x0 and f(x) 6 f(x0) when x <x0, thus

f(x)− f(x0)

x−x0
> 0 (4.41)

for all x� x0. As f is differentiable at x0, taking limit of both sides leads to f ′(x0) > 0.

Let f ′(x) > 0 for all x ∈ (a, b). Assume f is not increasing. Then there are x1 < x2 such that
f(x1)> f(x2). Apply Mean Value Theorem we have there must exist ξ ∈ (x1, x2)⊆ (a, b) such that

f ′(ξ)=
f(x1)− f(x2)

x1− x2
< 0. (4.42)

4.1. If limn→∞f(xn) = ∞, then there is N ∈ N such that for all n > N , f(xn) > a + 1. On the other hand, since

limx→∞f = limx→−∞f(x)=a, there are M1,M2 such that |f(x)−a|< 1 when x > M1 or x < M2. Consequently xn∈ [M2,M1]
for all n >N . since [M2,M1] is a bounded interval, there is subsequence xnk

� ξ ∈ [M2,M1]. As a consequence of f ′s continuity

we have f(ξ)=∞. Contradiction.



Contradiction.

b) The proof is similar to the corresponding part of a).

c) The proof is left as exercise. �

Remark 4.32. Note that f(x) strictly increasing� f ′(x) > 0 everywhere. An examples is f(x)= x3.

Example 4.33. Prove that ex > 1 +x for all x > 0.

Proof. Let f(x) = ex − 1 − x. We see that f(0) = 0. To show f(x) > 0 it suffices to show f is strictly
increasing. Calculate

f ′(x)= ex − 1> 0 (4.43)

for all x > 0. Therefore f is strictly increasing and consequently f(x)> 0 for all x > 0. �

Example 4.34. Prove
x

1+ x
6 ln (1 +x)6 x (4.44)

for all x >−1.

Proof. For the first inequality let f(x) = ln (1 + x) −
x

1+ x
. We have f(0) = 0 so all we need to show is

f(x) > f(0). Calculate

f ′(x) =
x

(1 +x)2
. (4.45)

Thus f(x) > 0 when x > 0 and f(x)6 0 when x < 0. Consequently f(x)> f(0).

For the second inequality let g(x)=x− ln (1+x). We have g(0)=0 and need to show g(x)> g(0) for all
x. Calculate

g ′(x)=
x

1 +x
. (4.46)

For x >−1 we have g ′(x)> 0 if x > 0 and <0 if x < 0. �

Example 4.35. Prove

arctan
1+ x

1− x
= arctanx+

π

4
(4.47)

for −1< x < 1.

Proof. Set x= 0 we have

arctan
1 +0

1− 0
= arctan 0 +

π

4
. (4.48)

Therefore all we need to show is

h(x)7 arctan
1+ x

1− x
− arctanx (4.49)

is a constant for −1 <x < 1. Once this is shown, we have h(x)= h(0)=
π

4
.

Taking derivative, we have

h′(x) =

(

1 + x

1− x

)′

1+
(

1+ x

1− x

)

2
−

1

1 +x2
=

1 · (1−x)− (−1) · (1+ x)

(1−x)2

(1−x)2 +(1+ x)2

(1−x)2

−
1

1 +x2
= 0. (4.50)

Thus ends the proof. �

4.2.3. L’Hospital’s Rule.



We have seen that if f , g are differentiable at x0 and g ′(x0)� 0, then

lim
f

g
=

f ′(x0)

g ′(x0)
. (4.51)

More generally, we have

Theorem 4.36. (L’Hospital’s Rule) Let x0∈ (a, b) and f(x), g(x) be differentiable on (a, b)\{x0}. Assume

that limx� x0
f(x)= limx� x0

g(x)=0. Then if limx� x0

f ′(x)

g ′(x)
exists and g ′(x)� 0 for x∈(a,b), the following

holds.

