MATH 217 FALL 2013 HOMEWORK 3 SOLUTIONS

e This homework consists of 6 problems of 5 points each. The total is 30.

e You need to fully justify your answer — prove that your function indeed has the specified
property — for each problem.

e Please read this week’s lecture notes before working on the problems.

Question 1. (Convexity)
a) Let ECRY be defined by
E:={xcRV||z| <1}uU{(1,0,...,0)}. (1)
Is E convex? Justify your answer.
b) Let SC S(0,1):={x cRY|||z| =1} be any subset of the unit sphere. Define
E:={xzcRV||z|<1}US. (2)

Is E convex? Justify your answer.

Solution.

a) Yes. Take any x,y € E. Let t € [0, 1] be arbitrary.
We discuss two cases.

e Case 1: Both ,y+#(1,0,...,0). Then ||z|,||y| <1 and triangle inequality gives
ltz+(A-tyl<ltz|+[0-t)yl[<t+(1-t)=1. (3)

Therefore tx+ (1 —t)y € E.

e Case 2: Oneof x,y=(1,0,...,0). Wlog assume it’s . Then ||y || < 1. Note that since
x,y € E. We only need to show

te+(1—-t)yekE (4)
for all t € (0,1). This implies
[tz+(1-t)yl<lte]+[Q-tyll<t+(1-1t) <1 (5)
Therefore tx + (1 —t)y € E.
b) Yes. Note that the difficulty here is that both ||z ||, |y | may be 1 and the simple application
of triangle inequality giving
tz+ (A -yl <tz|+[[1-Dyl<t+(1-t)=1 (6)

is not enough to conclude tx+ (1 —t)y € E.
Thus we try to prove that if £y, ||| =|y||=1,and t € (0,1), then ||t x+ (1 —t) y|| <1.1
We check:

[te+(1-t)yl]* = [ta+(1-t)y]-tz+(1-1)y]
= t2z-x+2t(1-t)x-y+(1-t)°y-y
< [PPH+A-t)?)+2t(1—t)x-y. (7)

1. This is a property of the norm itself. Such norms are called “strictly convex”.
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Now recall that

(@114 +anyn)? = @+ +ak) (W +-+uk) =D (@iy; — ;) (8)
iFj
which means
lz-yl <[] lyll=1 (9)
unless
TiY;=T;Yi (10)
for all i j. Taking square and sum over 4, using the fact that ZlNzl 2= ZzNzl y?=1 we reach
yi=z7 Vj=1,2,..,N. (11)
Now reviewing z; y; = x;y; we see that there are only two cases, either x =y or = —y. The
former is excluded by assumption. In the latter case, we have
z-y=—|z|?=-1<1. (12)
Thus we have show that
ltx+(1-t)y| <1 (13)

which gives tx + (1 —t) y € E when both &,y € S.
When ||z|| <1 or ||y]| <1 the proof is the same as in a).

Question 2. (Limit) Let k,l,m,n €N. Consider the following function:

.’L‘k yl
x2m + y2n .

[z, y)= (14)

Find all k,1, m,n such that the limit lim, . (0,0)f(z, y) ewist. Justify your answer. (You may

find the following Young’s inequality useful: p, q >0, % + é =l=|zy| < % + %)

Solution. We claim that the limit is 0 when % + % > 2 and does not exist for all other k,1, m,n.

* + L2 There arer<£,s<isuchthat r+s=2. Denote u:zﬁ—r>0and vi=Lt_s>0.
m n m n m n
Now apply Young’s inequality:

2 2
oyl = o < o] (2o 2y (15)
This gives
2 2
O S
muy+nv
< max(%,%) (2+y%) 2 . (16)
Now for any € > 0, take > 0 such that
max 2,2 ymetny < g (17)
r’s

We have whenever [|(z,y)|| <9, | f(z,y)| <e.

. % + % < 2. We show that for every § > 0, there are (1, y1), (2, y2) satisfying ||(z1, y1)|| <9,
(w2, y2)[| <6, and | f(x1, y1) — f(w2, y2)| = 1/2.



Take any ¢ > 0.
o Take (z1,y1)= (g,O). Then ||(z1,y1)|| <9 and f(z1,y1)=0.

o Take (z2,y2) = (tl/m,tl/") where t:min(l,%ﬁl). We have ||(z2, y2)|| <0 and

1 2-(24+4) 1
Sl = 227G L (13

Question 3. (Limit at infinity) Let f: RN — RM. We define its limit at infinity as follows.
limg_ oo f(x) =L € RM if and only if
Ve >0 3R >0 Va satisfying || >R |f(x)—L| <e. (19)
Study the limit
2,2

lim xye ™ V. (20)

(z,y)—00

Does it exist? If it does, what is the limit? Justify your answer.

