2. SETs IN R
2.1. Sup and Inf.

2.1.1. Definitions.

Definition 2.1. (sup and inf) Let A be a nonempty set of numbers. The supreme of A is defined as
sup A=min{beR:b>a for every a € A}. (2.1)
If {beR:b>a for everyac€ A} =9, we write
sup A = o0; (2.2)
The infimum of A is defined as
inf A=max{beR:b< a for every a € A}. (2.3)
If {beR:b>a for everya€ A} =2 , write

inf A=—oc0. (2.4)
sup and inf are generalizations of max and min.

Proposition 2.2. sup A=max A,inf A=min A when max A, min A exist. In particular, when A is a finite
set (that is has finitely many elements), it always holds that sup A=max A; inf A=min A.

Proof. Let amax=maxA. Set B={beR:b>a for every a € A}. We need to show that a; =min B, that is
1. amax € B. As apax = max A, we have apyax > a for all a € A. Therefore a; € B;
2. Vb€ B, amax <b. Take any b€ B. Then b>a for all a € A. In particular b > anax.

The proof for the inf/min part is similar. O

Example 2.3. (max/min may not exist) Let A= {1 — %: n e IN}. Then supA=1, inf A=min A =0,
while max A does not exist.

e sup A=1. We show two things:
1. Ya€ A, 1> a. Take any a € A. Then there is n € N such that a=1 —%< 1.

2. VbeR such that b>a for alla€ A, b>1. Since b>a for all a € A, b)l—% for all n € N.
Assume b < 1. Taking n > ﬁ leads to contradiction.

e inf A, min A=0. Omitted.

e max A does not exist. Assume the contrary, then there is apyax € A. Then there is ng € N such that
Amax =1 — nio Taking n > ng we have amax <1 — % € A, contradiction.

Although max/min may not exist, sup/inf always does.

Theorem 2.4. Let A be a nonempty set of numbers, then sup A,inf A exist.



Proof. The existence of sup A follows directly from the least upper bound property of R. To show that
inf A exists, consider the set B:={beR:b< a for every a € A}. Since A is nonempty, there is at least one
a € A. By definition of B this a is an upper bound of B. Thus the least upper bound property leads to the
existence of sup B € R. All we need to show is that by.x:=sup B € B.

Assume the contrary, that is bmax ¢ B. Then there is a € A such that byax > a. Let b= b“‘a"%. Then

we have b > a so for every b€ B, b > b. This contradicts the fact that bmax = sup B = min {5 €R:b > b for
every be B}. O

Theorem 2.5. (Approximation of sup and inf) Let A CR with sup A,inf A€R. Then for every >0,
there are a,b€ A such that
sup A —a <¢g; b—infA<e (2.5)

Proof. We prove the sup case and left the inf case as exercise. Assume the contrary. Then there is g >0
such that for all a € A, sup A — a > 0. Now set asyp := sup A — €9/2. We have agyp > a for all a € A but
asup <sup A. Contradiction. O

Remark 2.6. By setting ¢ = 1/n, we can obtain a sequence {x,} with x,, € A such that x,, — sup A (or
inf A). However note that x,, may not be different elements from one another. For example when A is finite,
we basically will have to take the sequence z,, = admax-

2.1.2. Sup/Inf of functions.

A special case that is particularly useful is when the sets are images of functions.

Definition 2.7. (Sup and Inf of functions) Let f: E+— R be a function. We define

sup f(z):=sup f(E); inf f(z):=inf f(E). (2.6)
z€eE zek

Example 2.8. supwe(_l)l):ﬁ: 1, infwe(_Ll)x?:O.

Theorem 2.9. (sup and inf under operations) Let f, g be functions with domains containing E CR.
Let ce R be a positive number. Then

a SupzeE(Cf):CSUPzeEf; inszE(Cf):Cinferf;
b SupwEE(_f):_infmeEf; inmeE(_f):_SupmeEf;

¢) supzer (f+ 9) <supgecrf + supscrg;

)
)
)
d) infyep (f+9g) >infoepf +inf,crg.