lim
x� x0

f(x)

g(x)
= lim

x� x0

f ′(x)

g ′(x)
. (4.52)

To prove it, we need the following

Theorem 4.37. (Cauchy’s extended mean value theorem) Let f , g be continuous over [a, b] and
differentiable over (a, b). Then there is ξ ∈ (a, b) such that

f(a)− f(b)

g(a)− g(b)
=

f ′(ξ)

g ′(ξ)
. (4.53)

Proof. Take

h(x) = f(x)−
f(b)− f(a)

g(b)− g(a)
g(x) (4.54)

we have h(a)−h(b)=0� h(a)=h(b). Application of the mean value theorem gives the desired result. �

Proof. (of L’Hospital’s Rule) Since limx� x0
f(x) = limx� x0

g(x) = 0 we can define f(x0) = g(x0) = 0.
After such definition f , g becomes continuous over (a, b). Now for any x∈ (a, b), we have

f(x)

g(x)
=

f(x)− f(x0)

g(x)− g(x0)
=

f ′(ξ)

g ′(ξ)
(4.55)

for some ξ between x, x0, thanks to the extended mean value theorem. Now taking limit x� x0, we have
ξ� x0 and the conclusion follows. �

Example 4.38. Find limx� 0
x sin x

x2 .

We see that the conditions for L’Hospital’s rule is satisfied. Therefore

lim
x� 0

x sinx

x2
= lim

x� 0

sinx+ x cos x

2 x
= lim

x� 0

2 cos x− x sinx

2
=1. (4.56)

Remark 4.39. L’Hospital’s rule still holds when x0=±∞, limx→x0

f ′(x)

g ′(x)
=±∞, or limx� x0f , limx� x0g =

±∞. The proofs for these generalizations are not required.

Example 4.40. Find limx� 0x ln x. We have

lim
x� 0

x lnx = lim
x� 0

lnx

1/x
= lim

x→0

1/x

−1/x2
= lim

x� 0
(−x)= 0. (4.57)

Remark 4.41. L’Hospital’s rule only applies to the situations 0/0, (±∞)/(±∞).



4.3. Taylor Expansion.

4.3.1. Derivative from approximation point of view.
Recall the definition of derivative:

lim
x� x0

f(x)− f(x0)

x− x0
= f ′(x0). (4.58)

We can re-write it as

lim
x� x0

f(x)− f(x0)− f ′(x0) (x−x0)

x− x0
=0. (4.59)

Now consider the following problem: Given f(x) differentiable at x0. Find the best first order polynomial
g(x) = a + b (x− x0) to approximate f(x).

Theorem 4.42. The function G(x)7 f(x0)+ f ′(x0) (x−x0) is the best first order polynomial approximate
of f at x0, in the following sense: Let g(x)= a + b (x−x0) be any other first order polynomial, then

lim
x� x0

f(x)−G(x)

f(x)− g(x)
= 0 (4.60)

Proof. First if a� f(x0), we have

lim
x� x0

[f(x)−G(x)] = 0, lim
x� x0

[f(x)− g(x)] = f(x0)− a� 0 (4.61)

so (4.60) holds.
Now consider g(x)= f(x0)+ b (x− x0). We have

lim
x� x0

f(x)−G(x)= lim
x� x0

f(x)− g(x)= 0 (4.62)

therefore can apply L’Hospital’s rule to reach

lim
x� x0

f(x)−G(x)

f(x)− g(x)
= lim

x� x0

f ′(x)− f ′(x0)

f ′(x)− b
(4.63)

which equals 0 unless b = f ′(x0). �

Remark 4.43. Note that Theorem 4.42 can also be proved directly, without using L’Hospital’s rule:

f(x)−G(x)

f(x)− g(x)
=

f(x)− f(x0)− f ′(x0) (x− x0)

f(x)− f(x0)− b (x−x0)
=

f(x)− f(x0)

x −x0
− f ′(x0)

f(x)− f(x0)

x −x0
− b

(4.64)

Taking limit gives the desired result.

