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2. Sets in R

2.1. Sup and Inf.

2.1.1. Definitions.

Definition 2.1. (sup and inf) Let A be a nonempty set of numbers. The supreme of A is defined as

supA =min {b∈R: b > a for every a∈A}. (2.1)

If {b∈R: b > a for every a∈A}= ∅, we write

supA=∞; (2.2)

The infimum of A is defined as

inf A=max {b∈R: b6 a for every a∈A}. (2.3)

If {b∈R: b > a for every a∈A}= ∅ , write

inf A =−∞. (2.4)

sup and inf are generalizations of max and min .

Proposition 2.2. supA=maxA, inf A=minA when maxA,minA exist. In particular, when A is a finite
set (that is has finitely many elements), it always holds that supA=maxA; inf A=minA.

Proof. Let amax=maxA. Set B ={b∈R: b> a for every a∈A}. We need to show that a1 =minB, that is

1. amax∈B. As amax=maxA, we have amax> a for all a∈A. Therefore a1∈B;

2. ∀b∈B, amax6 b. Take any b∈B. Then b > a for all a∈A. In particular b > amax.

The proof for the inf/min part is similar. �

Example 2.3. (max/min may not exist) Let A =
{

1−
1

n
: n ∈N

}

. Then supA = 1, inf A = minA = 0,
while maxA does not exist.

• supA= 1. We show two things:

1. ∀a∈A, 1> a. Take any a∈A. Then there is n∈N such that a = 1−
1

n
< 1.

2. ∀b ∈R such that b > a for all a ∈ A, b > 1. Since b > a for all a ∈ A, b > 1 −
1

n
for all n ∈N.

Assume b < 1. Taking n >
1

1− b
leads to contradiction.

• inf A,minA= 0. Omitted.

• maxA does not exist. Assume the contrary, then there is amax∈A. Then there is n0 ∈N such that
amax= 1−

1

n0

. Taking n > n0 we have amax< 1−
1

n
∈A, contradiction.

Although max/min may not exist, sup/inf always does.

Theorem 2.4. Let A be a nonempty set of numbers, then supA, inf A exist.



Proof. The existence of sup A follows directly from the least upper bound property of R. To show that
inf A exists, consider the set B7 {b∈R: b 6 a for every a∈A}. Since A is nonempty, there is at least one
a∈A. By definition of B this a is an upper bound of B. Thus the least upper bound property leads to the
existence of supB ∈R. All we need to show is that bmax7 supB ∈B.

Assume the contrary, that is bmax � B. Then there is a ∈ A such that bmax > a. Let b̃ 7 bmax + a

2
. Then

we have b̃ > a so for every b ∈B, b̃ > b. This contradicts the fact that bmax = supB =min
{

b̃ ∈R: b̃ > b for
every b∈B

}

. �

Theorem 2.5. (Approximation of sup and inf) Let A⊆R with supA, inf A∈R. Then for every ε>0,
there are a, b∈A such that

supA− a <ε; b− inf A < ε (2.5)

Proof. We prove the sup case and left the inf case as exercise. Assume the contrary. Then there is ε0 > 0
such that for all a ∈ A, sup A − a > ε0. Now set asup7 sup A − ε0/2. We have asup > a for all a ∈ A but
asup< supA. Contradiction. �

Remark 2.6. By setting ε = 1/n, we can obtain a sequence {xn} with xn ∈ A such that xn� sup A (or
inf A). However note that xn may not be different elements from one another. For example when A is finite,
we basically will have to take the sequence xn = amax.

2.1.2. Sup/Inf of functions.

A special case that is particularly useful is when the sets are images of functions.

Definition 2.7. (Sup and Inf of functions) Let f : E� R be a function. We define

sup
x∈E

f(x)7 sup f(E); inf
x∈E

f(x)7 inf f(E). (2.6)

Example 2.8. supx∈(−1,1)x
2 = 1, infx∈(−1,1)x

2 = 0.

Theorem 2.9. (sup and inf under operations) Let f , g be functions with domains containing E ⊆R.
Let c∈R be a positive number. Then

a) supx∈E (c f) = c supx∈E f; infx∈E (c f) = c infx∈Ef;

b) supx∈E (−f) =−infx∈Ef; infx∈E (−f)=−supx∈Ef;

c) supx∈E (f + g)6 supx∈Ef + supx∈Eg;

d) infx∈E (f + g) > infx∈Ef + infx∈Eg.

