
Math 217 Fall 2013 Homework 2 Solutions

Due Thursday Sept. 26, 2013 5pm

• This homework consists of 6 problems of 5 points each. The total is 30.

• You need to fully justify your answer – prove that your function indeed has the specified
property – for each problem.

• Please read this week’s lecture notes before working on the problems.

Question 1. The following are several possible strategies to prove Cauchy-Schwarz:

|x · y |= |x1 y1 +
 + xN yN |6 (x1
2 +
 +xN

2 )1/2 (y1
2 +
 + yN

2 )1/2 = ‖x‖ ‖y‖. (1)

Pick any one (or come up with your own) idea and write down a detailed proof.

• Approach 1.
Mathematical induction.

• Approach 2.
Let t∈R. Then (x− ty) · (x− t y) > 0 for all t. Write the left hand side as a quadratic

polynomial of t.

• Approach 3.
Use xi yi =

( xi

k

)

(yi k)6
1

2
(xi

2 k−2 + yi
2 k2). Choose appropriate k.

Solution.

• Approach 1.
Though the case N =1 is trivial. For reasons that will be clear in a few lines, we have to

prove N =2. This is done in Sept. 16’s lecture and is omitted here.
Now we try to prove the case N = k + 1 assuming

|x1 y1 +
 +xk yk |6 (x1
2 +
 +xk

2)1/2 (y1
2 +
 + yk

2)1/2 (2)

We have

|x1 y1 +
 +xk yk + xk+1 yk+1| 6 |x1 y1 +
 + xk yk|+ |xk+1 yk+1|

6 (x1
2 +
 +xk

2)1/2 (y1
2 +
 + yk

2)1/2 + |xk+1| |yk+1|

6 ((x1
2 +
 + xk

2)+ |xk+1|
2)1/2 ((y1

2 +
 + yk
2) + |yk+1|

2)1/2

= (x1
2 +
 +xk+1

2 )1/2 (y1
2 +
 + yk+1

2 )1/2. (3)

Note that in the last inequality we have used the N = 2 case.

• Approach 2.
Since (x− ty) · (x− ty) = (y · y) t2− 2 (x · y) t+ (x ·x), the fact that it is non-negative

implies

[2 (x · y)]2− 4 (y · y) (x ·x) 6 0 (4)

which gives Cauchy-Schwarz.

• Approach 3.
Let k ∈R to be determined later. We have

x1 y1 +
 + xN yN 6
1
2

[

x1
2 +
 +xN

2

k2
+ k2 (y1

2 +
 + yN
2 )

]

. (5)

1



Now take

k2 =
(x1

2 +
 + xN
2 )1/2

(y1
2 +
 + yN

2 )1/2
. (6)

The proof ends.

Question 2. Let E ⊆R
N. Define its distance function d:RN� R as

d(x)6 inf
y∈E

dist(x, y) = inf
y∈E

‖x− y‖. (7)

Prove that ∀x, y ∈R
N, |d(x)− d(y)|6 ‖x− y‖.

Proof. First we prove d(x)− d(y) 6 ‖x− y‖. We have, for any z ∈E,

d(x)−dist(y , z) = inf
w∈E

dist(x, w)−dist(y ,z)

6 dist(x, z)−dist(y ,z)

= ‖x−z‖− ‖y −z‖

6 ‖x− y‖. (8)

Here we applied triangle’s inequality in the last inequality. Note that ‖x− y‖ is independent of z.
Therefore we can take infimum and obtain

d(x)− d(y) = d(x)− inf
z∈E

dist(y , z) 6 ‖x− y‖. (9)

Finally noticing the symmetry between x and y, we have

d(y)− d(x)6 ‖y −x‖= ‖x− y‖. (10)

Summarizaing the above, we have |d(x)− d(y)|6 ‖x− y‖. �

Question 3.

a) Prove that the following are both norms on R
N:

‖x‖∞6 max
i=1,	 ,N

{|xi|}; ‖x‖16 |x1|+ |x2|+
 + |xN |; (11)

b) Let X be a linear vector space with norm ‖·‖. Prove the following: If one can define an inner
product (·, ·) such that ‖x‖=(x, x)1/2, then for any x, y ∈X,

‖x + y‖2 + ‖x− y‖2 =2 (‖x‖2 + ‖y‖2). (12)

c) Find a norm on R
N that cannot be defined through an inner product. Justify your answer.

