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3. Real Functions and Continuity

A real function is a function with domain R and range R.

3.1. Limits of Real Functions.

3.1.1. Definition.

Consider a real function f(x). We would like to understand its limiting behavior toward a point x0, that
is, we would like to understand f(x)� ? as x� x0.

Definition 3.1. We say that a real number L is the limit of f at x0, denoted limx→x0
f(x)=L (or f(x)� L

as x� x0, or lim f(x)= L as x� x0), if

∀ε > 0 ∃δ > 0 such that for all 0 < |x− x0|< δ� |f(x)−L|<ε. (3.1)

Remark 3.2. Note that the requirement 0 < |x − x0| is important. The limit of f at x0 has nothing to
do with whether f(x0) is defined or not, not to say its value. This is very reasonable: Consider f(x) = 0
everywhere except f(x)= 1 at x =0. Then clearly we should have limx� 0f(x) =0.

Remark 3.3. It is also possible to define limx→x0f(x) when the domain of f is E ⊆R instead of the whole
R. In this case we say limx→x0f(x)= L if

∀ε > 0 ∃δ > 0 such that for all x∈E satisfying 0 < |x− x0|< δ� |f(x)−L|<ε. (3.2)

The following theorems still hold in this general case.

Example 3.4. The following hold:

a) limx� x0a = a for constant function a.

b) limx� 1x
2 = 1.

Proof. We prove b).

Given any ε > 0, we need to find δ > 0 such that for all 0 < |x− 1|< δ, |x2− 1|< ε. Since

|x2− 1|= |x− 1| |x +1|< δ |x +1|< δ (2 + δ). (3.3)

we see that we need to choose a δ such that δ (2+ δ)< ε.

Notice that

δ (2 + δ)< ε� δ2 +2 δ + 1< ε +1� |δ + 1|< ε+ 1
√ � −1− ε + 1

√
< δ < ε + 1

√
− 1. (3.4)

Thus for any ε > 0, if we take δ =
ε + 1

√
− 1

2
, then for 0 < |x− 1|< δ, |x2− 1|< ε. �

Lemma 3.5. A function can have at most one limit at a given point.

Proof. We prove by contradiction. Assume that f(x)� L1 and f(x)� L2 as x� x0. Take ε= |L1−L2|/2.
From the first limit we conclude that there is δ1>0 such that for all 0< |x−x0|<δ1, |f(x)−L1|<ε; Similarly
from the second limit we conclude that there is δ2 > 0 such that for all 0 < |x− x0|< δ2, |f(x)−L2|< ε.



Now take δ =min {δ1, δ2}. For every x such that |x − x0|< δ, we have at the same time |f(x)−L1|< ε

and |f(x)−L2|< ε. This leads to

|L1−L2|= |(f(x)−L1)− (f(x)−L2)|6 |f(x)−L1|+ |f(x)−L2|< 2 ε= |L1−L2|. (3.5)

Contradiction. �

Theorem 3.6. limx� x0f(x) = L if and only if for every sequence xn� x0 with xn � x0 for all n ∈ N,
limn�∞f(xn) =L.

Proof. We prove “if” (�) and then “only if” (� ),

• ”If”. We need to show if for every sequence xn� x0 with xn� x0 for all n ∈N, limn�∞f(xn) = L

then limx� x0f(x) =L. We prove by contradiction.

Assume the contrary. That is assume f(x) does not have limit L as x� x0. Checking Definition
3.1 we see that “f(x) does not have limit L as x� x0” means

∃ε0 ∀δ ∃x with 0 < |x− x0|<δ, |f(x)−L|> ε0. (3.6)

Take δ = 1. We have x1 with 0 < |x1− x0|< 1, such that

|f(x1)−L|> ε0; (3.7)

Next take δ =1/2. We have x2 with 0 < |x2−x0|< 1/2, such that

|f(x2)−L|> ε0; (3.8)

Continue doing this, we obtain a sequence {xn} satisfying 0 < |xn − x0|< 1/n,

|f(xn)−L|> ε0. (3.9)

Clearly xn� x0 for all n∈N by construction. To reach contradiction, we prove

◦ xn� x0. For any ε > 0, choose natural number N > 1/ε. Then for every n >N , we have

|xn −x0|< 1/N < ε. (3.10)

◦ f(xn)�L. Take ε = ε0. Since by construction |f(xn) − L|> ε0 for all n ∈N, there does not
exists N ∈N such that n >N� |f(xn)−L|< ε.

