
Contents

F. Higher Order Partial Derivatives . . . . . 2

1. Exercises . . . . . . . . . . . . . . . . . . 2

2. Solutions to Exercises . . . . . . . . . . 2

3. Problems . . . . . . . . . . . . . . . . . . 2

G. Taylor Expansion . . . . . . . . . . . . . . 3

1. Exercises . . . . . . . . . . . . . . . . . . 3

2. Solutions to exercises . . . . . . . . . . 3

3. Problems . . . . . . . . . . . . . . . . . . 3

H. Optimization Theory . . . . . . . . . . . . 4

1. Exercises . . . . . . . . . . . . . . . . . . 4

2. Solutions to exercise . . . . . . . . . . . 4

3. Problems . . . . . . . . . . . . . . . . . . 4

I. Jordan Measures . . . . . . . . . . . . . . . 5

1. Exercises . . . . . . . . . . . . . . . . . . 5

2. Solutions to exercises . . . . . . . . . . 5

3. Problems . . . . . . . . . . . . . . . . . . 5

J. Theory and Calculation of Riemann Integrals

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1. Exericises . . . . . . . . . . . . . . . . . 6

2. Solutions to exercises . . . . . . . . . . 6

3. Problems . . . . . . . . . . . . . . . . . . 6

K. Numbers . . . . . . . . . . . . . . . . . . . . 7

1. Exercises . . . . . . . . . . . . . . . . . . 7

2. Solutions to Exercises . . . . . . . . . . 7

3. Problems . . . . . . . . . . . . . . . . . . 7

Solutions to Problems . . . . . . . . . . . . . . . 8

Note.

• The final is cumulative so please also review

material covered before the midterm.

• The exercises and problems in this article does

not cover every possible topic in the midterm

exam.

• You should also review homework and lecture

notes.

• Please try to work on the exercises and

problems before looking at the solutions.
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F. Higher Order Partial Derivatives

1. Exercises

Exercise 1. Calculate second order partial derivatives for

the following function.

f(x, y)= (x2 + y2)1/2. (1)

Then generalize your result to f :RN� R,

f(x) = ‖x‖. (2)

Justify your generalization.

Exercise 2. Let f(x, y, z) = exyz. Calculate

∂3f

∂x∂y∂z
. (3)

Exercise 3. Find a ∈ R such that u(x, y, z) =

eax sin y cos z solves the equation

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= 0. (4)

Exercise 4. Assume the function u(x, y) satisfies

5 x2 ∂2u

∂x2
+ 2 x y

∂2u

∂x∂y
+ y2 ∂2u

∂y2
= 0. (5)

Let x= eξ, y = eη and v(ξ, η)=u(x, y). Find the equation

satisfied by v(ξ, η).

2. Solutions to Exercises

Exercise 1.

We have

∂f

∂x
=

x

(x2 + y2)1/2
;
∂f

∂y
=

y

(x2 + y2)1/2
. (6)

Taking derivative again we have

∂2f

∂x2
=

y2

(x2 + y2)3/2
; (7)

∂2f

∂x∂y
= − x y

(x2 + y2)3/2
; (8)

∂2f

∂y2
=

x2

(x2 + y2)3/2
. (9)

Generalization:

∂2f

∂xi∂xj
=



















− xi xj

(x1
2 +� +xN

2 )3/2
i� j

(x1
2 +� + xN

2 )−xi
2

(x1
2 +� + xN

2 )3/2
i= j

. (10)

Exercise 2.

We have

∂f

∂z
=x y exyz, (11)

∂2f

∂y∂z
=(x+ x2 y z) exyz, (12)

∂3f

∂x∂y∂z
= [1+ 3x y z+ x2 y2 z2] exyz. (13)

Exercise 3.

We calculate

∂2u

∂x2
= a2 eax sin y cos z, (14)

∂2u

∂y2
= −eax sin y cos z, (15)

∂2u

∂z2
= −eax sin y cos z. (16)

So a=± 2
√

.

Exercise 4.

