2. Sets in \mathbb{R}

2.1. Sup and Inf.

2.1.1. Definitions.

Definition 2.1. (sup and inf) Let A be a nonempty set of numbers. The supreme of A is defined as

$$\sup A = \min \{ b \in \mathbb{R} : b \geqslant a \text{ for every } a \in A \}.$$
 (2.1)

If $\{b \in \mathbb{R}: b \geqslant a \text{ for every } a \in A\} = \emptyset$, we write

$$\sup A = \infty; \tag{2.2}$$

The infimum of A is defined as

$$\inf A = \max \{ b \in \mathbb{R} : b \leqslant a \text{ for every } a \in A \}.$$
 (2.3)

If $\{b \in \mathbb{R}: b \geqslant a \text{ for every } a \in A\} = \emptyset$, write

$$\inf A = -\infty. \tag{2.4}$$

sup and inf are generalizations of max and min.

Proposition 2.2. $\sup A = \max A$, $\inf A = \min A$ when $\max A$, $\min A$ exist. In particular, when A is a finite set (that is has finitely many elements), it always holds that $\sup A = \max A$; $\inf A = \min A$.

Proof. Let $a_{\text{max}} = \max A$. Set $B = \{b \in \mathbb{R}: b \geqslant a \text{ for every } a \in A\}$. We need to show that $a_1 = \min B$, that is

- 1. $a_{\text{max}} \in B$. As $a_{\text{max}} = \max A$, we have $a_{\text{max}} \geqslant a$ for all $a \in A$. Therefore $a_1 \in B$;
- 2. $\forall b \in B$, $a_{\text{max}} \leq b$. Take any $b \in B$. Then $b \geq a$ for all $a \in A$. In particular $b \geq a_{\text{max}}$.

The proof for the inf/min part is similar.

Example 2.3. (max/min may not exist) Let $A = \{1 - \frac{1}{n} : n \in \mathbb{N}\}$. Then $\sup A = 1$, $\inf A = \min A = 0$, while $\max A$ does not exist.

- $\sup A = 1$. We show two things:
 - 1. $\forall a \in A, 1 \ge a$. Take any $a \in A$. Then there is $n \in \mathbb{N}$ such that $a = 1 \frac{1}{n} < 1$.
 - 2. $\forall b \in \mathbb{R}$ such that $b \ge a$ for all $a \in A$, $b \ge 1$. Since $b \ge a$ for all $a \in A$, $b \ge 1 \frac{1}{n}$ for all $n \in \mathbb{N}$. Assume b < 1. Taking $n > \frac{1}{1-b}$ leads to contradiction.
- $\inf A, \min A = 0$. Omitted.
- max A does not exist. Assume the contrary, then there is $a_{\max} \in A$. Then there is $n_0 \in \mathbb{N}$ such that $a_{\max} = 1 \frac{1}{n_0}$. Taking $n > n_0$ we have $a_{\max} < 1 \frac{1}{n} \in A$, contradiction.

Although max/min may not exist, sup/inf always does.

Theorem 2.4. Let A be a nonempty set of numbers, then $\sup A$, $\inf A$ exist.

Proof. The existence of $\sup A$ follows directly from the least upper bound property of \mathbb{R} . To show that $\inf A$ exists, consider the set $B := \{b \in \mathbb{R} : b \leq a \text{ for every } a \in A\}$. Since A is nonempty, there is at least one $a \in A$. By definition of B this a is an upper bound of B. Thus the least upper bound property leads to the existence of $\sup B \in \mathbb{R}$. All we need to show is that $b_{\max} := \sup B \in B$.

Assume the contrary, that is $b_{\max} \notin B$. Then there is $a \in A$ such that $b_{\max} > a$. Let $\tilde{b} := \frac{b_{\max} + a}{2}$. Then we have $\tilde{b} > a$ so for every $b \in B$, $\tilde{b} > b$. This contradicts the fact that $b_{\max} = \sup B = \min \{\tilde{b} \in \mathbb{R} : \tilde{b} \geqslant b \text{ for every } b \in B\}$.