The above holds even when the supreme/infimum is oo or —oo.

Proof. We only prove b), ¢) here. Other cases are left as exercise.

e b). We show sup,cg (—f) = —infycgf. Once this is done setting g = — f gives the other half. Let
a=inf;cgf (maybe —oc0). We need to show

1. —a> —f(z) for all z € E. Since a = infycgf, by definition a < f(z) for all € E. Therefore
—a>—f(z) forall z€ E.

2. For any b€ R satisfying b > — f(x) for all z € F, we have b> —a. Since b> — f(z) for all z € E,
we have —b < f(z) for all z € E. Since a=inf,cgf, a > —b. Therefore b > —a.



Note that the above argument still holds when a = —oc.

e ¢). Denote a =sup,erf,b=sup.crg, we need to show that a +b> f(z) + g(z) for all z € E. If one
of a,b is oo, then we have a +b=o00> f(z)+ g(x) for all z € E.21 If both a,b € R, take any z € E.
We have a =supgepf > f(x) and b=supyecgg > g(x). Consequently a +b> f(x)+ g(z). O

Example 2.10. The inequalities in ¢),d) may hold strictly. The reason is that the “peak” of f and the “peak”
1 o0<a<l o _{1 1<r<?2

of g may not be at the same location. For example, take f = { 0 elsewhere 0 elsewhere ’

have supyer f =supzerg =1, but sup,er (f+g)=1<1+1=2.
Theorem 2.11. (Monotone property) Suppose A C B are nonempty subsets of R. Then

a) sup B >sup A.

b) inf B <inf A.

Proof. We prove a) and leave b) as exercise.
If sup B =00, then sup B > sup A holds; If sup B € R, then by definition we have

sup B > b for every b€ B=—>sup B > a for every a € A (2.7)

because A C B. By definition of sup A we conclude that sup B > sup A. d
2.1.3. Limits supreme and infimum.

Definition 2.12. Let {x,} be a real sequence. The limit supreme of {x,} is the extended real number

limsupx,:= lim (supxk), (2.8)

n—s 00 n—>00 \ k>n
and the limit infimum of {x,} is the extended real number

liminf 2,,:= lim ( inf g (2.9)

n—s00 n—->00 (k}n )

Remark 2.13. Since supy >,y is decreasing and infy> 2y is increasing, limsup and liminf always exist (in
contrast to limits).

Remark 2.14. Note that it is possible that limsup,,__, oox, = —00 and liminf,__, ., = oo.

Lemma 2.15. Let {x,} be a real sequence. Then

limsupx,, > liminf z,, (2.10)
Proof. Follows from Comparison Theorem. Left as exercise. O

Theorem 2.16. (Relation to limits and subsequences) Let {x,} be a real sequence. Then

a) x,— a if and only if limsup, . ooy, =liminf, __, .oz, =a.?2

2.1. Note that by definition sup can only be real number or co, while inf can only be real number or —co.



b) There are two subsequences converging to limsup,__,co®, and liminf, o x,, respectively.

¢) If {xn,} is a convergent subsequence, then liminf, . o2, <lmg_ oZp, < Umsup, . co®y.

Proof.
a) We only prove the case a € R and left a = +00 as exercise.
e “if”. Assume limsup,,__, oo, =liminf, . x, =a. Then as

SUpZk = T > inf xg, (2.11)
k>n k>n

application of Squeeze Theorem gives the convergence of x, as well as lim,,__, oo, =a.

e “only if”. For any e > 0, since x,, — a, there is N € IN such that |z, — a| < e. This implies
SUpPn>NTn < a+ ¢ and inf, s yx, > a —e. Therefore when n > N,

a—e< infx,<supzr,<a-+te. (2.12)
k>n k>n

Comparison Theorem now gives

a — & < liminf z,, <limsup z,, < a +¢. (2.13)

n—aoo n—so00

As this holds for all € >0, we must have limsup,, _, ooz, = liminf,, _, sz, = a.

