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Higher Order Partial Derivatives

Exercises

Exercise 1. Calculate second order partial derivatives for
the following function.

f@,y) = (2 +yH)Y2 1)
Then generalize your result to f: RN — R,

f(@) = |l (2
Justify your generalization.

TYz

Exercise 2. Let f(z,y, z) =e®¥%. Calculate

B
OxOydz’ (3)

Exercise 3. Find a € R such that u(z, y, z) =
e®®sin y cos z solves the equation

0%u | 9u 82
e tartar =0 (4)

Exercise 4. Assume the function u(z, y) satisfies

L2 0% 8

au
2
82+2myaay+

5 =0. (5)

Let =€,y =¢€" and v(&,n) =u(z,y). Find the equation
satisfied by v(§, 7).

Solutions to Exercises

Exercise 1.

We have
of___w of__ y (6)
O ()T (a2t y)
Taking derivative again we have
*f _ v
o (xz+y%3ﬂ’ 7
2
0f _ __2¥__, (8)
O0xdy (22 + y2)3/?
0%f z?
W T @ ©
Generalization:
TiTj . .
- i
2 o+ ady) 2
o°f (2 3y (10)

(1 + - +2%) — a7
(@t )

8351-8% -

1=

Exercise 2.

We have

0% f
Oyoz

FPf
0xOydz

Exercise 3.

We calculate

=(x+a%yz) eV,

[1+3zyz+a2y®2? eV~

u,
Yoy

is

Qiﬂ = a’e*®sinycosz
8{E2 - y )
éfﬁﬁ = —e*sinycosz
ayQ - Yy 9
8_2u = —e%sinycosz
022 4 ’
Soa:i¢i
Exercise 4.
We have
o _Ouds oudy_ du oo _
oc Ox 06 Oy ¢ T ox’ on
v 5 0% ou
= Ve o
v - 0*u
ocon Y 0xoy’
0%v 0% n ou
o2 7 oy? Yoy oy’
So the equation satisfied by v
% 0%v 0% ov  Ov
"9e g T 0%

3. Problems

(11)

(12)

(13)

(14)

(15)

(16)

17

(18)

(19)

(20)

(21)

Problem 1. Let Q C R" be open. Let f(z, y) be such

exist for (z,y) € Q, and furthermore all

three functlons are continuous at (xo, yo) € 2. Prove that

af of of
that = By’ Dwdy
o f
Oyox

2

2L (w000 = 2 w0 w0).

exists at (zo, yo) and furthermore

(22)



G. Taylor Expansion

1. Exercises

Exercise 5. Let f(z,y)=y/z. Find its Taylor polynomial
to degree 3 at (1,1).

Exercise 6. Find the Taylor polynomial to degree n € N
of f(z,y,2)=22+1y%+22 at (1,0,0).

cos T .
. Find a second degree

Exercise 7. Let f(z, y) = ”
polynomial Q(z,y)=a+bx+cy+da?+exy+ fy? such
that

f,y) = Qy) _,

1 23
(@00 (224 y?) (3)
Justify.
2. Solutions to exercises
Exercise 5.
We calculate
of _ o Of _ 4.
p yr—2, By__x ; (24)
’f_ _3 O0°f oy OPf
W_2 ,m—— 7W_O, (25)
>’f VR0 A
63f 63f
At (1,1) the above become respectively,
-1,1,2,-1,0,-6,2,0,0. (28)

So the Taylor polynomial of degree 3 is

l-@-D+@-D+@-1)-(-1)(F-1)-
(x =134+ (x—1)2(y—1). (29)

Exercise 6. We calculate, at (1,0,0),

£(1,0,0) = 1; (30)
%:2x:2;8—‘yf:2y:0;%:2z:0; (31)
oy ;%:2;%:2, (32)

°f _of _ f (33)

ordy  Oydz  0z20x

It is clear that all higher order partial
derivatives are identically 0. Therefore
the Taylor polynomial for different n are:

Py(z,y,2)=1; (34)
Pi(z,y,z)=14+2(x—1); (35)
Py(z,y,2)=1+2(x—1)+(z—1)2+y?+2%  (36)
and for all n>2,
Po(z,y,2)=Pa(z,y, 2). (37)

Exercise 7. Comsider Q(z, y) = Pa(x, y), the
second degree Taylor polynomial of f at (0,
0). Then we know

f(z,y) = Pa(z, y) + Ra(z, y) (38)
with
i £2§§l%;::0. (39)
(z,y)—(0,0) 5+ Y
So Pz, y) satisfies the requirement.

