MATH 217 FALL 2013 HOMEWORK 2 SOLUTIONS

DUE THURSDAY SEPT. 26, 2013 5PM

e This homework consists of 6 problems of 5 points each. The total is 30.

e You need to fully justify your answer — prove that your function indeed has the specified
property — for each problem.

e Please read this week’s lecture notes before working on the problems.
Question 1. The following are several possible strategies to prove Cauchy-Schwarz:

-y =lz1yi+- +avyn| < @F 4+ 2R) 2+ g P = 2]y - (1)
Pick any one (or come up with your own) idea and write down a detailed proof.

e Approach 1.
Mathematical induction.

e Approach 2.
LetteR. Then (x —ty)-(x—ty) =0 for all t. Write the left hand side as a quadratic
polynomial of t.

e Approach 3.
Use z;y; = (%) (yik) < % (2 k2 + y2 k?). Choose appropriate k.

Solution.

e Approach 1.
Though the case N =1 is trivial. For reasons that will be clear in a few lines, we have to
prove N =2. This is done in Sept. 16’s lecture and is omitted here.
Now we try to prove the case N =k + 1 assuming

w1y oy < (@ 4+ ) V2 (gf o+ yf) (2)
We have

lzryr+ -+ Ty + | Thr1 Ykl

(w4 +aD)V2 (yE + -+ D)V || [yt

(@ 4+ a2) + lorr D2 (W + -+ ul) + [y )
(@ 4+ +2f )2 (i + o+ v V2 (3)

|1 Y1+ - + Th Yk + Tht1 Yot 1]

NN N

Note that in the last inequality we have used the N =2 case.
e Approach 2.
Since (x —ty) - (x —ty)=(y-y)t>—2(z y)t+ (x- ), the fact that it is non-negative
implies
2(z-y)*—4(y-y) (z-x) <0 (4)
which gives Cauchy-Schwarz.

e Approach 3.
Let k € R to be determined later. We have

122+ ... + 22

7 Ry R | (5)
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Now take
k2 = (x%'{'""‘_x?\/)l/z' (6)
(4 +y3)'?
The proof ends.
Question 2. Let E CRY. Define its distance function d: R — R as
d(x):= inf dist(x, y) = inf ||z —y]. (7)
yeE yeE
Prove that Yo,y € RY, |d(z) —d(y)| < ||z — y|.
Proof. First we prove d(x) — d(y) < || — y||. We have, for any z€ E,
d(z) —dist(y, z) = infj’E dist(z, w) — dist(y, 2)
we
< dist(x, z) — dist(y, 2)
= lz—z[ -y -z
<z -yl (8)

Here we applied triangle’s inequality in the last inequality. Note that || — y|| is independent of z.
Therefore we can take infimum and obtain

d(w) — d(y) = d() — inf dist(y, 2) < [lo ]| ©
Finally noticing the symmetry between  and y, we have
d(y) —d(=z) <y —z| =z -yl (10)

Summarizaing the above, we have |d(x) —d(y)| < ||z — vy O

Question 3.

a) Prove that the following are both norms on R:

llloo:= max {lzil}; @ fli:= o] + fwaf + - + |2l (11)

=1,...

b) Let X be a linear vector space with norm ||-||. Prove the following: If one can define an inner
product (-,-) such that ||z|| = (x,z)"?, then for any x,y € X,

2+ yll? + [l = ylZ=2 (= ]*+ [[y]]*). (12)
¢) Find a norm on RY that cannot be defined through an inner product. Justify your answer.

Solution.
a) We check
L ||&]|co:=max;=1, ~{|zi]} 20; 2] c0=0=—=max; |z;]=0=z;=0forall i =1,2,...,
N=x=0;
|1 := |z1| + |z2| + - + |zn| 2 0; [|2]y = 0 = |21] + |22| + - + [2n5| = 0=
| |loc=0=— max; |z;|]=0=—= ;=0 for all i=1,2,..., N—=x=0.
i [la@|oo =max; {|azi|} = max; {|a| [z:]} = [a| max; {|zi[} = |a] [[2]]o;
lawly=lazi|+|azy|+ - +|axn|=]a| (1] + |z2| + - + 2N ]) = [a] |21,
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iii. (Triangle inequality).