Thus we have shown that there is a sequence xn� x0 with xn� x0 for all n∈N but limn�∞f(xn)=
L does not hold. Contradiction.

• ”Only if”. We need to show that if limx� x0f(x) = L then for every sequence xn� x0 with xn� x0

for all n∈N, limn�∞f(xn)= L. We prove directly this time.

Let {xn} be a sequence satisfying xn� x0 with xn � x0 for all n ∈ N. Given any ε > 0, since
limx� x0f(x)= L there is δ > 0 such that 0 < |x− x0|< δ� |f(x)−L|<ε.

Now for this δ, we have N ∈N such that for all n > N , |xn − x0|< δ because xn� x0. Thus for
all n > N ,|f(xn)−L|< ε.



Putting the above together, we see that for any ε > 0, there is N ∈ N such that for all n > N ,
|f(xn)−L|<ε which means limn�∞f(xn) =L. �

The assumptions in the above theorem can be weakened to

Theorem 3.7. limx� x0f(x) exists if and only if for every sequence xn� x0 with xn� x0 for all n∈N,
limn�∞f(xn) exists.

Proof. Left as exercise. (Hint: If all such limits exist, then they must be the same number). �

3.1.2. Properties.

Theorem 3.8. If limx→x0
f(x)= L, limx→x0

g(x) =M, then

lim
x→x0

(f ± g)(x)= L±M, lim
x→x0

(f g)(x)= LM, (3.11)

and, if furthermore M � 0,

lim
x→x0

(

f

g

)

(x)=
L

M
. (3.12)

Proof. Thanks to Theorem 3.6, these claims directly follow from corresponding claims for sequences. �

One can clearly obtain Squeeze and Comparison theorems:

Theorem 3.9. (Squeeze) If h(x)6 f(x)6 g(x), limx→x0h(x)= limx→x0g(x)=L, then limx→x0f(x)=L.

Example 3.10. Prove that limx� 0x sin (1/x)=0.

Proof. We take h(x) = −|x|, g(x) = |x|, f(x) = x sin (1/x). Clearly h(x) 6 f(x) 6 g(x). Thus all we
need to show is h(x), g(x)� 0. Further observe that h(x) = −g(x), by Theorem 3.8 and the fact that
limx� 0 (−1)=−1, we have limx� 0h(x)=−limx� 0g(x).

Therefore all we need to show is limx� 0 |x|=0. For every ε > 0, take δ = ε, we have for all |x− 0|<δ,

||x| − 0|= |x|< δ = ε. (3.13)

Thus ends the proof. �

Theorem 3.11. (Comparison) If h(x) 6 f(x) 6 g(x), and limx→x0
h(x) = L1, limx→x0

f(x) = L2,

limx→x0g(x) =L3, then L1 6L2 6 L3.

One can similarly define divergence to ±∞:

Definition 3.12. We say limx→x0f(x) =+∞ if

∀M ∈R ∃δ > 0 such that for all 0 < |x− x0|< δ, f(x)> M. (3.14)

limx→x0f(x) =−∞ is defined similarly.

Example 3.13. Prove that ln (1/|x|)� ∞ as x� 0.



Proof. For any M ∈R, we need to find δ > 0 such that when 0< |x|<δ, ln (1/|x|)> M . It is clear that we

can take δ = e−M−1. �

Remark 3.14. Theorems 3.6, 3.8 as well as the Squeeze and Comparison theorems can all be generalized
to the cases L =±∞. The proofs are left as exercises.