Calculation gives
1
Py(w,y)=1-5 (a* —y?). (40)

3. Problems

Problem 2. Let f(z, y) € C™ for some n € N. Let

Qn(z,y):= ZogiJrjgn a;jx*y’. Assume

41
(z,9)—(0,0) (224 y2)"/? ()
Then
_6i+jf
A5 = W(Ov 0). (42)



H. Optimization Theory

1. Exercises

Exercise 8. Is (0,0) a stationary point for the following
functions? Is it a local maximizer or minimizer?

filz,y) =22 —dxy+6y>—2; (43)
falz, y) = (a2 + 4?3 (44)
fa(z,y) = (z+y)* —y> (45)

Exercise 9. Let f(z,y)=2*+2y>—3z2y.
e Find all local minimizers of f(z,y).

e Prove that along every straight line passing the
origin, (0,0) minimizes f(z,y).

2. Solutions to exercise

Exercise 8. First check

_( 2x—4y .
gradf1—<_4x+12y>, (46)
grad fo= ($2+y2)1/2< i >; 47
gmdﬁ—2<$;y>. (48)

The formula for f» only holds when (z,y)# (0,
0). At (0,0) it is easy to check that

8f:g:1

or Oy

(Note that f is not differentiable at (0,
0), but we don’t need differentiability to
define gradients).

(49)

So (0,0) is stationary point for fi, f3 but
not for fs.

On the other hand, we have
fl('ray):(I_2y)2+2y2_2>_2:f1(050) (50)

fa(z,y) = 0= f2(0,0) (51)

so (0,0) is local minimizer for both fi, fa.

For fs3 we have

fa(z,y) = (x+2y). (52)
For any r >0, we have fg(%, —%) < 0= f3(0,0)
and f3(2.2) > 0 = f3(0, 0) so (0, 0) is neither

2°2
local maximizer nor local minimizer.

Exercise 9. We have

422 —62y
df= 53
grad f < Ay—34° ) (63)
Solving grad f=0 we have
r=y=0. (54)

Now the Hessian matrix at (0, 0) is (8 Z)
which is positive semi-definite so we
cannot conclude anything from it.

So instead we factorize

[z, y)=(2*=2y) (z* - y). (55)

Now it is easy to show that (0,0) is neither
a local maximizer nor a local minimizer.
On the other hand, any line passing (0, 0)

can be represented by {t <1f>|t S E{}. Along
this line we have

ftu,tv) = u*t* —3uvtd +202¢2

= t2(u?t —v) (u?t —2v). (56)

If u=0 or v =0 then clearly ¢t =0 is local
minimizer; If w#0 we have

fltu,tv)=u*t? (t—%) (t—&> >0

= (57)

if t| <]

3. Problems



I. Jordan Measures

1. Exercises

Exercise 10. Let A:= {(%, %>| m,n € IN}. Prove that
n(A)=0.

Exercise 11. Let D(z) be the Dirichlet function (1 when
z €@, 0 when z ¢ Q). Let A be its graph over [0, 1]:

A:={(z, D(z))| z €[0,1]}. (58)

Prove that p(A) = 0. Thus “graph has measure zero”
=~function integrable.

Exercise 12. Let A:= {(m,sin%)| z € (0, 1)} Prove that
n(A)=0.

Exercise 13. Let A, B C RN be measurable. Assume
w(B)=0. Prove u(AUB)=pu(A— B)=pu(A).

2. Solutions to exercises

Exercise 10. For any ¢ > 0, take N € N
bigger than 2/¢. Then take I := [0, £/2] x [0,
1] and I5:=10,1] x [0,£/2]. We have

11

Ym>N,n>N, ( ,—>611u12 (59)
m n

Now set I3, ey In249 to be the remaining
single points. We have

ACuNt, (60)

N242

with > % u(l,) <e. Therefore u(A)=0.

Exercise 11. Take [ := [0, 1] x {0} and I7 :=
[0, 1] x {1}. Then we have A C I} U I, and
Zi:l u(I,)=0. Therefore u(A)=0.

Exercise 12. For any ¢ >0, write

A=A1+ A, (61)

where 41 =AN[0,¢] xR and Ay = AN e, 1] x
R. Then since sin % is continuous on [e, 1]
we have p(Az) =0. On the other hand clearly
tout(A1) <e. Consequently

,UJout(A) g €. (62)

The arbitrariness of ¢ now gives the
result.

Exercise 13. We prove pu(AUB). Once this is
done, we have

w(A)=p((ANB)U(A=B))=p(A-B)  (63)
since u(ANB)=0.