4.3.2. Higher order derivatives.
Let f(x) be differentiable on (a, b). Then f ′(x) is defined for all (a, b) and we can talk about its

differentiability and define second order derivative f ′′(x). Similarly we can define f ′′′(x) and higher order

derivatives. In short, we define f (n)(x)=
(

f (n−1)(x)
)′.

Example 4.44. Let f(x)= e3x. Compute f (3)(x).
We have

f (3)(x) = ((f ′)′)′= ((3 e3x)′)′= (9 e3x)′= 27 e3x. (4.65)

Note that for f (n)(x0) to exist, f (n−1)(x) must exist over (x0− δ, x0 + δ) for some δ > 0.

4.3.3. Taylor expansion.

Theorem 4.45. Let f be such that f (k)(x) exists on (a, b) for k = 1, 2, 	 , n − 1, and f (n)(x0) exists for

x0∈(a,b). Denote Pn(x)= f(x0)+ f ′(x0) (x−x0)+
f ′′(x0)

2
(x−x0)

2+
 +
f(n)(x0)

n!
(x−x0)

n. Then Pn(x) is the

best approximate polynomial for f at x0 in the sense that for any other polynomial Qn(x) of order n, we have

lim
x� x0

f(x)−Pn(x)

f(x)− Qn(x)
= 0 (4.66)



Proof. Let Qn(x)= q0 + q1 (x− x0) +
 + qn (x− x0)
n. First observe that if q0� f(x0), then

lim
x� x0

f(x)−Pn(x)

f(x)− Qn(x)
=

0

f(x0)− q0
= 0. (4.67)

If q0 = f(x0) but q1� f ′(x0), we have a
0

0
type ratio and can apply L’Hospital’s rule:

lim
x� x0

f(x)−Pn(x)

f(x)− Qn(x)
= lim

x→x0

f ′(x)− [f ′(x0)+ f ′′(x0) (x− x0)+
 ]

f ′(x)− [q1 + q2 (x− x0)+
 ]
=

0

f ′(x0)− q1
= 0. (4.68)

Doing this repeatedly, we see that the limit is 0 unless Qn = Pn. �

If f has better differentiability, we can write f(x)−Pn(x) out more explicitly.

Theorem 4.46. (Lagrange form of the remainder) Let f be such that f (k)(x) exists on (a, b). Then
for every x, x0∈ (a, b) the following holds:

f(x)= f(x0) + f ′(x0) (x−x0)+
f ′′(x0)

2
(x− x0)

2 +
 +
f (n)(x0)

n!
(x− x0)

n +
f (n+1)(ξ)

(n +1)!
(x−x0)

n+1 (4.69)

where ξ is between x, x0.

Remark 4.47. It is important to understand that ξ depends on x, that is when x changes, so does ξ. For
any fixed x, it is clear that there is r ∈R such that

f(x)= f(x0)+ f ′(x0) (x− x0)+
f ′′(x0)

2
(x− x0)

2 +
 +
f (n)(x0)

n!
(x− x0)

n + r (x− x0)
n+1. (4.70)

Thus what the theorem actually says is: ∃ξ between x, x0 such that r =
f(n+1)(ξ)

(n +1)!
.

Proof. In the following x is fixed. Take r ∈R such that

f(x)= f(x0)+ f ′(x0) (x− x0)+
f ′′(x0)

2
(x− x0)2 +
 +

f (n)(x0)

n!
(x− x0)n + r (x− x0)n+1. (4.71)

holds for this particular x.
Now set

g(t)= f(t)−

[

f(x0)+ f ′(x0) (t− x0) +
f ′′(x0)

2
(t− x0)

2 +
 +
f (n)(x0)

n!
(t−x0)

n + r (t− x0)
n+1

]

(4.72)

then we have g(x0) = g(x) = 0. Applying Rolle’s theorem, we obtain ξ1 between x0, x such that g ′(ξ1) = 0.
On the other hand clearly g ′(x0)=0. Thus we have ξ2 between ξ1 and x0 (thus also between x,x0) such that

g ′′(ξ2)= 0. Apply this n times we conclude that there is ξ such that g(n+1)(ξ) =0, which gives

r =
f (n+1)(ξ)

(n + 1)!
. (4.73) �

Remark 4.48. Note that the case n = 0 is exactly Rolle’s theorem. Also note that one cannot prove the
above theorem through induction.