3.1.3. Limits at infinity.

Definition 3.15. We say limx�∞f(x) = L if for every ε > 0 there is some M ∈R such that x > M�
|f(x)−L|< ε. The limit limx�−∞f(x) =L is defined similarly.

Remark 3.16. One can also define limx�∞f(x)=∞ etc. So essentially, we can discuss limx� x0f(x)=L

for extended real numbers x0, L and obtain generalized versions of Theorems 3.6, 3.8 as well as the
Squeeze and Comparison theorems. The detailed definitions for these general situations are left as exercise.

Example 3.17. Find and prove the limit (only discuss x > 0)

lim
x�∞

(

x2 + 2x
√

− x
)

. (3.15)

Solution.

The function is quite complicated and the limit is not obvious. Thus we first try to simplify:

x2 + 2 x
√

− x =

(

x2 + 2 x
√

− x
)(

x2 + 2x
√

+ x
)

(

x2 + 2x
√

+ x
) =

2x

x2 + 2 x
√

+ x
=

2

1 +
2

x

√

+ 1
. (3.16)

By Theorem 3.8 we see that all we need to do is to find the limits of the numerator and denominator. Clearly

lim
x�∞

2 = 2. (3.17)

On the other hand we show limx�∞ 1+ 2/x
√

= 1. For any ε > 0, take M = 1/ε. Then for all x > M , we
have 2/x < 2 ε and consequently

0< 1 + 2/x
√

− 1 < 1 +2 ε
√

− 1 < (1 + ε)2
√

− 1= ε. (3.18)

Therefore
∣

∣ 1 + 2/x
√

− 1
∣

∣ <ε for all x > M . We have proved limx�∞
(

1 +2/x
√

+ 1
)

= 2� 0.

Now we can apply Theorem 3.8 once more to conclude

lim
x�∞

(

x2 + 2 x
√

− x
)

= lim
x�∞

2

1 +
2

x

√

+ 1
=1. (3.19)

Remark 3.18. One can also use Comparison theorem as follows:

1=
2 x

2 x
<

2 x

x2 + 2x
√

+ x
<

2x

2 x+ 1
(3.20)

and then prove limx�∞
2 x

2 x + 1
. Usually there are many ways to solve a problem in mathematical analysis.

Be creative.



3.2. Continuity.

3.2.1. Definition.

Definition 3.19. (Continuity) A function f(x):R� R is continuous at x0 if

1. limx� x0
f(x) exists;

2. f(x0)= limx� x0f(x).

Or equivalently, if

∀ε > 0 ∃δ > 0 such that for all |x−x0|< δ, |f(x)− f(x0)|< ε. (3.21)

If f(x) is continuous at every x∈E ⊆R, we say f(x) is continuous on E. In particular, we simply say f(x)
is continuous when E =R.

Remark 3.20. Note that compared with Definition 3.1 (limit of function), we do not require 0 < |x − x0|
anymore.

Remark 3.21. Continuity can be similarly defined if the domain of f is only a subset of R.

Example 3.22. Let f1(x)=

{

e−1/x2

x� 0
0 x =0

. Prove that it is continuous at x = 0.

Proof. Take any ε > 0 we need to find δ > 0 such that for every |x − 0| < δ, |f1(x) − 0| < ε. We take

δ =
(

1

log (1/ε)

)

1/2
. To show that this δ works, we need to discuss two cases (be careful here!!):

• x = 0. In this case |0− 0|<ε;

• x� 0. In this case |f1(x)− 0|= e−1/x2

< e−1/δ2

= ε. �

Example 3.23. Let f2(x)=

{

e
− 1

1−x2 |x|< 1
0 |x|> 1

. Prove that it is continuous at x= 1.

Proof. Take any ε >0 we need to find δ >0 such that for every |x−1|<δ, |f2(x)−0|<ε. Take δ = ln (1/ε),
then for every |x− 1|<δ there are two cases:

• x > 1. In this case |f2(x)− f2(1)|= 0< ε.