Theorem 2.5. (Approximation of sup and inf) Let $A \subseteq \mathbb{R}$ with sup A, inf $A \in \mathbb{R}$. Then for every $\varepsilon > 0$, there are $a, b \in A$ such that

$$\sup A - a < \varepsilon; \qquad b - \inf A < \varepsilon \tag{2.5}$$

Proof. We prove the sup case and left the inf case as exercise. Assume the contrary. Then there is $\varepsilon_0 > 0$ such that for all $a \in A$, sup $A - a \geqslant \varepsilon_0$. Now set $a_{\sup} := \sup A - \varepsilon_0/2$. We have $a_{\sup} > a$ for all $a \in A$ but $a_{\sup} < \sup A$. Contradiction.

Remark 2.6. By setting $\varepsilon = 1/n$, we can obtain a sequence $\{x_n\}$ with $x_n \in A$ such that $x_n \longrightarrow \sup A$ (or inf A). However note that x_n may not be different elements from one another. For example when A is finite, we basically will have to take the sequence $x_n = a_{\max}$.

2.1.2. Sup/Inf of functions.

A special case that is particularly useful is when the sets are images of functions.

Definition 2.7. (Sup and Inf of functions) Let $f: E \mapsto \mathbb{R}$ be a function. We define

$$\sup_{x \in E} f(x) := \sup f(E); \qquad \inf_{x \in E} f(x) := \inf f(E). \tag{2.6}$$

Example 2.8. $\sup_{x \in (-1,1)} x^2 = 1$, $\inf_{x \in (-1,1)} x^2 = 0$.

Theorem 2.9. (sup and inf under operations) Let f, g be functions with domains containing $E \subseteq \mathbb{R}$. Let $c \in \mathbb{R}$ be a positive number. Then

- a) $\sup_{x \in E} (cf) = c \sup_{x \in E} f$; $\inf_{x \in E} (cf) = c \inf_{x \in E} f$;
- b) $\sup_{x \in E} (-f) = -\inf_{x \in E} f$; $\inf_{x \in E} (-f) = -\sup_{x \in E} f$;
- c) $\sup_{x \in E} (f+g) \leq \sup_{x \in E} f + \sup_{x \in E} g$;
- d) $\inf_{x \in E} (f+g) \geqslant \inf_{x \in E} f + \inf_{x \in E} g$.

The above holds even when the supreme/infimum is ∞ or $-\infty$.

Proof. We only prove b), c) here. Other cases are left as exercise.

- b). We show $\sup_{x \in E} (-f) = -\inf_{x \in E} f$. Once this is done setting g = -f gives the other half. Let $a = \inf_{x \in E} f$ (maybe $-\infty$). We need to show
 - 1. $-a \ge -f(x)$ for all $x \in E$. Since $a = \inf_{x \in E} f$, by definition $a \le f(x)$ for all $x \in E$. Therefore $-a \ge -f(x)$ for all $x \in E$.
 - 2. For any $b \in \mathbb{R}$ satisfying $b \ge -f(x)$ for all $x \in E$, we have $b \ge -a$. Since $b \ge -f(x)$ for all $x \in E$, we have $-b \le f(x)$ for all $x \in E$. Since $a = \inf_{x \in E} f$, $a \ge -b$. Therefore $b \ge -a$.

Note that the above argument still holds when $a = -\infty$.

• c). Denote $a = \sup_{x \in E} f$, $b = \sup_{x \in E} g$, we need to show that $a + b \geqslant f(x) + g(x)$ for all $x \in E$. If one of a, b is ∞ , then we have $a + b = \infty \geqslant f(x) + g(x)$ for all $x \in E$. If both $a, b \in \mathbb{R}$, take any $x \in E$. We have $a = \sup_{x \in E} f \geqslant f(x)$ and $b = \sup_{x \in E} g \geqslant g(x)$. Consequently $a + b \geqslant f(x) + g(x)$.

Example 2.10. The inequalities in c),d) may hold strictly. The reason is that the "peak" of f and the "peak" of g may not be at the same location. For example, take $f = \begin{cases} 1 & 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$ and $g = \begin{cases} 1 & 1 \leqslant x < 2 \\ 0 & \text{elsewhere} \end{cases}$, we have $\sup_{x \in \mathbb{R}} f = \sup_{x \in \mathbb{R}} g = 1$, but $\sup_{x \in \mathbb{R}} (f + g) = 1 < 1 + 1 = 2$.