b) We only show the existence of x,,, — limsup,,__, «o®,. Thanks to Theorem 2.5, there is n; € N such
that

sup z — 1 < &, < sup zg; (2.14)
k>1 E>1

Now apply Theorem 2.5/to {z,+1, ...}, we obtain ny € N such that

1
sup T — =< Ty, < SUP T (2.15)
k>no+1 2 k>no+1

This way we obtain a subsequence satisfying

1
sup x — 7 LTy, < Sup Tp. (2.16)
kzn;+1 k>zn;+1

We take limit of both sides. As {supx>n,+121} is a subsequence of {supx>nzk}, it converges to the
same limit a. Using the fact that 1/l — 0 as | — oo, we apply Squeeze theorem to conclude z,,, — a.

c¢) Let {x,,} be the subsequence. Then we have

inf z; <z, < sup z;. (2.17)

I Z>ng I>ny

Taking limit of all three and applying Comparison Theorem we reach the conclusion.

2.2. We do not say “{xn} converges” to avoid dealing with a =+oo separately.



2.2. A bit topology.
2.2.1. Intervals.

Definition 2.17. Let a,b be real numbers. A closed interval is a set of the form

[a,b]:={reR:a<xz<b}, [a,00):={zr€R:a<} (2.18)
(—o0,b:={zeR:z<b}; (—00,00):=R. (2.19)

An open interval is a set of the form
(a,b):={zxeR:a<z<b}, (a,00):={z€Rra<z} (2.20)
(—o0,b):={z Rz <b}; (—00,0):=R. (2.21)

One can also define half-open, half-closed intervals:

[a,b):={reR:a<z<b}, (a,b]:={zeR:a<x<b}. (2.22)

Remark 2.18. Note that R is both an open interval and a closed interval.

Example 2.19. Write the following in interval notation:
a) A:={zecR:|z—-3|<1};
b) B:={zeR:|z—3|>5}.
c) (1,2)
Solution.
a) For A we have A={zcR:2< 2 <4} so A=12,4];
b) B={zc€R:x>8 or x <—2} so B=(—o00,—2)U(8,00).
¢) (1,2)={rzeR:il<z<2}so(l,2)={zeRiz<lorz>22}={reRiz<1}U{r €R:z>2} which
equals (—o0, 1]U[2,00).
Lemma 2.20. The following holds:
a) (a,b)C(c,d)<=a>¢c,b<d; (a,b)Clc,d|<=a>c,b<d; [a,b]Clc,d] <= a>c,b<d.
b) [a,b]C(c,d)<=a>c,b<d.

2.2.2. Open sets and closed sets.

Definition 2.21. A set E C R is open if for every x € E, there is an open interval (a,b) C E such that
x € (a,b). A set ECTR is closed if its complement E¢:=R\F is open.

Remark 2.22. Traditionally, we say R and & are both open and closed.

Lemma 2.23. Open intervals are open, closed intervals are closed. Half-open, half-closed intervals are
neither open nor closed.

Proof. Let (a,b) be an open interval (a,b may be extended real numbers so this covers all four cases). For
every z € (a,b), we have = € (a,b) C (a,b). Therefore (a,b) is open.

Next let a, b € R and [a, b] be an closed interval. Then we have [a, b]° = (=00, a) U (b, o). Take any
x € [a,b]. Then there are two cases:

e 1 €(—00,a). Since (—o0,a) is an open interval, we have z € (—o0,a) C [a, b]°.
e zc(b,00). Similarly, (b, 00) is an open interval so we have x € (b, 00) C [a, b]°.
The other three cases are easier:

o [a,00): We have [a,00)°=(—00,b) open;



e (—00,b]: We have (—o0,b]¢= (b, 00) open;
o (—00,00): We have (—00,00)¢=@ open.