Definition 4.49. (Taylor Polynomial) The polynomial

f(x0)+ f ′(x0) (t− x0) +
f ′′(x0)

2
(t− x0)

2 +
 +
f (n)(x0)

n!
(t−x0)

n (4.74)

is called the Taylor polynomial of the function f, the term

Rn7 f (n+1)(ξ)

(n + 1)!
(x−x0)

n+1 (4.75)

is called the Lagrange form of the remainder.



Example 4.50. Calculate Taylor polynomial with Lagrange form of remainder (to degree 2 – that is n=2)
of the following functions at x0 = 0.

f(x)= sin (sinx); f(x) =x4 + x+ 1; f(x)=
1

1 + x2
(4.76)

Solution.

• f(x) = sin (sinx). We calculate:

f ′(x) = [cos (sinx)] cos x� f ′(0)= 1; (4.77)

f ′′(x)= [−sin (sin x) cos x] cos x− [cos (sinx)] sinx� f ′′(0)= 0; (4.78)

f ′′′(x) = {[−sin (sinx)] cos2x}′−{[cos (sinx)] sin x}′

= −cos (sinx) cos3x + 2 sin (sinx) cosx sinx

+sin (sin x) sin x cos x− cos (sinx) cos x

= −cos x [(cos2x +1) cos (sinx)− 3 sin x (sin (sinx))]. (4.79)

Thus the Taylor polynomial at x0 =0 to degree 2 reads:

0 + 1 · (x− 0) +
0

2
(x− 0)2 +

f ′′′(ξ)

6
(x− 0)3 (4.80)

which simplifies to

sin (sin x)= x +
−cos ξ [(cos2ξ +1) cos (sin ξ)− 3 sin ξ (sin (sin ξ))]

6
x3. (4.81)

Here ξ lies between 0 and x.

• f(x) =x4 + x+ 1. We calculate:

f(0)= 1, f ′(x) =4 x3 +1� f ′(0)= 1, f ′′(x)= 12 x2� f ′′(0) =0 (4.82)

and

f ′′′(x) = 24x. (4.83)

Therefore the Taylor polynomial at x0 = 0 to degree 2 reads

x4 + x+ 1= 1 +x +(4 ξ)x3 (4.84)

where ξ lies between 0 and x.

• f(x) =
1

1+ x2 . We calculate:

f(0)= 1; f ′(x) =−
2 x

(1+ x2)2
� f ′(0) =0 (4.85)

f ′′(x)=−
2 (1 +x2)2− 8 x2 (1+ x2)

(1+ x2)4
=

6x2− 2

(1 +x2)3
� f ′′(0)=−2. (4.86)

f ′′′(x)=
12x (1 +x2)3− 6 x (1+ x2)2 (6x2− 2)

(1+ x2)6
=

24x (1−x2)

(1 +x2)4
. (4.87)

Therefore the Taylor polynomial at x0 = 0 to degree 2 reads

1

1 + x2
=1− x2 +

4 ξ (1− ξ2)

(1 + ξ2)4
x3 (4.88)

where ξ lies between 0 and x.

Example 4.51. Calculate Taylor polynomial (to degree 2) of the following functions at the specified x0’s.

f(x) = sin x, x0 =
π

2
; f(x)= x4 + x+ 1, x0 = 1; f(x)= ex, x0 = 2. (4.89)

Solution.

