
Math 217 Fall 2013 Homework 4 Solutions

Due Thursday Oct. 10, 2013 5pm

• This homework consists of 6 problems of 5 points each. The total is 30.

• You need to fully justify your answer – prove that your function indeed has the specified
property – for each problem.

• Please read this week’s lecture notes before working on the problems.

Question 1. Let f : [0, 1)× [0, 1) be defined as

f(x, y) =
1

1−x y
. (1)

Prove that f is continuous (not necessarily by definition) but not uniformly continuous.

Solution.

• f is continuous. This follows directly from the fact that f is the ratio of two continuous
functions 1, 1−x y and 1−x y� 0 for all (x, y)∈ [0, 1)× [0, 1).

• f is not uniformly continuous. For any 1 > δ > 0, let x1 = 1− δ/2, x2 =1− δ. Then

‖(x1, x1)− (x2, x2)‖=
2

√

2
δ < δ, (2)

but

|f(x1, x1)− f(x2, x2)|= 1

δ − δ2/4
− 1

2 δ − δ2
>

1

δ/2− δ2/4
− 1

2 δ − δ2
>

1

δ − δ2/2
> 2. (3)

Question 2. Prove by definition (without using Heine-Borel):

a) E = {x1,	 , xn}⊆R
N is compact;

b) E = {(x, y)O x∈N, y ∈N} is not compact;

Proof.

a) Let W be any open covering of E. Then for each i ∈ {1, 2,	 , n}, since xi ∈ ∪O∈WO, there
is Oi∈W such that xi∈Oi. Now we have the desired finite covering

E ⊆∪i=1
n Oi. (4)

b) Consider the open covering

E ⊆∪i,j=1
∞ Oij (5)

where

Oij 7 B((i, j), 1). (6)

Then we see that each (i, j)∈E satisfies (i, j)∈Oij but

∀(k, l)� (i, j) (i, j) � Okl. (7)

Therefore any finite covering can only cover finitely many points in E and cannot cover E. �

Question 3. Let f :RN� RM be continuous. Let A⊆RN.

a) Prove that f (A)⊆ f(A);
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b) Give an example where f(A)⊂ f (A) (that is f (A)⊆ f(A) but f(A)� f (A)).

c) What is the weakest additional assumption on E you can find that guarantees f (A) = f(A)
for all continuous f? Justify your answer.

Solution.

a) Take any y0∈ f(A). Then there is x∈A such that y0 = f(x). Two cases:

1. x0∈A. Then y0∈ f(A)⊆ f(A);

2. x0 � A. Then we claim that for every r > 0, B(x0, r) ∩ A � ∅. To see this, assume
otherwise. Then there is r0 > 0 such that B(x0, r0)∩A = ∅� A ⊆B(x0, r0)

c. Now
we have A⊆A∩B(x0, r0)

c⊂A. Note that the middle set is closed. This contradicts
the definition of closure as the intersection of all closed sets containing A.

Since f is continuous, for every ε > 0, there is δ > 0 such that ‖x − x0‖ < δ�
‖f(x)− f(x0)‖< ε. We know that B(x0, δ)∩A� ∅ therefore f (A)∩B(y0, ε)� ∅.

This is true for all ε > 0, so y0∈ f(A).

b) Consider

f(x)= e−‖x‖. (8)

and A =A =R
N and f(A)= (0, 1].

c) The weakest addition condition is “A is compact”.

• If A is further compact, then f(A) = f (A).
Since f(A)⊆ f(A), all we need to show is f(A) is closed. By Heine-Borel it suffices

to show f(A) is compact. Let W be an open covering of f (A). Then

W ′7 {f−1(O)O O ∈W } (9)

is an open covering of A. By compactness there is a subcovering

Ā ⊆∪k=1
n f−1(Ok). (10)

Now this gives

f(Ā)⊆ f(∪k=1
n f−1(Ok))⊆∪k=1

n f(f−1(Ok))⊆∪k=1
n Ok. (11)

This is a finite covering of f(A).

• Now we show that if f(A) = f (A) for all continuous f , then A must be compact.
Assume otherwise. By Heine-Borel, A is not bounded. We claim that A is not

bounded either. Assume otherwise, then there is R>0 such that A⊆B(0,R). Since A

is not bounded, there is x∈A such that ‖x‖>R+1. Note that x� A. Now consider
the set

B7 A∩B(x, 1)c. (12)

Then clearly

1. B is closed;

2. A⊆B ⊂A.

This contradicts the fact that A is the intersection of all closed sets containing A.
Now define f(x)7 exp (−‖x‖) and obviously 0∈ f(A) but 0 � f(A).

Remark. Sets A⊆R
N satisfying A is compact are called “precompact”.
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Question 4. Let f(x, y, z)=x2 + y2 + z2. Prove by definition that f is differentiable at (1,1,1) and
find its differential there.

Proof. Guess Df(1, 1, 1)(u, v,w)= 2 u+ 2 v + 2 w.
Now set x =1 + u, y =1 + v, z = 1 +w and check

|f(x, y, z)− f(1, 1, 1)− (2 u +2 v + 2 w)|
(u2 + v2 +w2)1/2

=
u2 + v2 +w2

(u2 + v2 +w2)1/2
=(u2 + v2 +w2)1/2. (13)

Thus

lim
(u,v,w)� (0,0,0)

|f(x, y, z)− f(1, 1, 1)− (2 u +2 v + 2 w)|
(u2 + v2 +w2)1/2

=0 (14)

and the proof ends. �

Question 5. Let f(x, y, z)= y2 z + sin (5 x y). Calculate its three partial derivatives.

Solution. We have

∂f

∂x
(x, y, z) = 5 y cos (5 x y),

∂f

∂y
(x, y, z) = 2 y z +5 x cos (5 x y),

∂f

∂z
(x, y, z)= y2. (15)

Question 6. Let f(x, y) = |x + y |. Find all directions v ∈ R
3 such that

∂f

∂v

exists. Justify your
answer. Note that the answer may be different at different points (x, y).

Solution. There are two cases. x+ y =0 and x+ y� 0. We denote v =
(

u

v

)

.

1. x + y = 0. In this case
∂f

∂v

(x, y) exists if and only if u + v =0.

• If. In this case we have

f((x, y) +h (u, v)) = f(x, y) (16)

so obviously
∂f

∂v
(x, y) = 0. (17)

• Only if. We show that if u+ v� 0, then
∂f

∂v

(x, y) does not exist.

Wlog assume u+ v > 0. Then since x+ y = 0, we have

f((x, y)+ h (u, v)) =

{

h (u+ v) h > 0
−h (u+ v) h < 0

= |h| (u+ v) (18)

The limit

lim
h� 0

|h| (u+ v)
h

(19)

doesn’t exist.

2. x + y� 0. In this case
∂f

∂v

(x, y) for all directions v.

Wlog assume x+ y =: δ > 0. Now for all |h|< δ

2
√

‖v‖
, we have by Cauchy-Schwarz,

|u+ v |= |1 ·u +1 · v |6 2
√

(u2 + v2)1/2. (20)

This gives

|h u +h v |6 2
√

|h| ‖v‖<δ (21)

and consequently

(x+ hu)+ (y + h v) > 0� f(x+ h u, y +h v) = (x+ hu)+ (y + h v). (22)

Thus

lim
h� 0

f(x +h u, y +h v)− f(x, y)
h

= lim
h� 0

(u + v) =u + v. (23)
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