We have

∂v

∂ξ
=
∂u

∂x

∂x

∂ξ
+
∂u

∂y

∂y

∂ξ
=x

∂u

∂x
;
∂v

∂η
= y

∂u

∂y
; (17)

∂2v

∂ξ2
= x2 ∂

2u

∂x2
+ x

∂u

∂x
; (18)

∂2v

∂ξ∂η
= x y

∂2u

∂x∂y
; (19)

∂2v

∂η2
= y2 ∂

2u

∂y2
+ y

∂u

∂y
. (20)

So the equation satisfied by v is

5
∂2v

∂ξ2
+2

∂2v

∂ξ∂η
+
∂2v

∂η2
− 5

∂v

∂ξ
− ∂v

∂η
= 0. (21)

3. Problems

Problem 1. Let Ω ⊆ RN be open. Let f(x, y) be such

that
∂f

∂x
,

∂f

∂y
,

∂2f

∂x∂y
exist for (x, y) ∈Ω, and furthermore all

three functions are continuous at (x0, y0)∈Ω. Prove that
∂2f

∂y∂x
exists at (x0, y0) and furthermore

∂2f

∂y∂x
(x0, y0)=

∂2f

∂x∂y
(x0, y0). (22)
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G. Taylor Expansion

1. Exercises

Exercise 5. Let f(x, y)= y/x. Find its Taylor polynomial

to degree 3 at (1, 1).

Exercise 6. Find the Taylor polynomial to degree n∈N

of f(x, y, z) =x2 + y2 + z2 at (1, 0, 0).

Exercise 7. Let f(x, y) =
cos x

cos y
. Find a second degree

polynomial Q(x, y)=a+ b x+ c y +d x2+ e x y + f y2 such

that

lim
(x,y)→(0,0)

f(x, y)− Q(x, y)

(x2 + y2)
= 0. (23)

Justify.

2. Solutions to exercises

Exercise 5.

We calculate

∂f

∂x
=−y x−2,

∂f

∂y
= x−1; (24)

∂2f

∂x2
= 2 y x−3,

∂2f

∂x∂y
=−x−2,

∂2f

∂y2
=0; (25)

∂3f

∂x3
=−6 y x−4,

∂3f

∂x2∂y
=2 x−3, (26)

∂3f

∂x∂y2
= 0,

∂3f

∂y3
= 0. (27)

At (1, 1) the above become respectively,

−1, 1, 2,−1, 0,−6, 2, 0, 0. (28)

So the Taylor polynomial of degree 3 is

1 − (x − 1) + (y − 1) + (x − 1)2 − (x − 1) (y − 1) −
(x− 1)3 + (x− 1)2 (y− 1). (29)

Exercise 6. We calculate, at (1, 0, 0),

f(1, 0, 0)= 1; (30)

∂f

∂x
=2 x= 2;

∂f

∂y
= 2 y= 0;

∂f

∂z
=2 z= 0; (31)

∂2f

∂x2
=2;

∂2f

∂y2
= 2;

∂2f

∂z2
=2, (32)

∂2f

∂x∂y
=

∂2f

∂y ∂z
=

∂2f

∂z∂x
= 0. (33)

It is clear that all higher order partial

derivatives are identically 0. Therefore

the Taylor polynomial for different n are:

P0(x, y, z)= 1; (34)

P1(x, y, z) =1 + 2 (x− 1); (35)

P2(x, y, z)=1+2 (x−1)+(x−1)2+ y2+z2. (36)

and for all n> 2,

Pn(x, y, z)=P2(x, y, z). (37)

Exercise 7. Consider Q(x, y) = P2(x, y), the

second degree Taylor polynomial of f at (0,
0). Then we know

f(x, y) =P2(x, y)+R2(x, y) (38)

with

lim
(x,y)→(0,0)

R2(x, y)

x2 + y2
=0. (39)

So P2(x, y) satisfies the requirement.

Calculation gives

P2(x, y)= 1− 1

2
(x2− y2). (40)

3. Problems

Problem 2. Let f(x, y) ∈ Cn for some n ∈ N. Let

Qn(x, y)8 ∑

06i+j6n
aij xi yj. Assume

lim
(x,y)� (0,0)

f(x, y)− Qn(x, y)

(x2 + y2)n/2
= 0. (41)

Then

aij =
∂i+jf

∂xi∂yj
(0, 0). (42)
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H. Optimization Theory

1. Exercises

Exercise 8. Is (0, 0) a stationary point for the following

functions? Is it a local maximizer or minimizer?

f1(x, y)= x2− 4 x y +6 y2− 2; (43)

f2(x, y)= (x2 + y2)1/2; (44)

f3(x, y)= (x+ y)2− y2. (45)

Exercise 9. Let f(x, y)= x4 + 2 y2− 3 x2 y.

• Find all local minimizers of f(x, y).

• Prove that along every straight line passing the

origin, (0, 0) minimizes f(x, y).