Solution.

a) We check

i. ‖x‖∞6 maxi=1,	 ,N {|xi|}>0; ‖x‖∞=0�maxi |xi|=0� xi=0 for all i=1,2,	 ,

N� x= 0;

‖x‖16 |x1| + |x2| + 
 + |xN | > 0; ‖x‖1 = 0� |x1| + |x2| + 
 + |xN | = 0�
‖x‖∞= 0� maxi |xi|= 0� xi =0 for all i =1, 2,	 ,N� x= 0.

ii. ‖a x‖∞=maxi {|a xi|}=maxi {|a| |xi|}= |a|maxi {|xi|}= |a| ‖x‖∞;

‖ax‖1 = |ax1|+ |ax2|+
 + |a xN |= |a| (|x1|+ |x2|+
 + |xN |) = |a| ‖x‖1.
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iii. (Triangle inequality).

‖x+ y‖∞ = max
i

|xi + yi|

6 max
i

(|xi|+ |yi|)

6 max
i

|xi|+max
i

|yi|

= ‖x‖∞+ ‖y‖∞. (13)

‖x+ y‖1 = |x1 + y1|+ |x2 + y2|+
 + |xN + yN |

6 |x1|+ |y1|+
 + |xN |+ |yN |

= (|x1|+ |x2|+
 + |xN |) + (|y1|+ |y2|+
 + |yN |)

= ‖x‖1 + ‖y‖1. (14)

b) We have

‖x + y‖2 + ‖x− y‖2 = (x+ y, x + y) + (x− y, x− y)

= (x, x) + (x, y) + (y, x) + (y, y)

+(x, x)+ (x,−y) + (−y, x) + (−y,−y)

= (x, x) + 2 (x, y) + (y, y)

+(x, x)− 2 (x, y)+ (y, y)

= 2 [(x, x) + (y, y)]

= 2 (‖x‖2 + ‖y‖2). (15)

c) Take ‖·‖∞. All we need to show is that it does not satisfy the equality proved in b). Take
x=e1, y =e2. Then we have ‖x+ y‖∞=‖x− y‖∞=‖x‖∞=‖y‖∞=1. The equality is not
satisfied.

Question 4. Let O∈R
N×N be such that ‖O x‖=‖x‖ for any x∈R

N. Prove that O is orthogonal.
Please prove it directly and do not use any theorem from linear algebra.

Proof. First we show that (O x) · (O y) =x · y for all x, y ∈RN . To see this we calculate

x ·x +2 x · y + y · y = (x + y) · (x + y)

= [O(x + y)] · [O(x+ y)]

= (O x) · (O x) + 2 (O x) · (O y) + (O y) · (O y)

= ‖O x‖2 + 2 (O x) · (O y) + ‖O y‖2

= ‖x‖2 +2 (O x) · (O y) + ‖y‖2

= x ·x+ 2 (O x) · (O y) + y · y. (16)

The claim follows.
Recalling x · y =x

T
y, we have

(O x) · (O y) = (O x)T (Oy)= x
T OT O y = [OT O x]T y =(OT O x) · y. (17)

Thus we have shown

[(OT O x)−x] · y = 0 (18)

for all x, y ∈R
N .

Taking y =e1,	 , eN , we see that

OT O x= x (19)
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for all x∈R
N .

