Math 217 Fall 2013 Homework 7 Solutions

DUuE THURSDAY Nov. 7, 2013 5pM

e This homework consists of 6 problems of 5 points each. The total is 30.

e You need to fully justify your answer — prove that your function indeed has the specified
property — for each problem.

e Please read this week’s lecture notes before working on the problems.

Question 1. Let f(z,y) =23+ 3>+ x y>. Calculate its Taylor expansion to degree 2 with remainder
(that is n=2, the remainder involves 3rd order derivatives) at (1,0).

Solution. We have

Of o 2, 9 Of o 9
0*f 0%f 0*f
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a0 Gy mag s Pl ()
Therefore the Taylor expansion with remainder is
J ) =143 —1)+5 6 =12 +257+ (2 - 1)+ (e = 1)y’ + 7). @

Question 2. Let f(x,y) :%2. Calculate its Taylor polynomial of degree 3 (that is Ps) at (1,1).

Solution. We have

of o -1 OF _ o o
Pf o o Pf L, Pf_ o,
33?272?] ’ 8xay*_2xy ) 8?]2*233 Yy ) (6)
*f_ Pf _ Lo Pf s PP,
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Thus Ps at (1,1) is

1+2@-D-(-D+[@-1)-2@-1)@E-D+@E-D]+[-(@@-1)>@F-1)+
2(-1)(y—1)*—(y—1°L. (8)

Question 3. Let f(x,y,2) :%. Calculate its Hessian matriz at (0,0,0).

Solution. We have

Of _ sinwcosy Of  coswsiny Jf coswcosysinz
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Next
O?f _ cosmcosy O*f  coswcosy 82f_cosxcosycosz+2cos:vcosy(sinz)? (10)
or? cosz | Oy? cosz = 022 (cosz)? (cos z)3 ’
0?f sinwsiny 0% f __coswsinysinz 0% f __sinzcosysinz (11)
Ordy  cosz = Oydz (cosz)?2 ' 0200 (cos 2)?
So its Hessian matrix at (0,0,0) is
-1 0 0
Hy(0,0,00= 0 -1 0 | (12)
0 0 1

Question 4. Let f: RV — R belong to C?, that is all of its second order partial derivatives exist
and are continuous. Let g€ RY. Assume

Voe RN, v#£0 v H(xzp)v>0 (13)

where H(xo) is the Hessian matriz of f at xg. Prove that there isr >0 such that for all x € B(xo,r),
there holds

VoeRY,v£0 v H(x)v>0. (14)

Solution. Since f € C? each entry h;;(x) of the Hessian matrix H(z) is continuous. Now define

g(xz,v): RN s RVXN (15)
as
N
g(z,v)=v ' H(z)v= Z vihij(x) vj. (16)
ij=1

Since ¢ is the sum of products E?,[j:1 vihij(x) v; and v, vj, hij(x) are all continuous as functions
of (x,v), g is a continuous function of (x,v).
Now consider the bounded closed set A:= {(x,v)| x ==, ||v| =1}. By assumption we have

g(x,v)>0 (17)
for all (x,v) € A. By continuity for each point (xg,vo) in A there is rg, v, >0 such that
V(x,v) € B((20,v0); Tzg,v0)s g(x,v)>0 (18)

By Heine-Borel A is compact, so there are finitely many such balls covering A. Now take r to be
the smallest of their radius. We have, in particular,

V(x,v) with € B(xo,r), [|[v||=1, g(x,v)>0. (19)
Now for any u € RN, u # 0, we have Hﬁ“ =1 and therefore
uTH(a:)u—HuH2[<L>TH(:c)<L>] >0. (20)
[lu| [lu|
Remark. Alternatively we can prove by contradiction. Assume that for every r > 0, there is
x, € B(xo,r) and nonzero v, € RY such that 'U;:FH(mr) v, < 0. Then setting u,:= ”:—:” we have

ul H(z,) u, <0. (21)



DUE THURSDAY Nov. 7, 2013 5pPM 3

But u, € S:= {||x| = 1} which is bounded and closed and is therefore compact. Thus there is a
cluster point u such that for some r,, — 0, u,, — u. Clearly x, — xo. Thus

ul H(x,,)u,, — u’ H(xo) u=u" H(zo) u <0. (22)
Finally as ||u,, ||=1 for all n, uw# 0. Contradiction.

Question 5. Prove

N
o
=

n n n
4 b>0.n>1— a+b a”+b
2 2
through solving min f(x,y) ="+ y™ subject to the constraint x +y=1>0.

Solution. Form the Lagrange function

L(z,y, ) =("+y") = A(z+y—1). (24)
Then the necessary conditions are
oL

n—1_ = —=
nw A g% 0 (25)
n n—l_)\ = = =0 26
y gg (26)
r+y—1 = 5:0. (27)

Solving this we have 2" ~'=4""1 24+ y=1>0. The only solution is x =y =1/2. Now the Hessian

%) is n(n—1)(1/2)" =21 where [ is the identity matrix. It is easy to check that this

matrix at (é,
matrix is positive definite. Therefore <i i) is the only stationary point and a strict local minimizer.

272
Now we show that it is the global minimizer. Assume otherwise, that is there is 1 4+ y1 =1 such
that f(xz1,y1) < f(é, é) Since (é, é) is a strict local minimizer, the supreme between (é, é) and
(z1,y1) is reached and has to be different from both (x1, y1) and (é, é) This point must be a local

maximum and is then a stationary point, contradiction.
So we have proved

fa > 155 ) (28)
This means
rors (2R (55) g

and the conclusion follows.

Question 6. Let f: RN — R belong to C?. Let g€ RY be a local maximizer for f. Prove

a) (grad f)(zo) =0;
b) Yo e RN, v H(xp) v <0 where H(xo) is the Hessian matriz of f at xo.

Solution.

a) Assume grad f # 0 at xg. Denote v := (grad f)(zo). Since f € C? it is in particular
differentiable at xy and therefore
of

5o = (grad f)(zo) - v =l(grad f)(zo)|[*>0. (30)
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By definition

and consequently there is § > 0 such that

which gives
Vhe(0,6),  flmo—hw)> f(mo). (33)

Now for any r >0, take * = xo— hv with 0<h<min< 4 ,(5). Then

[[v]l
|hv|| <r= x € B(xo,r) (34)
but we have f(x)> f(xp). Contradiction.

Assume there is v € RY such that vT H(xp) v > 0. Then since f € C?, each h;;(x) of the
Hessian matrix is continuous. Consequently the function

N

g(x):=v H(x)v= Z vi hij(x) v; (35)
ij=1
is continuous. Thus there is § > 0 such that
Vz € B(xo,9), v H(x)v>0. (36)
Now for any r > 0 consider
x:=xo+hv (37)
with
h= %‘7;\7\5) (38)
Clearly x € B(xo, )N B(xo,0).
Taylor expansion gives
1
flx) = f(zo) + (grad f)(@o) - (x —z0) + 5 (z — xo) " H(&) (x — o)
h2
= J(wo)+ 5 0T H(E)w
> f(=o). (39)

Here the last inequality is because x, g€ B(xg, §) = & € B(xg,0) = vT H(&) v > 0. This
contradicts ¢ being a local maximizer.