2. Solutions to exercise

Exercise 8. First check

grad f1 =

(

2 x− 4 y
−4x+ 12 y

)

; (46)

grad f2 = (x2 + y2)−1/2

(

x

y

)

; (47)

grad f3 = 2

(

x+ y

x

)

. (48)

The formula for f2 only holds when (x, y)� (0,
0). At (0, 0) it is easy to check that

∂f

∂x
=
∂f

∂y
= 1 (49)

(Note that f is not differentiable at (0,
0), but we don’t need differentiability to

define gradients).

So (0, 0) is stationary point for f1, f3 but

not for f2.

On the other hand, we have

f1(x, y)= (x−2 y)2 +2 y2−2>−2= f1(0, 0) (50)

f2(x, y)> 0= f2(0, 0) (51)

so (0, 0) is local minimizer for both f1, f2.

For f3 we have

f3(x, y) =x (x+2 y). (52)

For any r > 0, we have f3
( r

2
, − r

2

)

< 0 = f3(0, 0)

and f3
( r

2
.
r

2

)

> 0 = f3(0, 0) so (0, 0) is neither

local maximizer nor local minimizer.

Exercise 9. We have

grad f =

(

4x3− 6x y

4 y− 3x2

)

(53)

Solving grad f = 0 we have

x= y= 0. (54)

Now the Hessian matrix at (0, 0) is
(

0 0
0 4

)

which is positive semi-definite so we

cannot conclude anything from it.

So instead we factorize

f(x, y) = (x2− 2 y) (x2− y). (55)

Now it is easy to show that (0, 0) is neither

a local maximizer nor a local minimizer.

On the other hand, any line passing (0, 0)

can be represented by
{

t
(

u

v

)P t ∈ R
}

. Along

this line we have

f(t u, t v) = u4 t4− 3 u2 v t3 + 2 v2 t2

= t2 (u2 t− v) (u2 t− 2 v). (56)

If u = 0 or v = 0 then clearly t = 0 is local

minimizer; If u� 0 we have

f(t u, t v)= u4 t2
(

t− v

u2

)

(

t− 2 v

u2

)

> 0 (57)

if |t|<
∣

∣

v

u2

∣

∣.

3. Problems
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I. Jordan Measures

1. Exercises

Exercise 10. Let A8 {(

1

m
,

1

n

)P m, n ∈N
}

. Prove that

µ(A)= 0.

Exercise 11. Let D(x) be the Dirichlet function (1 when

x∈Q, 0 when x � Q). Let A be its graph over [0, 1]:

A8 {(x, D(x))P x∈ [0, 1]}. (58)

Prove that µ(A) = 0. Thus “graph has measure zero”� function integrable.

Exercise 12. Let A8 {(

x, sin
1

x

)P x∈ (0,1)
}

. Prove that

µ(A)= 0.

Exercise 13. Let A, B ⊆ RN be measurable. Assume

µ(B) = 0. Prove µ(A∪B)= µ(A −B)= µ(A).

2. Solutions to exercises

Exercise 10. For any ε > 0, take N ∈ N

bigger than 2/ε. Then take I1 8 [0, ε/2] × [0,
1] and I28 [0, 1]× [0, ε/2]. We have

∀m>N,n>N ,

(

1

m
,
1

n

)

∈ I1∪ I2 (59)

Now set I3, 
 , IN2+2 to be the remaining

single points. We have

A⊆∪n=1
N2+1In (60)

with
∑

n=1
N2+2

µ(In)<ε. Therefore µ(A)= 0.

Exercise 11. Take I1 8 [0, 1] × {0} and I2 8
[0, 1] × {1}. Then we have A ⊆ I1 ∪ I2 and
∑

n=1
2

µ(In)= 0. Therefore µ(A)= 0.

Exercise 12. For any ε> 0, write

A8 A1 +A2 (61)

where A1 = A ∩ [0, ε] × R and A2 = A ∩ [ε, 1] ×
R. Then since sin

1

x
is continuous on [ε, 1]

we have µ(A2) = 0. On the other hand clearly

µout(A1)6 ε. Consequently

µout(A)6 ε. (62)

The arbitrariness of ε now gives the

result.

Exercise 13. We prove µ(A∪B). Once this is

done, we have

µ(A) = µ((A∩B)∪ (A−B)) = µ(A−B) (63)

since µ(A∩B)= 0.

As A ∪ B is measurable, it suffices to

prove that µout(A ∪ B) = µout(A). Take any

ε > 0. Then there is a simple graph C1 ⊇ A

such that µout(C1) 6 µ(A) + ε/2. On the other

hand, as µ(B) = 0, there is a simple graph

C2⊇B such that µ(C2)<ε/2. Now we have A∪
B ⊆ C1 ∪ C2 and µ(C1 ∪ C2) 6 µ(C1) + µ(C2) <
µ(A) + ε. The arbitrariness of ε now gives

the result.