Theorem 2.11. (Monotone property) Suppose $A \subseteq B$ are nonempty subsets of \mathbb{R} . Then

- a) $\sup B \geqslant \sup A$.
- b) $\inf B \leq \inf A$.

Proof. We prove a) and leave b) as exercise.

If $\sup B = \infty$, then $\sup B \geqslant \sup A$ holds; If $\sup B \in \mathbb{R}$, then by definition we have

$$\sup B \geqslant b \text{ for every } b \in B \Longrightarrow \sup B \geqslant a \text{ for every } a \in A$$
 (2.7)

because $A \subseteq B$. By definition of $\sup A$ we conclude that $\sup B \geqslant \sup A$.

2.1.3. Limits supreme and infimum.

Definition 2.12. Let $\{x_n\}$ be a real sequence. The limit supreme of $\{x_n\}$ is the extended real number

$$\limsup_{n \to \infty} x_n := \lim_{n \to \infty} \left(\sup_{k \geqslant n} x_k \right), \tag{2.8}$$

and the limit infimum of $\{x_n\}$ is the extended real number

$$\liminf_{n \to \infty} x_n := \lim_{n \to \infty} \left(\inf_{k \geqslant n} x_k \right).$$
(2.9)

Remark 2.13. Since $\sup_{k \ge n} x_k$ is decreasing and $\inf_{k \ge n} x_k$ is increasing, limsup and liminf always exist (in contrast to limits).

Remark 2.14. Note that it is possible that $\limsup_{n \to \infty} x_n = -\infty$ and $\liminf_{n \to \infty} x_n = \infty$.

Lemma 2.15. Let $\{x_n\}$ be a real sequence. Then

$$\limsup_{n \to \infty} x_n \geqslant \liminf_{n \to \infty} x_n \tag{2.10}$$

Proof. Follows from Comparison Theorem. Left as exercise.

Theorem 2.16. (Relation to limits and subsequences) Let $\{x_n\}$ be a real sequence. Then

a)
$$x_n \longrightarrow a$$
 if and only if $\limsup_{n \longrightarrow \infty} x_n = \liminf_{n \longrightarrow \infty} x_n = a$.

^{2.1.} Note that by definition sup can only be real number or ∞ , while inf can only be real number or $-\infty$.

- b) There are two subsequences converging to $\limsup_{n \to \infty} x_n$ and $\liminf_{n \to \infty} x_n$, respectively.
- c) If $\{x_{n_k}\}$ is a convergent subsequence, then $\liminf_{n \to \infty} x_n \leq \lim_{k \to \infty} x_{n_k} \leq \limsup_{n \to \infty} x_n$.

Proof.

- a) We only prove the case $a \in \mathbb{R}$ and left $a = \pm \infty$ as exercise.
 - "if". Assume $\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = a$. Then as

$$\sup_{k \geqslant n} x_k \geqslant x_n \geqslant \inf_{k \geqslant n} x_k, \tag{2.11}$$

application of Squeeze Theorem gives the convergence of x_n as well as $\lim_{n \to \infty} x_n = a$.

• "only if". For any $\varepsilon > 0$, since $x_n \longrightarrow a$, there is $N \in \mathbb{N}$ such that $|x_n - a| < \varepsilon$. This implies $\sup_{n > N} x_n < a + \varepsilon$ and $\inf_{n > N} x_n > a - \varepsilon$. Therefore when n > N,

$$a - \varepsilon < \inf_{k \geqslant n} x_n \leqslant \sup_{k \geqslant n} x_n < a + \varepsilon. \tag{2.12}$$

Comparison Theorem now gives

$$a - \varepsilon \leqslant \liminf_{n \to \infty} x_n \leqslant \limsup_{n \to \infty} x_n \leqslant a + \varepsilon.$$
 (2.13)

As this holds for all $\varepsilon > 0$, we must have $\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = a$.

b) We only show the existence of $x_{n_k} \longrightarrow \limsup_{n \longrightarrow \infty} x_n$. Thanks to Theorem 2.5, there is $n_1 \in \mathbb{N}$ such that

$$\sup_{k\geqslant 1} x_k - 1 \leqslant x_{n_1} \leqslant \sup_{k\geqslant 1} x_k; \tag{2.14}$$