As A U B is measurable, it suffices to
prove that pouwt(A U B) = pout(A). Take any
€ > 0. Then there is a simple graph C; O A
such that fiout(C1) < p(A) + &/2. On the other
hand, as p(B) = 0, there is a simple graph
C>D B such that pu(Cy)<e/2. Now we have AU
B C CrUCy and p(Cr U C2) < pu(Ch) + p(Ca) <
u(A) + . The arbitrariness of ¢ now gives
the result.

3. Problems

Problem 3. Let W be a collection of (any number of)
open Jordan measurable sets. Let

E:=UsewA. (64)

Prove
n

swp Y (A,

Aty An€W 55

pin(E) < (65)

Does the conclusion still hold if the “open” assumption is
dropped?

Problem 4. Let A C RY and f: RN — RY. Assume
1w(A) = 0 and f is Holder continuous, that is there are
constants a, C' > 0 such that

Vety, [f(x)-Ff(ylI<Cllz—yl"

Prove that p(f(A))=0.

(66)



J.  Theory and Calculation of Riemann Integrals

1. Exericises

Exercise 14. Calculate
I.= / sin?z sin?y d(z, y). (67)
[0,7]?

Exercise 15. (USTC2) Calculate the volume of the
intersection of z2 4+ y2 < R? and =2 + 22 < R2.

Exercise 16. (USTC2) Calculate

d(z,y,2)
I= D 68
/A 1+z+y+2)2 (68)
where

Exercise 17. Let f(z) be continuous on [a,b]. Prove that
ra T 1 ra 2

L) r@rwas|ac=3] [ s@ae|" o)

0 0 21Jo

Exercise 18. (USTC2) Calculate
I::/ zd(z,y, 2) (71)

A

where A is between 22+ y2+22=2az and 22+ y°+ 22 =

az.

2. Solutions to exercises

Exercise 14. By Fubini,

T m 7.‘.2
I = / [/ sinzxsin2ydy] dr=—.
0 0 4

Exercise 15. Denote the intersection by ().
We have

d(:v,y,z) = 8/ R? — 22 d(x, y)
Q z?+y?’< R%,z,y>0

_ SARJW{/\/Mdy}dx

0

_ 16 3
= ?R ) (72)
Exercise 16. Let
D:={(z,y)| (z,y.2) € A}. (73)

Then D={(z,y)|z+y<1,z,y>0}. Thus

%3 [/ol_w e LY

<

§~fln2. (74)

I

Exercise 17. Switch the order of the
integration.

Exercise 18. Apply spherical coordinates,

we

have

o<<p<2ﬁ,o<¢<g}. (75)
Thus
I = / r3cosysiny d(r, @, 1)
T-1(A)
= %m‘l. (76)
3. Problems

Problem 5. Let A := {(z, y)| 22 + y? < 1}. Consider
approximating I := ‘/‘A sin (z + y) d(z, y) by

Ini= Y sin(ih,jh)h% (77)
(ih,jh)€EA

For what h can we guarantee that

T — I5,] < 0.001? (78)

Problem 6. Let f: RY+— R be bounded. Let A CRY be
Jordan measurable. Prove that f is integrable on A if and
only if for every bounded function g: RN — RN,

U(f+9,A)=U(f,A)+U(g,A). (79)

Problem 7. Let f:[a, 8] — R be continuous. Let (r, 0)
be polar coordinates. Let

Dyi={(r,0)0<r < f(0),a<0< B} (80)
Prove that the area of Dy is
B
1/ f2(0) ae. (81)
2 @
Problem 8. Switch the order of integration in
/2
/77r/2

where (r,0) is Polar coordinates.

0

/ " 0 dr} a6 (82)



K. Numbers

1. Exercises

Exercise 19. Let F:= {r + s \/5\ r,s€ Q} be equipped
with the usual addition and multiplication. Prove that F'
is a field.

Exercise 20. For the above F', define relations

ri451V2 <aro+s3V2 & (r1 —ra) + (s1—52)vV2<0  (83)
and
T1+Sl\/§<37’2+52\/§<:>(7"177’2)*(51752)\/§<0 (84)

Prove that < 4,<p both make F' an ordered field. Denote
it by Fa, Fp.