Finally we show that [a,b) and (a, b] are neither open nor closed. For [a,b), to see that it is not open, take

z=a¢c[a,b). Then for every open interval (¢, d) containing = =a, we have ¢ < a and therefore <% € (¢, d) but

2
¢+ % ¢ la,b). To see that it is not closed, we consider [a,b)¢= (—o0,a)U[b,0). Take z=b and argue similarly,

we see that [a, )¢ is not open. Therefore [a,b) is neither open nor closed. The proof for (a,b] is similar. O

Lemma 2.24. If E is open, then E° is closed; If E is closed then E° is open.
Proof. The second part is by definion. For the first part, because (E€)¢=E, E€is closed if E is open. [

Theorem 2.25. We have the following results about intersection and union of sets:
a) The intersection of finitely many open sets is open; The union of open sets is open.

b) The intersection of closed sets is closed; The union of finitely many closed sets is closed.

Proof. We prove a). b) follows from a), Lemma [2.24, and De Morgan’s rule of set operations:
(maeAEa)c:UaeAEg; (UQGAEQ)CZQQGAE(g- (223)

e Intersection of finitely many open sets. Denote these sets by Fjy, ..., F,. We show that for every
x €Nf—1E;, there is (a,b) CNP_ | E; such that x € (a,b).

As Ej is open, there is (a1,b1) C B with = € (a1, b1);

As FE, is open, there is (a9, by) C By with = € (ag, ba);

Doing this for all E;, we obtain (a;, b;) C E; such that x € (a;, b;).

Now set a =max {aq,...,a,} and b=min {by,...,b, }. We claim that a <z <b. Since = € (a;,b;), we
have a; < x <b; for all i =1, ..., n. Therefore a = max {ay, ..., a,} <z <min {by,...,b,} =b. Thus we
have (a,b) is an open interval and x € (a,b). Finally, as a > a;,b < b;, we have (a,b) C (a;, b;) C E; for
all i=1,2,...,n. Therefore (a,b) CN{—1F;.

e Union of (could be infinitely many) open sets. Denote these sets by E, with a € A an index set. Take
any « € Upe aFo. By definition there is F,, such that x € E,,. Since E,, is open, there is a, b€ R
such that = € (a,b) C Ey, CUncaFa. O

Remark 2.26. Note that “union of open sets is open” and “intersection of closed set” can involve infinitely
many sets. For example (1/x, 00) is open for z > 0. Then we know U, (1/z, c0) is open. On the other
hand, the intersection of infinitely many open sets may be closed, for example N, en(—1/n,1/n); The union

of infinitely many closed sets may be open, for example UneN[%, 1- %] . Of course it may also be half-open-
half-closed.

Remark 2.27. From the above theorem we see why it is a good idea to say R and & are both open and
closed.

Theorem 2.28. (Structure of open sets) Let E CIR be open. Then there are a;,b; € R, i € N such that
E=Ujen(ai, b;).

Proof. The proof is beyond the level of this course and is omitted. O
2.2.3. Nested sets.
Definition 2.29. (Nested sets) A sequence of sets {I,}neN is said to be nested if

LoD (2.24)

Theorem 2.30. (Nested interval) If I,, = [ay, by] with a,, b, € R is nested, then NSL11, is not empty. If
b, —an, — 0, the intersection is a single point.



Proof. Since [an,by] C [an—1,bn—1], we have a, > a,_1 and b, <b,,_1. Thus a,, is increasing while bounded
above by by, and b,, is decreasing while bounded below by a;. Therefore there are a,b € R such that a,, — a,
b, — b as n — oo.

By comparison theorem, a < b. Since a, < a < b < by, we have [a, b] C [ay, b,] for every n. Therefore
[a,b] CNo1T,,.

In particular, if b, — a,, — 0, we have b=lim,,_, ob,, =lim, ., ooty +lim,, ., - (b, —a,) =a+0=a. From
the above we know that a € N;2Z11,,. We show that it is the only point in NS I,. Take any a € Ny211,,. Then
we have a, <a <b,. Comparison Theorem then gives a =1lim,, _, 50y, < limy, . o0 @ <lim,, _, oob, = a. Therefore
a =a and the proof ends. O

Remark 2.31.
® ay,,b, €Risnecessary. Otherwise we can take I, = [ap, 00) with a, — oo which leads to N5=11, # .

e It is also necessary that the intervals are closed. Counter-examples are I,,=(0,1/n), or I,,=(0,1/n].