Now apply Theorem 2.5 to $\{x_{n_1+1},...\}$, we obtain $n_2 \in \mathbb{N}$ such that

$$\sup_{k \geqslant n_2 + 1} x_k - \frac{1}{2} \leqslant x_{n_2} \leqslant \sup_{k \geqslant n_2 + 1} x_k. \tag{2.15}$$

This way we obtain a subsequence satisfying

$$\sup_{k \geqslant n_l + 1} x_k - \frac{1}{l} \leqslant x_{n_l} \leqslant \sup_{k \geqslant n_l + 1} x_k. \tag{2.16}$$

We take limit of both sides. As $\{\sup_{k\geqslant n_l+1}x_k\}$ is a subsequence of $\{\sup_{k\geqslant n}x_k\}$, it converges to the same limit a. Using the fact that $1/l \longrightarrow 0$ as $l \longrightarrow \infty$, we apply Squeeze theorem to conclude $x_{n_l} \longrightarrow a$.

c) Let $\{x_{n_k}\}$ be the subsequence. Then we have

$$\inf_{l\geqslant n_k} x_l \leqslant x_{n_k} \leqslant \sup_{l\geqslant n_k} x_l. \tag{2.17}$$

Taking limit of all three and applying Comparison Theorem we reach the conclusion.

2.2. We do not say " $\{x_n\}$ converges" to avoid dealing with $a = \pm \infty$ separately.

2.2. A bit topology.

2.2.1. Intervals.

Definition 2.17. Let a, b be real numbers. A closed interval is a set of the form

$$[a,b] := \{x \in \mathbb{R} : a \leqslant x \leqslant b\}, \qquad [a,\infty) := \{x \in \mathbb{R} : a \leqslant x\}$$
 (2.18)

$$(-\infty, b] := \{x \in \mathbb{R} : x \leqslant b\}; \qquad (-\infty, \infty) := \mathbb{R}. \tag{2.19}$$

An open interval is a set of the form

$$(a,b) := \{ x \in \mathbb{R} : a < x < b \}, \qquad (a,\infty) := \{ x \in \mathbb{R} : a < x \}$$
 (2.20)

$$(-\infty, b) := \{x \in \mathbb{R}: x < b\}; \qquad (-\infty, \infty) := \mathbb{R}. \tag{2.21}$$

One can also define half-open, half-closed intervals:

$$[a,b) := \{x \in \mathbb{R} : a \le x < b\}, \qquad (a,b] := \{x \in \mathbb{R} : a < x \le b\}.$$
 (2.22)

Remark 2.18. Note that \mathbb{R} is both an open interval and a closed interval.

Example 2.19. Write the following in interval notation:

- a) $A := \{x \in \mathbb{R} : |x 3| \le 1\};$
- b) $B := \{x \in \mathbb{R}: |x 3| > 5\}.$
- c) $(1,2)^c$.

Solution.

- a) For A we have $A = \{x \in \mathbb{R}: 2 \le x \le 4\}$ so A = [2, 4];
- b) $B = \{x \in \mathbb{R}: x > 8 \text{ or } x < -2\} \text{ so } B = (-\infty, -2) \cup (8, \infty).$
- c) $(1,2) = \{x \in \mathbb{R}: 1 < x < 2\}$ so $(1,2)^c = \{x \in \mathbb{R}: x \leqslant 1 \text{ or } x \geqslant 2\} = \{x \in \mathbb{R}: x \leqslant 1\} \cup \{x \in \mathbb{R}: x \geqslant 2\}$ which equals $(-\infty,1] \cup [2,\infty)$.

Lemma 2.20. The following holds:

- a) $(a,b) \subseteq (c,d) \iff a \geqslant c,b \leqslant d;$ $(a,b) \subseteq [c,d] \iff a \geqslant c,b \leqslant d;$ $[a,b] \subseteq [c,d] \iff a \geqslant c,b \leqslant d.$
- $b) \ [a,b] \subseteq (c,d) \Longleftrightarrow a > c, b < d.$

2.2.2. Open sets and closed sets.

Definition 2.21. A set $E \subseteq \mathbb{R}$ is open if for every $x \in E$, there is an open interval $(a, b) \subseteq E$ such that $x \in (a, b)$. A set $E \subseteq \mathbb{R}$ is closed if its complement $E^c := \mathbb{R} \setminus E$ is open.