• f(x) = sinx, x0 =
π

2
.



We have

f(x0)= sin
(

π

2

)

= 1; (4.90)

f ′(x)= cosx� f ′(x0)= 0; (4.91)

f ′′(x)=−sin x� f ′′(x0) =−1; (4.92)

f ′′′(x)=−cos x. (4.93)

Therefore the answer is

sin x= 1−
1

2

(

x−
π

2

)

2
−

cos ξ

6

(

x−
π

2

)

3
(4.94)

where ξ is between x and π/2.

• f(x) =x4 + x+ 1, x0 = 1.
We have

f(x0)= 3; f ′(x) =4 x3 + 1� f ′(x0)= 5 (4.95)

f ′′(x)= 12x2� f ′′(x0)= 12; f ′′′(x)= 24 x. (4.96)

So the answer is

x4 + x+ 1= 3 +5 (x− 1)+ 6 (x− 1)2 +4 ξ (x− 1)3 (4.97)

where ξ is between x and 1.

• f(x) = ex, x0 = 2.
We have

f(x0)= f ′(x0) = f ′′(x0)= e2, f ′′′(x) = ex. (4.98)

So the answer is

ex = e2 + e2 (x− 2)+
e2

2
(x− 2)2 +

eξ

6
(x− 2)3 (4.99)

where ξ is between x and 1.

Remark 4.52. Note that the Taylor polynomial is just the best approximation at x0. Therefore are naturally
different when x0 changes.

Example 4.53. Prove the following.

a) ex > 1 + x+
x2

2
+

x3

6
for all x > 0.

b)
∣

∣

∣cos x−
(

1−
x2

2

)∣

∣

∣ <
1

24
for all x∈ (−1, 1).

Proof.

a) The Taylor polynomial with Lagrange remainder for ex at 0 is

ex = 1+ x+
x2

2
+

x3

6
+

eξ

24
x4. (4.100)

Since x > 0, ξ (note that it depends on x, that is ξ = ξ(x) is in fact a function of x) is also positive.

Consequently
eξ

24
x4 > 0 for all x. So ex > 1 + x+

x2

2
+

x3

6
holds for all x > 0.

b) The Taylor polynomial with Lagrange remainder for cos x at 0 is (up to degree 2):

cos x= 1−
x2

2
+

sin ξ

6
x3 (4.101)

with ξ between 0 and x. Thus we have
∣

∣

∣

∣

cos x−

(

1−
x2

2

)∣

∣

∣

∣

=
|sin ξ |

6
|x|3 <

1

6
. (4.102)



for all x∈ (−1, 1). This is not enough so we expand one more term:

cos x= 1−
x2

2
+

cos ξ

24
x4 (4.103)

which gives
∣

∣

∣

∣

cos x−

(

1−
x2

2

)
∣

∣

∣

∣

=
|cos ξ |

24
|x|4 <

1

24
. (4.104)

�

Definition 4.54. (Taylor series) If f (n)(x) exists for all n ∈N over (a, b), then for any x0 ∈ (a, b) one
can write down an infinite series (polynomial of infinite degree):

f(x0)+ f ′(x0) (t− x0)+
f ′′(x0)

2
(t− x0)

2 +
 +
f (n)(x0)

n!
(t− x0)

n +
 =
∑

n=0

∞
f (n)(x0)

n!
(x− x0)

n. (4.105)

This is called the Taylor series of f at x0.

Remark 4.55. Note that f(x) =
∑

n=0
∞ f(n)(x0)

n!
(x − x0)

n may not hold. A counterexample is f(x) =
{

e−1/x2

x� 0
0 x= 0

whose Taylor series is
∑

n=0
∞

0 · (x−x0)
n.

Example 4.56. We can calculate the Taylor series ex, cosx.

ex∼
∑

n=0

∞
xn

n!
; cos x∼

∑

n=0

∞

(−1)n x2n

(2n)!
. (4.106)