The above holds even when the supreme/infimum is ∞ or −∞.

Proof. We only prove b), c) here. Other cases are left as exercise.

• b). We show supx∈E (−f) = −infx∈Ef . Once this is done setting g = −f gives the other half. Let
a = infx∈Ef (maybe −∞). We need to show

1. −a > −f(x) for all x ∈ E. Since a = infx∈Ef , by definition a 6 f(x) for all x ∈ E. Therefore
−a >−f(x) for all x∈E.

2. For any b∈R satisfying b>−f(x) for all x∈E, we have b>−a. Since b>−f(x) for all x∈E,
we have −b 6 f(x) for all x∈E. Since a = infx∈Ef , a >−b. Therefore b >−a.



Note that the above argument still holds when a =−∞.

• c). Denote a = supx∈Ef , b = supx∈Eg, we need to show that a + b > f(x) + g(x) for all x∈E. If one
of a, b is ∞, then we have a + b =∞> f(x) + g(x) for all x ∈E.2.1 If both a, b∈R, take any x ∈E.
We have a = supx∈Ef > f(x) and b= supx∈Eg > g(x). Consequently a + b> f(x)+ g(x). �

Example 2.10. The inequalities in c),d) may hold strictly. The reason is that the “peak” of f and the “peak”

of g may not be at the same location. For example, take f =

{

1 0< x < 1
0 elsewhere

and g =

{

1 1 6x < 2
0 elsewhere

, we

have supx∈Rf = supx∈Rg = 1, but supx∈R (f + g)= 1< 1 +1 =2.

Theorem 2.11. (Monotone property) Suppose A⊆B are nonempty subsets of R. Then

a) supB > supA.

b) inf B 6 inf A.

Proof. We prove a) and leave b) as exercise.

If supB =∞, then supB > supA holds; If supB ∈R, then by definition we have

supB > b for every b∈B� supB > a for every a∈A (2.7)

because A⊆B. By definition of supA we conclude that supB > supA. �

2.1.3. Limits supreme and infimum.

Definition 2.12. Let {xn} be a real sequence. The limit supreme of {xn} is the extended real number

limsup
n�∞

xn7 lim
n�∞

(

sup
k>n

xk

)

, (2.8)

and the limit infimum of {xn} is the extended real number

liminf
n�∞

xn7 lim
n�∞

(

inf
k>n

xk

)

. (2.9)

Remark 2.13. Since supk>nxk is decreasing and infk>nxk is increasing, limsup and liminf always exist (in
contrast to limits).

Remark 2.14. Note that it is possible that limsupn�∞xn =−∞ and liminfn�∞=∞.

Lemma 2.15. Let {xn} be a real sequence. Then

limsup
n�∞

xn > liminf
n�∞

xn (2.10)

Proof. Follows from Comparison Theorem. Left as exercise. �

Theorem 2.16. (Relation to limits and subsequences) Let {xn} be a real sequence. Then

a) xn� a if and only if limsupn�∞xn = liminfn�∞xn = a.2.2

2.1. Note that by definition sup can only be real number or ∞, while inf can only be real number or −∞.



b) There are two subsequences converging to limsupn�∞xn and liminfn�∞xn, respectively.

c) If {xnk
} is a convergent subsequence, then liminfn�∞xn 6 limk�∞xnk

6 limsupn�∞xn.

Proof.

a) We only prove the case a∈R and left a =±∞ as exercise.

• “if”. Assume limsupn�∞xn = liminfn�∞xn = a. Then as

sup
k>n

xk > xn > inf
k>n

xk, (2.11)

application of Squeeze Theorem gives the convergence of xn as well as limn�∞xn = a.

• “only if”. For any ε > 0, since xn� a, there is N ∈ N such that |xn − a| < ε. This implies
supn>Nxn < a + ε and infn>Nxn > a− ε. Therefore when n > N ,

a− ε < inf
k>n

xn 6 sup
k>n

xn <a + ε. (2.12)

Comparison Theorem now gives

a− ε 6 liminf
n�∞

xn 6 limsup
n�∞

xn 6 a + ε. (2.13)

As this holds for all ε > 0, we must have limsupn�∞xn = liminfn�∞xn = a.

b) We only show the existence of xnk
� limsupn�∞xn. Thanks to Theorem 2.5, there is n1∈N such

that

sup
k>1

xk − 16 xn1
6 sup

k>1

xk; (2.14)