Remark 2.22. Traditionally, we say \mathbb{R} and \emptyset are both open and closed.

Lemma 2.23. Open intervals are open, closed intervals are closed. Half-open, half-closed intervals are neither open nor closed.

Proof. Let (a, b) be an open interval (a, b) may be extended real numbers so this covers all four cases). For every $x \in (a, b)$, we have $x \in (a, b) \subseteq (a, b)$. Therefore (a, b) is open.

Next let $a, b \in \mathbb{R}$ and [a, b] be an closed interval. Then we have $[a, b]^c = (-\infty, a) \cup (b, \infty)$. Take any $x \in [a, b]^c$. Then there are two cases:

- $x \in (-\infty, a)$. Since $(-\infty, a)$ is an open interval, we have $x \in (-\infty, a) \subseteq [a, b]^c$.
- $x \in (b, \infty)$. Similarly, (b, ∞) is an open interval so we have $x \in (b, \infty) \subseteq [a, b]^c$.

The other three cases are easier:

• $[a, \infty)$: We have $[a, \infty)^c = (-\infty, b)$ open;

- $(-\infty, b]$: We have $(-\infty, b]^c = (b, \infty)$ open;
- $(-\infty, \infty)$: We have $(-\infty, \infty)^c = \emptyset$ open.

Finally we show that [a,b) and (a,b] are neither open nor closed. For [a,b), to see that it is not open, take $x=a\in [a,b)$. Then for every open interval (c,d) containing x=a, we have c< a and therefore $\frac{c+a}{2}\in (c,d)$ but $\frac{c+a}{2}\notin [a,b)$. To see that it is not closed, we consider $[a,b)^c=(-\infty,a)\cup [b,\infty)$. Take x=b and argue similarly, we see that $[a,b)^c$ is not open. Therefore [a,b) is neither open nor closed. The proof for (a,b] is similar. \square

Lemma 2.24. If E is open, then E^c is closed; If E is closed then E^c is open.

Proof. The second part is by definion. For the first part, because $(E^c)^c = E$, E^c is closed if E is open. \square

Theorem 2.25. We have the following results about intersection and union of sets:

- a) The intersection of finitely many open sets is open; The union of open sets is open.
- b) The intersection of closed sets is closed; The union of finitely many closed sets is closed.

Proof. We prove a). b) follows from a), Lemma 2.24, and De Morgan's rule of set operations:

$$(\bigcap_{\alpha \in A} E_{\alpha})^{c} = \bigcup_{\alpha \in A} E_{\alpha}^{c}; \qquad (\bigcup_{\alpha \in A} E_{\alpha})^{c} = \bigcap_{\alpha \in A} E_{\alpha}^{c}. \tag{2.23}$$

Intersection of finitely many open sets. Denote these sets by $E_1, ..., E_n$. We show that for every $x \in \bigcap_{i=1}^n E_i$, there is $(a,b) \subseteq \bigcap_{i=1}^n E_i$ such that $x \in (a,b)$.

As E_1 is open, there is $(a_1, b_1) \subseteq E_1$ with $x \in (a_1, b_1)$;

As E_2 is open, there is $(a_2, b_2) \subseteq E_2$ with $x \in (a_2, b_2)$;

Doing this for all E_i , we obtain $(a_i, b_i) \subseteq E_i$ such that $x \in (a_i, b_i)$.

Now set $a = \max\{a_1, ..., a_n\}$ and $b = \min\{b_1, ..., b_n\}$. We claim that a < x < b. Since $x \in (a_i, b_i)$, we have $a_i < x < b_i$ for all i = 1, ..., n. Therefore $a = \max\{a_1, ..., a_n\} < x < \min\{b_1, ..., b_n\} = b$. Thus we have (a, b) is an open interval and $x \in (a, b)$. Finally, as $a \ge a_i, b \le b_i$, we have $(a, b) \subseteq (a_i, b_i) \subseteq E_i$ for all i = 1, 2, ..., n. Therefore $(a, b) \subseteq \bigcap_{i=1}^n E_i$.

