MATH 217 FALL 2013 HOMEWORK 2

Due Thursday Sept. 26, 2013 5pm

- This homework consists of 6 problems of 5 points each. The total is 30.
- You need to fully justify your answer prove that your function indeed has the specified property for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. The following are several possible strategies to prove Cauchy-Schwarz:

$$|\mathbf{x} \cdot \mathbf{y}| = |x_1 \, y_1 + \dots + x_N y_N| \leq (x_1^2 + \dots + x_N^2)^{1/2} \, (y_1^2 + \dots + y_N^2)^{1/2} = \|\mathbf{x}\| \, \|\mathbf{y}\|.$$
(1)

Pick any one (or come up with your own) idea and write down a detailed proof.

- Approach 1. Mathematical induction.
- Approach 2. Let t ∈ ℝ. Then (x − ty) · (x − ty) ≥ 0 for all t. Write the left hand side as a quadratic polynomial of t.
- Approach 3. Use $x_i y_i = \left(\frac{x_i}{k}\right) (y_i k) \leq \frac{1}{2} (x_i^2 k^{-2} + y_i^2 k^2)$. Choose appropriate k.

Question 2. Let $E \subseteq \mathbb{R}^N$. Define its distance function $d: \mathbb{R}^N \mapsto \mathbb{R}$ as

$$d(\boldsymbol{x}) := \inf_{\boldsymbol{y} \in E} \operatorname{dist}(\boldsymbol{x}, \boldsymbol{y}) = \inf_{\boldsymbol{y} \in E} \|\boldsymbol{x} - \boldsymbol{y}\|.$$
(2)

Prove that $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^N, |d(\boldsymbol{x}) - d(\boldsymbol{y})| \leq ||\boldsymbol{x} - \boldsymbol{y}||.$

Question 3.

a) Prove that the following are both norms on \mathbb{R}^N :

$$\|\boldsymbol{x}\|_{\infty} := \max_{i=1,\dots,N} \{|x_i|\}; \qquad \|\boldsymbol{x}\|_1 := |x_1| + |x_2| + \dots + |x_N|;$$
(3)

b) Let X be a linear vector space with norm $\|\cdot\|$. Prove the following: If one can define an inner product (\cdot, \cdot) such that $\|x\| = (x, x)^{1/2}$, then for any $x, y \in X$,

$$\|x+y\|^{2} + \|x-y\|^{2} = 2(\|x\|^{2} + \|y\|^{2}).$$
(4)

c) Find a norm on \mathbb{R}^N that cannot be defined through an inner product. Justify your answer.

Question 4. Let $O \in \mathbb{R}^{N \times N}$ be such that $||O \mathbf{x}|| = ||\mathbf{x}||$ for any $\mathbf{x} \in \mathbb{R}^N$. Prove that O is orthogonal. Please prove it directly and do not use any theorem from linear algebra.

Question 5. Let $D = \text{diag}(d_1, ..., d_N)$ be a diagonal matrix with all the d_i 's distinct. Let $A \in \mathbb{R}^{N \times N}$ be such that A D = D A. What can we conclude about A? Justify your answer.

Question 6. (Twin Prime Conjecture) Earlier this year, Prof. Yitang Zhang of University of New Hampshire made history through proving the following result:

$$\liminf_{n \to \infty} \left(p_{n+1} - p_n \right) < 7 \times 10^7 \tag{5}$$

where p_n is the n-th prime number.

a) Prove that the Twin Prime Conjecture "There are infinitely many pairs of prime numbers with difference 2" is equivalent to

$$\liminf_{n \to \infty} \left(p_{n+1} - p_n \right) = 2. \tag{6}$$

b) One step of his proof is basically the following. Assume

$$\sum_{d < D^2, d \mid \mathcal{P}} \sum_{c \in \mathcal{C}_i(d)} |\Delta(\theta, d, c)| \leq x \, (\log x)^{-A},\tag{7}$$

for some A > 0 and

$$\sum_{c \in \mathcal{C}_i(d)} |\Delta(\theta, d, c)| \leq x \, (\log x)/d; \qquad \sum_{d < D^2, d|\mathcal{P}} \tau_3(d)^2 \, \rho_2(d)^2 \, d^{-1} \leq (\log x)^B \tag{8}$$

for some B > 0. Then we have

$$\mathcal{E} := \left| \sum_{d < D^2, d \mid \mathcal{P}} \tau_3(d) \, \rho_2(d) \sum_{c \in \mathcal{C}_i(d)} \left| \Delta(\theta, d, c) \right| \right| \leqslant x \, (\log x)^{\frac{B+1-A}{2}}. \tag{9}$$

for any A > 0. Prove the above claim using Cauchy-Schwarz.