[+ yllo = max|z;+ yi
1

max (|| + [yi])
1

NN

max |z;| + max |y;|
KA 3
= ||@]loc + || ¥l co- (13)

le+yli = |lza+ |+ |x2+ yo| + -+ |zn + yn|

1|+ [ya] + - + [zn [+ [y~

= (lz1| + [wof + - + [N ]) + (lya] + g2l + -+ yn )

i+ lylh- (14)

N

b) We have

lz+ylP+lz -yl = @+y,z+y)+(@—y,z—y)

= (z,2)+ (@, y)+ (v, 2) + (v, )
+(z,2) + (2, —y) + (—y,2) + (—y, —y)

= (x,a:)—i—Q( )+( Y, )

(z,2) =2 (x,y)+ (¥, 9)

= 2[(z,z)+(y,y)]

= 2([lz[*+ ly]1?). (15)

c) Take ||||co- All we need to show is that it does not satisfy the equality proved in b). Take
x=ej,y=-es. Then we have ||+ y||co= || — Y|loo = ||Z||cc = ||¥||lcc =1. The equality is not
satisfied.

—+

Question 4. Let O € RN *¥ be such that ||O z|| = ||| for any £ € RY. Prove that O is orthogonal.
Please prove it directly and do not use any theorem from linear algebra.

Proof. First we show that (Oz)-(Oy)==x -y for all ¢, y € RV. To see this we calculate

rzrxt2z-y+y y = (z+y) (z+y)

[O(z+y)]- [O(z + y)]

= (Oz)-(Oz)+2(0x)-(0Oy)+(0y) (Oy)
[0z|*+2(0x)- (Oy)+[|Oy|
[z[|*+2(0x)- (Oy)+|y|?

=z xz+20x)- (Oy)+y-y. (16)
The claim follows.
Recalling = -y ="y, we have
(Ox)-(0y)=(0x)" (Oy)=2"0"Oy=[0"0=]"y=(0"0x) y. (17)
Thus we have shown
[(0TOz)—z] - y=0 (18)

for all ,y € RY.
Taking y=ey, ..., en, we see that

OTozx==x (19)
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for all x € RY.
Finally taking x =e, ..., ex we see that OTO =1, that is the matrix O is orthogonal. U

Question 5. Let D =diag(dy,...,dn) be a diagonal matriz with all the d;’s distinct. Let A € RN >N
be such that AD =D A. What can we conclude about A? Justify your answer.

Proof. The (i, j) entry for A D is dja;; while the (¢, j) entry for D A is dja;;. Thus we have
(di —dj) ai;=0 (20)

for all 4, j=1,...,N. As d;’s are distinct, this means a;; =0 when i+ j, that is A is diagonal.
It is clear that if A is diagonal, then A D= D A. Thus we have fully characterized the matrices
that commute with a diagonal matrix with distinct main diagonal entries. U

Question 6. (Twin Prime Conjecture) Earlier this year, Prof. Yitang Zhang of University of
New Hampshire made history through proving the following result:

liminf (pp11— pn) <7 x 107 (21)

n—aoo
where py, is the n-th prime number.

a) Prove that the Twin Prime Conjecture “There are infinitely many pairs of prime numbers
with difference 27 is equivalent to

liminf (pp+1 — pp) =2. (22)

b) One step of his proof is basically the following. Assume
Yoo > 1A d )<z (loga) (23)
d<D2d|P c€Ci(d)
for some A>0 and
> A0, d,c)| <z (logz)/d; > m(d)?pa(d)?d ! < (log x) (24)
ceCy(d) d<D?d|P

for some B >0. Then we have

B+1-A

&= Z 73(d) pa(d) Z A0, d,c)|| <x(logz) 2 . (25)

d<D2.d|P cEC;(d)

for any A>0. Prove the above claim using Cauchy-Schwarz.

Proof.
a) If liminf, .o (ppn+1— pn) =2, then there is a subsequence satisfying
liminf (pp,+1 — pn,) =2. (26)
k— 00
Consequently, there is K € N such that for all k£ > K,
|Pngt+1— Pny — 2| < 1/2. (27)

But the left hand side is an integer, so it must be 0. That is there are infinitely many pairs
of prime numbers with difference 2.
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b) We have

£ = 3(d) pa(d) Y A0, d,0)

ceCi(d)

Z Z d) |A(0,d,¢)|"?) (|A (8, d,c)|"?)

Y
S

i\
RS

( > Z) 9dc>1/2

d<D2,d|P ceCyi(d

1/2

< o> | d) |A(0,d,c)|*/?)? > > 1A@0.d,0)

d<D?,d|P ceCy(d) d<D2,d|P ceCy(d)

1/2

= Yoo D> (mld )2|A(6,d,c)| Y > 1A@6.d,0)

d<D?,d|P ceCy(d) d<D?,d|P ceCy(d)

1/2

= X m@?e@?| Y 1A0.dl] | (z(ogx)™)

d<D2d|P ceCy(d)

1/2

<[ Y m@?ed)?dta(loga) | (a(loga) )

d<D?d|P

< zt/? (log:v) > 3:1/2 (log ) ~4/?
B+1—-A

= z(logz) 2 . (28)