• x < 1. In this case

|f2(x)− f2(1)|= e
− 1

(1−x)(1+x) < e
−1

δ = ε. (3.22)

Thus ends the proof. �

Remark 3.24. When showing continuity by definition, the key is to find a formula for δ. Usually this formula
cannot be revealed until enough simplification has been done to f(x)− f(x0). Therefore it is a good idea to
first write done:

For any given ε > 0, we take δ =(leave blank for now), then for every |x− x0|< δ, we have
|f(x)− f(x0)|=	 .(simplifications).

and then fill in the black for δ when enough simplification is done.



Remark 3.25. It is important to understand that saying f(x) is continuous at x0 has two layers of meanings,
first, limx→x0f(x) exists, second, this limit is exactly f(x0). Correspondingly, f(x) is not continuous at x0

3.1

if either

• limx→x0f(x) does not exist, or

• limx→x0
f(x) exists but does not equal f(x0).

Example 3.26. Construct examples of functions that are not continuous.

• We start from the simplest one: f(x)=

{

sinx x� 0
2 x = 0

is not continuous at 0.

• f(x) =

{

sin (1/x) x� 0
0 x =0

is not continuous at x = 0.

• The Dirichlet function f(x)=

{

1 x∈Q

0 x∈R\Q is not continuous anywhere.

Theorem 3.27. f is continuous at x0 if and only if for every sequence xn� x0, f(xn)� f(x0).

Proof. It follows immediately from Definition 3.19 and Theorem 3.6. �

3.2.2. Properties.

Theorem 3.28. Let f , g be functions continuous at x0. Then f ± g, f g are continuous at x0. Furthermore
if g(x0)� 0, f/g is also continuous at x0.

Proof. Left as exercise. �

Example 3.29. (Continuity of everyday functions) The following functions are continuous everywhere.

a) Polynomials P (x)= an xn +
 + a1 x+ a0.

b) The exponential function ex.

c) The functions sinx, cos x.

Proof. The proofs of b), c) involve something beyond 314. So we only prove a) here. Thanks to Theorem

3.28, all we need to show is that the monomial xk is continuous everywhere.

First consider the case x0 =0. In this case for every ε > 0, take δ = ε1/k. Then for all |x− 0|<δ we have
|xk − 0k|< δk = ε.

Next consider the case x0 > 0. In this case for every ε > 0, take δ =min
(

x0, ε/
(

k 2k−1 x0
k−1

))

, then for

all |x−x0|<δ, we have |x|<2 x0 and |xk −x0
k|=

∣

∣(x−x0)
(

xk−1 +xk−2 x0+
 +x0
k−1

)∣

∣ =k 2k−1 x0
k−1 δ = ε.

The case x0 < 0 is similar and left as exercise. �

Example 3.30. (Rational functions) A rational function is the ratio of two polynomials: f(x) =
p(x)

q(x)

where p, q are polynomials. Since p, q are continuous at every x∈R, f(x) =
p(x)

q(x)
is continuous at all x∈R

such that q(x)� 0.
If q(x0)= 0, then there are two cases.

1. If after cancelling all common factors, f(x) =
p1(x)

q1(x)
with q1(x0)� 0, then f(x) is continuous at x0.

2. If after cancellation we still have q1(x)= 0, then the limit does not exist.

For example, consider

f(x)=
x2− 3x + 2

x2− 4
. (3.23)

3.1. Keep in mind that the best way to understand a definition in mathematical analysis is to construct examples of

those that do not satisfy the definition. Once you can construct one example for every single way of possible violation of the

requirements of the definition, you can say



Factorize:

x2− 3x +2 = (x− 1) (x− 2); x2− 4 = (x +2) (x− 2), (3.24)

so

f(x)=
x− 1

x+ 2
. (3.25)

By Theorem 3.28, f(x) is continuous at every x∈R, with x� −2. At x =−2, the limit doesn’t exist since
x− 1� 0.

Example 3.31. Ratios involving functions other than polynomials are subtle to deal with. For example,
although no cancellation can be made for f(x)=

sin x

x
, it is indeed continuous everywhere, even at x= 0.