3. Problems

Problem 3. Let W be a collection of (any number of)

open Jordan measurable sets. Let

E 8 ∪A∈WA. (64)

Prove

µin(E) 6 sup
A1,
 ,An∈W

∑

i=1

n

µ(Ai). (65)

Does the conclusion still hold if the “open” assumption is

dropped?

Problem 4. Let A ⊆ RN and f : RN � RN. Assume

µ(A) = 0 and f is Holder continuous, that is there are

constants a, C > 0 such that

∀x� y, ‖f(x)− f(y)‖6C ‖x− y‖a. (66)

Prove that µ(f(A)) = 0.
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J. Theory and Calculation of Riemann Integrals

1. Exericises

Exercise 14. Calculate

I 8 ∫

[0,π]2
sin2x sin2y d(x, y). (67)

Exercise 15. (USTC2) Calculate the volume of the

intersection of x2 + y2 6R2 and x2 + z2 6R2.

Exercise 16. (USTC2) Calculate

I =

∫

A

d(x, y, z)

(1 +x + y + z)2
(68)

where

A8 {(x, y, z)P x, y, z >0, x+ y + z 61}, (69)

Exercise 17. Let f(x) be continuous on [a,b]. Prove that

∫

0

a
[
∫

0

x

f(x) f(y) dy

]

dx=
1
2

[
∫

0

a

f(x) dx

]

2

. (70)

Exercise 18. (USTC2) Calculate

I 8 ∫

A

z d(x, y, z) (71)

where A is between x2+ y2+ z2=2 a z and x2+ y2+ z2 =

a z.

2. Solutions to exercises

Exercise 14. By Fubini,

I =

∫

0

π
[
∫

0

π

sin2x sin2y dy

]

dx=
π2

4
.

Exercise 15. Denote the intersection by Ω.
We have
∫

Ω

d(x, y, z) = 8

∫

x2+y26R2,x,y>0
R2− x2

√

d(x, y)

= 8

∫

0

R

R2− x2
√

[

∫

0

R2
−x2

√

dy

]

dx

=
16

3
R3. (72)

Exercise 16. Let

D8 {(x, y)P (x, y, z)∈A}. (73)

Then D= {(x, y)P x+ y6 1, x, y> 0}. Thus

I =

∫

D

[
∫

0

1−x−y dz

(1 + x+ y+ z)2

]

d(x, y)

= �
=

3

4
− ln 2. (74)

Exercise 17. Switch the order of the

integration.

Exercise 18. Apply spherical coordinates,

we have

T−1(A) =
{

(r, ϕ, ψ)P a cosψ 6 r 6 2 a cos ψ,

06 ϕ6 2 π, 0 6 ψ6
π

2

}

. (75)

Thus

I =

∫

T −1(A)

r3 cosψ sinψ d(r, ϕ, ψ)

= �
=

5

4
πa4. (76)

3. Problems

Problem 5. Let A 8 {(x, y)P x2 + y2 6 1}. Consider

approximating I 8 ∫

A
sin (x+ y) d(x, y) by

Ih8 ∑

(ih,jh)∈A

sin (i h, j h) h2. (77)

For what h can we guarantee that

|I − Ih|< 0.001? (78)

Problem 6. Let f :RN�R be bounded. Let A⊆RN be

Jordan measurable. Prove that f is integrable on A if and

only if for every bounded function g:RN�RN,

U(f + g, A) =U(f , A) + U(g, A). (79)

Problem 7. Let f : [α, β]� R be continuous. Let (r, θ)

be polar coordinates. Let

Df 8 {(r, θ)P 0 6r 6 f(θ), α 6θ 6β}. (80)

Prove that the area of Df is

1
2

∫

α

β

f2(θ) dθ. (81)

Problem 8. Switch the order of integration in

∫

−π/2

π/2
[

∫

0

cos θ

f(r, θ) dr

]

dθ (82)

where (r, θ) is Polar coordinates.
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K. Numbers

1. Exercises

Exercise 19. Let F 8 {

r + s 2
√ P r, s ∈Q

}

be equipped

with the usual addition and multiplication. Prove that F

is a field.