Finally taking x= e1,	 , eN we see that OT O = I , that is the matrix O is orthogonal. �

Question 5. Let D =diag(d1,	 , dN) be a diagonal matrix with all the di’s distinct. Let A∈R
N×N

be such that AD =D A. What can we conclude about A? Justify your answer.

Proof. The (i, j) entry for A D is dj aij while the (i, j) entry for D A is di aij. Thus we have

(di − dj) aij = 0 (20)

for all i, j = 1,	 , N . As di’s are distinct, this means aij = 0 when i� j, that is A is diagonal.
It is clear that if A is diagonal, then A D =D A. Thus we have fully characterized the matrices

that commute with a diagonal matrix with distinct main diagonal entries. �

Question 6. (Twin Prime Conjecture) Earlier this year, Prof. Yitang Zhang of University of
New Hampshire made history through proving the following result:

liminf
n�∞

(pn+1− pn) < 7× 107 (21)

where pn is the n-th prime number.

a) Prove that the Twin Prime Conjecture “There are infinitely many pairs of prime numbers
with difference 2” is equivalent to

liminf
n�∞

(pn+1− pn) = 2. (22)

b) One step of his proof is basically the following. Assume
∑

d<D2,dN P ∑

c∈Ci(d)

|∆(θ, d, c)|6x (log x)−A, (23)

for some A > 0 and
∑

c∈Ci(d)

|∆(θ, d, c)|6x (log x)/d;
∑

d<D2,dN P τ3(d)2 ρ2(d)2 d−1 6 (log x)B (24)

for some B > 0. Then we have

E6 ∣

∣

∣

∣

∣

∑

d<D2,dN P τ3(d) ρ2(d)
∑

c∈Ci(d)

|∆(θ, d, c)|

∣

∣

∣

∣

∣

≪ x (logx)
B+1−A

2 . (25)

for any A > 0. Prove the above claim using Cauchy-Schwarz.

Proof.

a) If liminfn�∞ (pn+1− pn) = 2, then there is a subsequence satisfying

liminf
k�∞

(pnk+1− pnk
) = 2. (26)

Consequently, there is K ∈N such that for all k > K,

|pnk+1− pnk
− 2|< 1/2. (27)

But the left hand side is an integer, so it must be 0. That is there are infinitely many pairs
of prime numbers with difference 2.
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b) We have

E =

∣

∣

∣

∣

∣

∑

d<D2,dN P τ3(d) ρ2(d)
∑

c∈Ci(d)

|∆(θ, d, c)|

∣

∣

∣

∣

∣

(

∑

d<D2,dN P ∑

c∈Ci(d)

|∆(θ, d, c)|

)

1/2

=

∣

∣

∣

∣

∣

∑

d<D2,dN P ∑

c∈Ci(d)

(

τ3(d) ρ2(d) |∆(θ, d, c)|1/2
)(

|∆(θ, d, c)|1/2
)

∣

∣

∣

∣

∣

6

(

∑

d<D2,dN P ∑

c∈Ci(d)

(

τ3(d) ρ2(d) |∆(θ, d, c)|1/2
)

2

)

1/2
(

∑

d<D2,dN P ∑

c∈Ci(d)

|∆(θ, d, c)|

)

1/2

=

(

∑

d<D2,dN P ∑

c∈Ci(d)

(τ3(d)2 ρ2(d)2 |∆(θ, d, c)|

)

1/2
(

∑

d<D2,dN P ∑

c∈Ci(d)

|∆(θ, d, c)|

)

1/2

=





∑

d<D2,dN P τ3(d)2 ρ2(d)2
[

∑

c∈Ci(d)

|∆(θ, d, c)|

]





1/2

(x (logx)−A)1/2

6

(

∑

d<D2,dN P τ3(d)2 ρ2(d)2 d−1 x (log x)

)

1/2

(x (log x)−A)1/2

6 x1/2 (log x)
B+1

2 x1/2 (log x)−A/2

= x (log x)
B+1−A

2 . (28)

�
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