2. Solutions to Exercises

Exercise 19. We first check the axioms of
addition:

° (T‘1+81\/§)+(7‘2+S2\/§)=
(81+82)\/§€F;

(r1 + ro) +

L (T‘1+81\/§)+(7‘2+82\/§)=(7‘1+7‘2)+
(81+82)\/§=(T2+S2\/§)+(T1+81\/§)-

e Associativity is similar;
e The element 0 is 0+0+/2.

o —(r+sv2)=(-r)+(—s)V2;

Next check the axioms of multiplication.
That xy € F,zy=yuz,x (y2) = (r y) 2 are
obvious. The element 1 is 1<+()\/§. The only
thing we need to check is, if r + s x/i # 0
then

1

———€F. (85)
74—5\/5

We have

1 r

T+S\/§:T2_2S2 (86)

—5
+r2—2s2V§€Fi

Note that r?—2s%#0 for all r,s€ Q.
Finally the distributive law is
obviously true.
Exercise 20. <4 part is trivial.
We check that <p is an order. That any

z, y € I’ exactly one of the three relations

holds is obvious. Now assume

ri+51V2<pro+saV2<pry+s3v2. (87)
Then we have
(r1—72) 4 (s2— 1) V2 <0 (88)
and
(19 —73) + (83 — 52) V2 <0. (89)

Add the two inequalities together we see
that T1+81\/§<B7‘3+S3\/§.

It is obvious that this order is
consistent with addition. Now take 71 +
S1 V2 >p 0 and ro + so V2 >p 0. By definition
this means

T1—Sl\/§>0,’l”2—52\/§>0. (90)
Now we calculate their product to be
T17’2+251 So + (Tl SQ-I-’I’QSl) \/5 (91)

We see that it >p0 as

rire+ 251 82— (11 82+ 12 51) \/52(7”1—81 \/5) (7“2—
59 \/5) (92)
3. Problems

Problem 9. Do the ordered fields Fu, Fp satisfy the LUB
property? Justify.



Solutions to Problems

PROBLEM 1. We use fy,
partial derivatives.
At any (zg,y0) We calculate for any (z,vy),

fy>

fey to denote the

fe(x0, y) — fal(z0, Y0)
Y—"%Yo
[f2(w0, y) — fa(T0, yo)] (z — 7o)
(z — o) (¥ — Yo)
[f(l’, y) — f(l', yo)] — [f(x07 y) — f(rTO, yo)]
(z —0) (y — yo)

That is

Png, 0+ Png—1,1 U+ -+ ho nou™° =0 (99)

for all u€R. Setting u=0 we have h,,0=0.
Taking é% and set u = 0 we have hp,—1,1 = 0.
Keep doing this we have h;; = 0 for all ¢ +
7 =no. This contradicts the assumption that
no is the smallest with some h@j#:O with 7 +
j:no.

PROBLEM 3. For any ¢ > 0, let B be the

+ [fi(xm y) — fw(x()? yO)] — [f$(§7 y) — fw(é-? yo)]qimple graph satisfying

(¥ — o)
By continuity of f,, the second term tends
to 0 as (z,y) — (zo, o).
Now similar method as in the lecture
notes we can prove that the first term
tends to fuy(zo,%0) as (2,y)— (o, Yo)-

PrROBLEM 2. Since f(z, y) € C™, it has Taylor
expansion

where Pp(2,y) =3, j<n 0ijz'y’ with
ai+jf
bij=—=-(0,0 94
J 6x16yj( ) ( )
and
lim _Lnlz,y) (95)
(@,9)—(0,0) (224 y2)"/?
Thus all we need to prove is that
(@,9)—(0,0) (224 y2)"/?
then P,(z) = (@Qu(z). Equivalently, all we

need to prove is that if a polynomial H,(x)
of degree n satisfies

lim Hn(, y)

(a2 2\n/2 (97)
(z,y)—(0,0) ($2.+_y2)n/2

then H,(z,y)=0.

Let np be the smallest non-negative
integer such that there is a term hy; xt oyl
in Hp(z,y) with i+ j=mno and h,;; #0.

Now set x = t, y = u t for u € R and let
t— 0, we have

- (Zi+j:ng hij uj) o 4 f(t,u) tnot+1
t—0 tn

=0 (98)

where f(t) is a polynomial of t. We see that
it must be E:i+j:noiujuj220 for all ueRR.

BCE°, 1(B) = pin(E) — €.

Then since B is compact and BC E=UxcwA,
there is a finite subcover:

(100)

B CU} A, (101)
This means
w(B)<Y pA)<  sup Y (A (102)
i=1 AL An€W 5
therefore
pn(E)—e<  sup Y p(Ay). (103)

A1,...,ApeW i=1

The conclusion follows from the
arbitrariness of ¢.

The conclusion does not hold anymore if
we drop the "open" assumption. For example

[0,1] =Uzep{z}

but p({z})=0 for each x.

(104)

Problem 4. Note that the statement is
wrong. Check "devil’s staircase" on wiki to
see a Holder continuous function (with a =
0223 that maps the Cantor set (try prove

log 3
tﬁat its Jordan measure is (0!) to the unit
interval.