A very useful property of continuity is regarding composite functions.

Definition 3.32. Let f :A� B, g:B�R where A,B are subsets of R. Then the composition function g ◦ f

is defined as

(g ◦ f)(x)= g(f(x)). (3.26)

Example 3.33. The function e−1/x2

is a composite function: e−1/x2

= g ◦ f with f(x): {x∈R: x� 0}� R

defined as f(x)=−1/x2, and g(x) = ex.

Obviously there are more than one way to write a function into composite functions. For example we

also have e−1/x2

= g1 ◦ f1 with f1 = 1/x2 and g1 = e−x. We can even write it into composition of more than

two functions: e−1/x2

= h1 ◦ h2 ◦h3 ◦ h4 with

h1(x) = ex, h2(x) =−x, h3(x)= x2, h4(x)= 1/x. (3.27)

It is important to understand that in general f ◦ g� g ◦ f . For example g = ex and f = x2.

Theorem 3.34. (Continuity of composite functions) Let f : A� B, g: B� R If f is continuous at x0

and g is continuous at f(x0), then g ◦ f is continuous at x0.

Proof. Given any ε > 0, there is δ1 >0 such that for all |y − f(x0)|<δ1, |g(y)− g(f(x0))|<ε; On the other
hand, the continuity of f gives: there is δ > 0 such that for all |x − x0| < δ, |f(x) − f(x0)| < δ1. Combine
these, we see that |g(f(x))− g(f(x0))|<ε. �

Example 3.35. Show that the following functions are continuous on R.

a) f1(x)=

{

e−1/x2

x� 0
0 x= 0

.

b) f2(x)=

{

e
− 1

1−x2 |x|< 1
0 |x|> 1

.

Proof. We only prove a). The proof for b) is similar.

Note that f1(x) = f ◦ g with f = ex, g = −1/x2. We know that f is continuous everywhere, and g

is continuous everywhere except at x = 0. Therefore f1(x) is continuous at every x � 0. Since we have
already shown in a previous example that f1(x) is continuous at 0 too, we conclude that f1(x) is continuous
everywhere. �

Remark 3.36. We will see in future lectures that f1, f2 in fact are infinitely differentiable on R, which may
be counter-intuitive.



3.3. Further Discussions about Limit and Continuity.

3.3.1. Continuous functions fit intuition.
Intuitively, a function f :R�R is simply a curve running from far far left to far far right. One naturally

expect it to have the following properties:

• Intermediate value. If f(x1)= a and f(x2)= b, then f takes all intermediate values between a, b;

• Maximum and minimum. Between any a,b∈R, that is over any finite interval, f reaches its maximum
and minimum.

Remark 3.37. It is obvious that one should not expect f to reach maximum or minimum if the interval’s
size is infinite since the function may be unbounded.

Example 3.38. (Not continuous is bad) One can easily construct examples of discontinuous functions

that do not have the above good properties. For example, the function f(x) =

{

1 x > 0
0 x6 0

does not satisfy

the intermediate value property; The function f(x) =

{

e
− 1

1−x2 |x|< 1
1 |x|> 1

does not reach its minimum.

In the following we will show that when f is continuous, our intuition can be justified, although some
minor assumptions need to be added.

Theorem 3.39. (Intermediate value) Let f(x) be continuous on the closed interval [a, b]. Then for every
s∈ [f(a), f(b)] (or [f(b), f(a)] if f(b)6 f(a)), there is ξ ∈ [a, b] such that f(ξ)= s.

Proof. Assume f(a)6 f(b). Let x1=a, y1= b. We have f(x1)6 s6 f(y1). Define xn, yn as follows: Suppose
xk, yk are known. Then set

• xk+1 =
xk + yk

2
, yk+1 = yk if f

( xk + yk

2

)

6 s;

• yk+1 =
xk + yk

2
, xk+1 =xk if f

( xk + yk

2

)

> s.