Now apply Theorem 2.5 to {xn1+1,	 }, we obtain n2∈N such that

sup
k>n2+1

xk −
1

2
6 xn2

6 sup
k>n2+1

xk. (2.15)

This way we obtain a subsequence satisfying

sup
k>nl+1

xk −
1

l
6xnl

6 sup
k>nl+1

xk. (2.16)

We take limit of both sides. As {supk>nl+1xk} is a subsequence of {supk>nxk}, it converges to the

same limit a. Using the fact that 1/l� 0 as l�∞, we apply Squeeze theorem to conclude xnl
� a.

c) Let {xnk
} be the subsequence. Then we have

inf
l>nk

xl 6 xnk
6 sup

l>nk

xl. (2.17)

Taking limit of all three and applying Comparison Theorem we reach the conclusion.

�

2.2. We do not say “{xn} converges” to avoid dealing with a =±∞ separately.



2.2. A bit topology.

2.2.1. Intervals.

Definition 2.17. Let a, b be real numbers. A closed interval is a set of the form

[a, b]7 {x∈R: a 6 x 6 b}, [a,∞)7 {x∈R: a 6 x} (2.18)

(−∞, b]7 {x∈R: x 6 b}; (−∞,∞)7 R. (2.19)

An open interval is a set of the form

(a, b)7 {x∈R: a <x <b}, (a,∞)7 {x∈R: a < x} (2.20)

(−∞, b)7 {x∈R: x <b}; (−∞,∞)7 R. (2.21)

One can also define half-open, half-closed intervals:

[a, b): ={x∈R: a6 x < b}, (a, b]7 {x∈R: a < x 6 b}. (2.22)

Remark 2.18. Note that R is both an open interval and a closed interval.

Example 2.19. Write the following in interval notation:

a) A7 {x∈R: |x− 3|6 1};

b) B7 {x∈R: |x− 3|> 5}.

c) (1, 2)c.

Solution.

a) For A we have A= {x∈R: 2 6 x6 4} so A = [2, 4];

b) B = {x∈R: x > 8 or x <−2} so B =(−∞,−2)∪ (8,∞).

c) (1, 2) = {x∈R: 1 < x < 2} so (1, 2)c = {x∈R: x 6 1 or x > 2}= {x∈R: x 6 1} ∪ {x∈R: x > 2} which
equals (−∞, 1]∪ [2,∞).

Lemma 2.20. The following holds:

a) (a, b)⊆ (c, d)� a > c, b6 d; (a, b)⊆ [c, d]� a> c, b 6 d; [a, b]⊆ [c, d]� a > c, b 6 d.

b) [a, b]⊆ (c, d)� a > c, b < d.

2.2.2. Open sets and closed sets.

Definition 2.21. A set E ⊆ R is open if for every x ∈ E, there is an open interval (a, b) ⊆ E such that
x∈ (a, b). A set E ⊆R is closed if its complement Ec7 R\E is open.

Remark 2.22. Traditionally, we say R and ∅ are both open and closed.

Lemma 2.23. Open intervals are open, closed intervals are closed. Half-open, half-closed intervals are
neither open nor closed.

Proof. Let (a, b) be an open interval (a, b may be extended real numbers so this covers all four cases). For
every x∈ (a, b), we have x∈ (a, b)⊆ (a, b). Therefore (a, b) is open.

Next let a, b ∈ R and [a, b] be an closed interval. Then we have [a, b]c = (−∞, a) ∪ (b, ∞). Take any
x∈ [a, b]c. Then there are two cases:

• x∈ (−∞, a). Since (−∞, a) is an open interval, we have x∈ (−∞, a)⊆ [a, b]c.

• x∈ (b,∞). Similarly, (b,∞) is an open interval so we have x∈ (b,∞)⊆ [a, b]c.

The other three cases are easier:

• [a,∞): We have [a,∞)c =(−∞, b) open;



• (−∞, b]: We have (−∞, b]c =(b,∞) open;

• (−∞,∞): We have (−∞,∞)c = ∅ open.

Finally we show that [a, b) and (a, b] are neither open nor closed. For [a, b), to see that it is not open, take

x=a∈ [a, b). Then for every open interval (c, d) containing x=a, we have c<a and therefore
c + a

2
∈ (c, d) but

c + a

2
� [a, b). To see that it is not closed, we consider [a, b)c=(−∞, a)∪ [b,∞). Take x= b and argue similarly,

we see that [a, b)c is not open. Therefore [a, b) is neither open nor closed. The proof for (a, b] is similar. �

Lemma 2.24. If E is open, then Ec is closed; If E is closed then Ec is open.