• Union of (could be infinitely many) open sets. Denote these sets by E_{α} with $\alpha \in A$ an index set. Take any $x \in \bigcup_{\alpha \in A} E_{\alpha}$. By definition there is E_{α_0} such that $x \in E_{\alpha_0}$. Since E_{α_0} is open, there is $a, b \in \mathbb{R}$ such that $x \in (a,b) \subseteq E_{\alpha_0} \subseteq \bigcup_{\alpha \in A} E_{\alpha}$.

Remark 2.26. Note that "union of open sets is open" and "intersection of closed set" can involve infinitely many sets. For example $(1/x, \infty)$ is open for x > 0. Then we know $\bigcup_{x>0}(1/x, \infty)$ is open. On the other hand, the intersection of infinitely many open sets may be closed, for example $\bigcap_{n \in \mathbb{N}}(-1/n, 1/n)$; The union of infinitely many closed sets may be open, for example $\bigcup_{n \in \mathbb{N}} \left[\frac{1}{n}, 1 - \frac{1}{n}\right]$. Of course it may also be half-openhalf-closed.

Remark 2.27. From the above theorem we see why it is a good idea to say \mathbb{R} and \emptyset are both open and closed.

Theorem 2.28. (Structure of open sets) Let $E \subseteq \mathbb{R}$ be open. Then there are $a_i, b_i \in \mathbb{R}$, $i \in \mathbb{N}$ such that $E = \bigcup_{i \in \mathbb{N}} (a_i, b_i)$.

Proof. The proof is beyond the level of this course and is omitted.

2.2.3. Nested sets.

Definition 2.29. (Nested sets) A sequence of sets $\{I_n\}_{n\in\mathbb{N}}$ is said to be nested if

$$I_1 \supseteq I_2 \supseteq \cdots$$
 (2.24)

Theorem 2.30. (Nested interval) If $I_n = [a_n, b_n]$ with $a_n, b_n \in \mathbb{R}$ is nested, then $\bigcap_{n=1}^{\infty} I_n$ is not empty. If $b_n - a_n \longrightarrow 0$, the intersection is a single point.

Proof. Since $[a_n, b_n] \subseteq [a_{n-1}, b_{n-1}]$, we have $a_n \geqslant a_{n-1}$ and $b_n \leqslant b_{n-1}$. Thus a_n is increasing while bounded above by b_1 , and b_n is decreasing while bounded below by a_1 . Therefore there are $a, b \in \mathbb{R}$ such that $a_n \longrightarrow a$, $b_n \longrightarrow b$ as $n \longrightarrow \infty$.

By comparison theorem, $a \leq b$. Since $a_n \leq a \leq b \leq b_n$, we have $[a, b] \subseteq [a_n, b_n]$ for every n. Therefore $[a, b] \subseteq \bigcap_{n=1}^{\infty} I_n$.

In particular, if $b_n - a_n \longrightarrow 0$, we have $b = \lim_{n \longrightarrow \infty} b_n = \lim_{n \longrightarrow \infty} a_n + \lim_{n \longrightarrow \infty} (b_n - a_n) = a + 0 = a$. From the above we know that $a \in \bigcap_{n=1}^{\infty} I_n$. We show that it is the only point in $\bigcap_{n=1}^{\infty} I_n$. Take any $\tilde{a} \in \bigcap_{n=1}^{\infty} I_n$. Then we have $a_n \leqslant \tilde{a} \leqslant b_n$. Comparison Theorem then gives $a = \lim_{n \to \infty} a_n \leqslant \lim_{n \to \infty} \tilde{a} \leqslant \lim_{n \to \infty} b_n = a$. Therefore $\tilde{a} = a$ and the proof ends.

Remark 2.31.

- $a_n, b_n \in \mathbb{R}$ is necessary. Otherwise we can take $I_n = [a_n, \infty)$ with $a_n \longrightarrow \infty$ which leads to $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.
- It is also necessary that the intervals are closed. Counter-examples are $I_n = (0, 1/n)$, or $I_n = (0, 1/n]$.