This way we obtain two sequences {xn}, {yn} satisfying xn+1 >xn, yn+1 6 yn and furthermore

f(xn)6 s, f(yn)> s, |xn − yn|6 |xn−1− yn−1|
2

. (3.28)

This means xn − yn� 0.
Now as {xn} is increasing and bounded above, limn�∞xn exists; On the other hand, since {yn} is

decreasing and bounded below, limn→∞yn exists. Because xn− yn� 0 the two limits are equal. Call it ξ.
Because f is continuous on [a, b], together with comparison theorem we have limn�∞f(xn)= f(ξ)6 s;

Similarly we have limn�∞f(yn)= f(ξ) > s. Combining f(ξ)> s and f(ξ)6 s we conclude f(ξ)= s. �

Remark 3.40. A few remarks.

• There may be more than one ξ satisfying f(ξ)= s. For example consider f(x) = sin x.

• It is not enough to assume f(x) to be continuous over the open interval (a, b). For example, take

the Heaviside function f(x) =

{

1 x > 0
0 x6 0

. f(x) is continuous over (0, 1) but it does not take any

intermediate value between f(0)= 0 and f(1) =1.

Example 3.41. One application of the intermediate value theorem is to find zeroes of functions. For
example, one can prove:

Theorem. Any odd-degree polynomial has at least one real root.

Proof. Denote the polynomial as

P (x)= a2k−1 x2k−1 + a2k−2 x2k−2 +
 + a1 x + a0, a2k−1� 0 (3.29)



By the Intermediate Value Theorem 3.39 all we need to do is to find a,b∈R such that f(a)<0, f(b)>0. Write

P (x)= a2k−1 x2k−1

[

1 +
a2k−2

a2k−1

1

x
+

a2k−3

a2k−1

1

x2
+
 +

a1

a2k−1

1

x2k−2
+

a0

a2k−1

1

x2k−1

]

. (3.30)

Then we can prove that3.2

1+
a2k−2

a2k−1

1

x
+

a2k−3

a2k−1

1

x2
+
 +

a1

a2k−1

1

x2k−2
+

a0

a2k−1

1

x2k−1
� 1 (3.31)

as x�∞ or x� −∞. Therefore there is M > 0 such that for all |x|>M , the sign of P (x) is the same as
that of a2k−1 x2k−1. Thus there are a, b∈R such that f(a)< 0, f(b) > 0.

To show the maximum and minimum property, we first need the following boundedness result.

Theorem 3.42. (Boundedness) Let f(x) be continuous on [a, b] for a, b ∈R, then f(x) is bounded on
[a, b]. That is there is M ∈R such that |f(x)|6 M for all x∈ [a, b].

Proof. We prove by contradiction. Assume that

∀M ∈R ∃x∈ [a, b], |f(x)|>M. (3.32)

Taking M = 1, 2, 3,	 we obtain a sequence {xn} satisfying |f(xn)|> n. Now apply Bolzano-Weierstrass to
{xn} we obtain a converging subsequence xnk

� ξ. As f is continuous, we conclude f(xnk
) is a bounded

sequence; But at the same time |f(xnk
)|> nk implies f(xnk

) is an unbounded sequence. Contradiction. �

Theorem 3.43. (Maximum and minimum) Let f(x) be continuous on [a, b] for a, b∈R. Then f reaches
both maximum and minimum, that is there are xmax, xmin∈ [a, b] such that

f(xmin)6 f(x)6 f(xmax) ∀x∈ [a, b]. (3.33)

Proof. From the boundedness theorem 3.42 we know that there is M such that |f(x)|6M for all x∈ [a, b].
Let s= supx∈[a,b]f(x)7 sup{f(x):x∈ [a, b]}. Then s∈R and there is a sequence xn such that f(xn)� s. As

xn∈ [a, b] the sequence is bounded so we can apply Bolzano-Weierstrass to obtain a converging subsequence
xnk
� xmax∈ [a, b]. The continuity of f at ξ now gives

f(xmax) = lim
k�∞

f(xnk
) = s. (3.34)

That is f attains maximum at xmax. The other half of the theorem can be proved similarly. �

3.3.2. Continuity of inverse functions.

Theorem 3.44. A continuous real function f(x):A� B:=f(A) has an inverse if and only if f(x) is strictly
increasing, that is f(x1) < f(x2) whenever x1 < x2, or strictly decreasing, that is f(x1) > f(x2) whenever
x1 < x2.