Proof. The second part is by definion. For the first part, because (Ec)c = E, Ec is closed if E is open. �

Theorem 2.25. We have the following results about intersection and union of sets:

a) The intersection of finitely many open sets is open; The union of open sets is open.

b) The intersection of closed sets is closed; The union of finitely many closed sets is closed.

Proof. We prove a). b) follows from a), Lemma 2.24, and De Morgan’s rule of set operations:

(∩α∈AEα)c =∪α∈AEα
c ; (∪α∈AEα)c =∩α∈AEα

c . (2.23)

• Intersection of finitely many open sets. Denote these sets by E1, 	 , En. We show that for every
x∈∩i=1

n Ei, there is (a, b)⊆∩i=1
n Ei such that x∈ (a, b).

As E1 is open, there is (a1, b1)⊆E1 with x∈ (a1, b1);
As E2 is open, there is (a2, b2)⊆E2 with x∈ (a2, b2);
Doing this for all Ei, we obtain (ai, bi)⊆Ei such that x∈ (ai, bi).
Now set a=max {a1,	 , an} and b=min {b1,	 , bn}. We claim that a <x<b. Since x∈ (ai, bi), we

have ai < x < bi for all i = 1,	 , n. Therefore a =max {a1,	 , an}< x < min {b1,	 , bn}= b. Thus we
have (a, b) is an open interval and x∈ (a, b). Finally, as a> ai, b 6 bi, we have (a, b)⊆ (ai, bi)⊆Ei for
all i =1, 2,	 , n. Therefore (a, b)⊆∩i=1

n Ei.

• Union of (could be infinitely many) open sets. Denote these sets by Eα with α∈A an index set. Take
any x ∈ ∪α∈AEα. By definition there is Eα0

such that x ∈ Eα0
. Since Eα0

is open, there is a, b ∈R

such that x∈ (a, b)⊆Eα0
⊆∪α∈AEα. �

Remark 2.26. Note that “union of open sets is open” and “intersection of closed set” can involve infinitely
many sets. For example (1/x, ∞) is open for x > 0. Then we know ∪x>0(1/x, ∞) is open. On the other
hand, the intersection of infinitely many open sets may be closed, for example ∩n∈N(−1/n,1/n); The union

of infinitely many closed sets may be open, for example ∪n∈N

[ 1

n
,1−

1

n

]

. Of course it may also be half-open-
half-closed.

Remark 2.27. From the above theorem we see why it is a good idea to say R and ∅ are both open and
closed.

Theorem 2.28. (Structure of open sets) Let E ⊆R be open. Then there are ai, bi∈R, i∈N such that
E =∪i∈N(ai, bi).

Proof. The proof is beyond the level of this course and is omitted. �

2.2.3. Nested sets.

Definition 2.29. (Nested sets) A sequence of sets {In}n∈N is said to be nested if

I1⊇ I2⊇
 (2.24)

Theorem 2.30. (Nested interval) If In = [an, bn] with an, bn∈R is nested, then ∩n=1
∞ In is not empty. If

bn − an� 0, the intersection is a single point.



Proof. Since [an, bn]⊆ [an−1, bn−1], we have an > an−1 and bn 6 bn−1. Thus an is increasing while bounded
above by b1, and bn is decreasing while bounded below by a1. Therefore there are a, b∈R such that an� a,
bn� b as n� ∞.

By comparison theorem, a 6 b. Since an 6 a 6 b 6 bn, we have [a, b] ⊆ [an, bn] for every n. Therefore
[a, b]⊆∩n=1

∞ In.
In particular, if bn−an� 0, we have b= limn�∞bn= limn�∞an+ limn�∞ (bn−an)=a+0=a. From

the above we know that a∈∩n=1
∞ In. We show that it is the only point in ∩n=1

∞ In. Take any ã ∈∩n=1
∞ In. Then

we have an 6 ã 6 bn. Comparison Theorem then gives a= limn→∞an 6 limn→∞ ã 6 limn→∞bn =a. Therefore
ã = a and the proof ends. �

Remark 2.31.

• an, bn∈R is necessary. Otherwise we can take In =[an,∞) with an�∞ which leads to ∩n=1
∞ In� ∅.

• It is also necessary that the intervals are closed. Counter-examples are In = (0, 1/n), or In =(0, 1/n].