The statement is only true when a=1. In
this case consider covering A by intervals

of the form I := [i1 h, (i1 + 1) h] X -+ X [in h,
(in+1)h]. We know that
%imn(h) WY =pu(A)=0 (105)
—0

where n(h) is the number of intervals
needed to cover A. But now that f(I;) C a
ball of radius v2 C h and consequently a
cube of side 2v/2Ch and therefore

n(f(A) <n(h) (2v2C)N RN — 0. (106)



Problem 5. Consider I;;:=[i h, (i + 1) h] x [j h,
(j + 1) h]. Then there are three cases: I;; C
A°, I”ﬂaA:/ég, IZJQAZQ We say (i,j)EMl,
My, M3 respectively. We have

<

I — Z / sin (z + y) d(z, y)
(i.5)eMy i

> owlip= > K (107)

(i,5) € M2 (i,§)€EM>

On the other hand we have similar

inequality for ‘Ih——Ej( shl(ih<+bjh)h2w

i,5) €M
Therefore
I —1In| < Z /sin(a:—l—y)d(a:,y)—sin(ih—l—
(5 eMy |V 1is
JhyRY+2 Y 2 (108)
(i)j)eM2

Now we have

/ sin (x +y)d(x,y) —sin (i h+ jh) h?
Ii]‘

/ |sin (z 4+ y) —sin (i h+ jh)|d(x, y)

N

[ Gy —sin(in+ )l dG.)

h? max ||(z,y) = (ih,jh)]
(z,y) €L
< 2R3 (109)

N

Note that there can be no more than (%)2
intervals in M;, therefore

I—In<8h+2 > N2 (110)
(i,5) €Mz

Now note that if [;;NOA# @, then I;; CAyp:=
{(z,y) e R?| dist( (z,y),0A) <2h}. Thus

Z h? < u(Asp)=m (1 +2h)>—m(1—2h)>=

(i,5) € M2
8mh. (111)

Summarizing, we have
[T —1Ip| < (84+16m)h <100 h. (112)

Thus taking h < 107° would guarantee what we
need.

Problem 6.

e If f is Riemann integrable.

Let F,, > f, G, > g be two sequences
of simple functions such that

lim [ F,=U(f,A) (113)

n— oo A

lim G,=U(g,A). (114)
A

n— oo

Then clearly F, + G, > f + g are also
simple functions and thus

U(f+g,A)§/Fn+Gn:/Fn+
A A

Gp. (115)
A

Taking limit n— o0 now gives
U(f+9,A<U(f,A)+Ul(g,A). (116)

Note that this holds for all
functions, integrable or not.

Now we prove the other direction.
Take any simple function H(z) > f + ¢
and any simple function F(x) < f. Then
H — F > g is a simple function and by
definition

/H—F}U(g,A). (117)
A

Consequently we have

/AH:AF—FAH—F

> /F+U(g,A). (118)
A

Taking supreme over F' we have

/H)L(f,A)—i—U(g,A) (119)
A

then taking infimum over H we finally
reach

U(f+g,A)>L(f,A)+U(g,A). (120)

Since f is integrable, L(f,A)=U(f,A)

and the conclusion follows.

o Assume

U(f+9,A)=U(f,A4)+U(g,4) (121)



holds for all bounded function g. Take
g=—/f. We have

0 =U(f+g,4)
= U(f,A)+U(-f,4)
= U(f,A)—L(f,A) (122)

and integrability of f follows.

Problem 7. We have

Ié] £(6) 1 [P
/ / rdr d9:§/ £20)d0. (123)
[e% 0 «@

Problem 8. The answer is

1 arccosr
/ [/ f(r,0) dG} dr. (124)
0 —arccosr

Problem 9.

e <. Since <4 coincide with the usual

order on IR, all we need to show is
that F' is dense in R yet F'# R. Since
Q C F, F is dense in R. Now we prove

that V3¢ F.

10

Assume the contrary. Then there are
r,s € QQ such that r + s V2 =4/3. Taking
square we have (1?4252 —3)+27sV2=
0, contradicting \/ig‘é Q.

<p. Consider the set E:= {—t V2|teq,

3

t < 5} Obviously E is bounded above

and not empty. Assume that
supE:r—I—S\/i. (125)

Then we have, for any t > 3/2, —
t\/§<3r+3\/§whichmeansr+(s+
t)v/2>p0 which by definition is r—(s+
t)\/§20 or

r>(s+1)V2. (126)
Clearly = cannot hold. Thus we have
r>(s+1) V2. (127)

But then there must be r’ < r such that
r > (s + t) V2. Thus ' + s V2 is an
upper bound for E with order <p. But
r'+sv2<pr+sv2. Contradiction.