Proof.

• ”If”. If f(x) is strictly increasing, then f is one-to-one. As B = f(A) f is also onto. So there is an
inverse. Similar for strictly decreasing.

• ”only if”. We try to show that if f is one-to-one then it has to be either strictly increasing or strictly
decreasing. Take any x1 < x2. There are two cases:

◦ f(x1)< f(x2). We show that f must be strictly increasing.

1. First show for all x>x2, we have f(x)> f(x2). Assume the contrary. Then either there
is x>x2 such that f(x)= f(x2), which already leads to contradiction to the fact that f

is one-to-one, or there is x>x2 such that f(x)< f(x2). Now compare f(x) and f(x1). If
f(x)6 f(x1), then by intermediate value theorem there is ξ ∈ [x2, x] (thus ξ � x1) with
f(ξ)= f(x1), contradiction. If f(x)> f(x1), then again by intermediate value theorem
there is ξ ∈ [x1, x2] such that f(ξ)= f(x). Contradiction.

3.2. If it’s in an exam, you have to prove it in detail.



2. Similarly one can show that for all x <x1, f(x)< f(x1).

3. Next we show that for all x ∈ (x1, x2), f(x1) < f(x) < f(x2). Assume not, then either
there is x with f(x)> f(x2) or there is x with f(x)6 f(x1). Either case, we can apply
intermediate value theorem to reach a contradiction.

4. Now we show that for all x3 <x4, f(x3) < f(x4). There are several cases.

a. x3∈one of (−∞, x1), [x1, x2], (x2,∞) while x4∈another. Then from what we have
shown f(x3) < f(x4).

b. x3, x4 ∈ the same one of (−∞, x1), [x1, x2], (x2, ∞). We prove for the case x3,

x4 ∈ (−∞, x1), other cases are similar. Assume f(x3) < f(x4) does not hold.
If f(x3) = f(x4), we already have contradiction; If f(x3) > f(x4), then we
have f(x3) > f(x4) < f(x1), application of intermediate value theorem leads to
contradiction.

◦ f(x1)> f(x2). Similarly we can show that in this case f must be strictly decreasing. �

Remark 3.45. The above proof is kind of messy. The idea is however simple: By intermediately value
theorem, whenever we have x1 < x2 <x3 with f(x1)6 f(x2)> f(x3) or f(x1)> f(x2)6 f(x3) then f cannot
be one-to-one. However I haven’t been able to find a simple proof yet.

Theorem 3.46. Let f : A� B be continuous, onto, and strictly increasing (strictly decreasing). Then the
inverse g: B� A is continuous, onto, and strictly increasing (strictly decreasing).

Proof. That g is onto is clear. To see that g is strictly increasing, take y1 < y2. Then we have

f(g(y1))= y1 < y2 = f(g(y2)). (3.35)

As f is strictly increasing, we must have g(y1) < g(y2) since otherwise we would have f(g(y1))> f(g(y2)).
Now we show that g is continuous. Assume the contrary, that is assume g is not continuous at some y0.

Then by definition there is ε0 > 0 such that there is yn� y0 but |g(yn)− g(y0)|> ε0. Now let

δ0 =min {f(g(y0))− f(g(y0)− ε0), f(g(y0)+ ε0)− f(g(y0))}> 0, (3.36)

Note that δ0 > 0 is because f is strictly increasing, we obtain

|ynk
− y0|= |f(g(ynk

))− f(g(y0))|>δ0 > 0. (3.37)

But this contradicts ynk
� y0.

Thus ends the proof. �

Example 3.47. (Log) We see that lnx is continuous for x > 0.