Solution. It does not exist. For any R >0, consider (x1,y1) = <R, %) and (x2,y2) = (R, %) Then
we have [[(z1, y1)|| > R, [|(w2, y2)[| > R, but

|f(z1,91) = [, y2)| =le™! =2e7?|=(e = 2) e™?>0. (21)
Thus the limit cannot exist.

Question 4. (Continuity) Let f: RN — RM be a linear function. Prove that it is continuous (that
is, it is continuous at every point in its domain.)

Proof. Let ¢p € RY be arbitrary. Since f is linear, it is a matrix representation A = (a;;). Now
we have, for any = € RV,

[ f(z) — fxo)| = [[Az— Az

| A (2 — o)

[(a11 (21— T01) + -+ + a1y (x5 — oN))2 + -+ + (anr (21— 201)2 + )]/
[M N2 (max |aij|)? (max |z — zq])?]'/?

\/MNmaX|aij| |z — xol|. (22)

€
2\/MNrna.x\aij|7

1f (@) = f(zo) <

Therefore f is continuous. U

NN

Now for any ¢ > 0, take 6 = we have

<e. (23)

DNO| ™

Question 5. (Open/closed sets) Let A:={(z,y) e R}z <y}.

a) Is it open? Is it closed?

b) Find its interior.
¢) Find its closure.
d) Find its boundary.

)

e) Find its cluster points.
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Justify all your answers.

Solution.
a) A is open but not closed.

e A is open.
Take any (g, yo) € A. Take r :%. Then for all (z,y) € B((xo, y0),7), we have

|z — o <7, [y —yol <7 (24)
which gives
y— = (yo— o) — |z —zo| — [y — 5o > 0. (25)
Thus B((zo, %0),7) € A.
e A is not closed. We prove A°={(x,y) € R? x>y} is not open.
Take (x0, yo) = (0,0) € A°. Then for any r >0, the point (%, 0) € B(0,r) but is not
a member of A.
b) Since A is open, A°= A.

c¢) We claim it’s closure is B:={(x,y) € R?|z < y}. First similar to a) we can prove that B¢ is
open so B is closed. As AC B, AC B by definition of closure.
Let F' be any closed set, A C F', we now prove B C F'. Once this is done, we can conclude
that B CNAcCF,F closedF = A and consequently B = A.
We show B C F through proving F°¢C B¢, that is, if (zg, yo) € F, then x> yo. Take any
(20, yo) € F°. Then since F¢ is open there is r >0 such that

B((wo, yo),7) CFCC A°={(z,y) ER?*|z > y}. (26)
Now consider (x,y) = (xo—1/2, yo) € B((xo, yo), 7). We have

.
330—52 Yo = 20 > Yo = (0, Yo) € B (27)

Thus the proof ends.

d) The boundary is {(z,y) € R*|z=1y}.

e) The cluster points are {(z, y) € R?*| x < y}. Take any (z, yo) satisfying xo < yo. Let U be
any open set containing (xo, yo). Then there is r >0 such that

B((zo, y0),m) CU. (28)
All we need to show is
[B((z0, 0),7) — {(z0, yo) H N A# 2 (29)
or equivalently, there is (x, y) € B((xo, yo), r) different from (xo, yo) such that = <y. This is
easy: Take
T =30—7/2,Y=10. (30)

Question 6. (Open/closed sets) Let A CRY. Prove (A°)¢= A°.

Proof. We prove through two steps:

1. (A% C A°.
Since A¢ C A€, (A% C (A°)¢= A. Furthermore as A€ is closed, (A°)¢ is open. Now by

definition of A°, (A€)¢C A°.



2. A°C (A9
Let x € A°. Then there is an open set U such that & € U C A. This means UN (A°) =0 =
A¢CU¢® But U¢is closed. Therefore A°C U¢ which means U C (A€)¢. Consequently x € (A€)¢
and the proof ends. O

Remark. A better way to prove 2. is the following.
(A°)¢is closed. And since A°C A, A°C (A°)°. Now by definition of closure we have

A® C (A= (A°)°D A°. (31)