Exercise 20. For the above F , define relations

r1 + s1 2
√

<A r2 + s2 2
√

⇔ (r1− r2)+ (s1− s2) 2
√

< 0 (83)

and

r1 + s1 2
√

<B r2 + s2 2
√

⇔ (r1− r2)− (s1− s2) 2
√

< 0 (84)

Prove that <A,<B both make F an ordered field. Denote

it by FA, FB.

2. Solutions to Exercises

Exercise 19. We first check the axioms of

addition:

•
(

r1 + s1 2
√ )

+
(

r2 + s2 2
√ )

= (r1 + r2) +

(s1 + s2) 2
√

∈F;

•
(

r1 + s1 2
√ )

+
(

r2 + s2 2
√ )

= (r1 + r2) +

(s1 + s2) 2
√

=
(

r2 + s2 2
√ )

+
(

r1 + s1 2
√ )

.

• Associativity is similar;

• The element 0 is 0 +0 2
√

.

• −
(

r+ s 2
√ )

= (−r) + (−s) 2
√

;

Next check the axioms of multiplication.

That x y ∈ F , x y = y x, x (y z) = (x y) z are

obvious. The element 1 is 1 + 0 2
√

. The only

thing we need to check is, if r + s 2
√ � 0

then

1

r+ s 2
√ ∈F . (85)

We have

1

r+ s 2
√ =

r

r2− 2 s2
+

−s
r2− 2 s2

2
√

∈F . (86)

Note that r2− 2 s2� 0 for all r, s∈Q.

Finally the distributive law is

obviously true.

Exercise 20. <A part is trivial.

We check that <B is an order. That any

x, y ∈ F exactly one of the three relations

holds is obvious. Now assume

r1 + s1 2
√

<B r2 + s2 2
√

<B r3 + s3 2
√

. (87)

Then we have

(r1− r2)+ (s2− s1) 2
√

< 0 (88)

and

(r2− r3) + (s3− s2) 2
√

< 0. (89)

Add the two inequalities together we see

that r1 + s1 2
√

<B r3 + s3 2
√

.

It is obvious that this order is

consistent with addition. Now take r1 +
s1 2

√
>B 0 and r2 + s2 2

√
>B 0. By definition

this means

r1− s1 2
√

> 0, r2− s2 2
√

> 0. (90)

Now we calculate their product to be

r1 r2 + 2 s1 s2 +(r1 s2 + r2 s1) 2
√

. (91)

We see that it >B0 as

r1 r2 +2 s1 s2− (r1 s2 + r2 s1) 2
√

=
(

r1− s1 2
√ )(

r2−
s2 2

√ )

. (92)

3. Problems

Problem 9. Do the ordered fields FA,FB satisfy the LUB

property? Justify.
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Solutions to Problems

Problem 1. We use fx, fy, fxy to denote the

partial derivatives.

At any (x0, y0) We calculate for any (x, y),

fx(x0, y)− fx(x0, y0)

y− y0

=
[fx(x0, y)− fx(x0, y0)] (x−x0)

(x−x0) (y− y0)

=
[f(x, y)− f(x, y0)]− [f(x0, y)− f(x0, y0)]

(x− x0) (y− y0)

+
[fx(x0, y)− fx(x0, y0)]− [fx(ξ, y)− fx(ξ, y0)]

(y− y0)

By continuity of fx, the second term tends

to 0 as (x, y)→ (x0, y0).

Now similar method as in the lecture

notes we can prove that the first term

tends to fxy(x0, y0) as (x, y)→ (x0, y0).

Problem 2. Since f(x, y) ∈ Cn, it has Taylor

expansion

f(x, y)=Pn(x, y)+Rn(x, y) (93)

where Pn(x, y)=
∑

06i+j6n
bij x

i yj with

bij =
∂i+jf

∂xi∂yj
(0, 0) (94)

and

lim
(x,y)� (0,0)

Rn(x, y)

(x2 + y2)n/2
= 0. (95)

Thus all we need to prove is that

lim
(x,y)� (0,0)

Pn(x, y)−Qn(x, y)

(x2 + y2)n/2
=0 (96)

then Pn(x) = Qn(x). Equivalently, all we

need to prove is that if a polynomial Hn(x)
of degree n satisfies

lim
(x,y)� (0,0)

Hn(x, y)

(x2 + y2)n/2
= 0 (97)

then Hn(x, y)= 0.

Let n0 be the smallest non-negative

integer such that there is a term hij xi yj

in Hn(x, y) with i+ j=n0 and hij � 0.

Now set x = t, y = u t for u ∈ R and let

t→ 0, we have

lim
t→0

(
∑

i+j=n0
hij u

j
)

tn0 + f(t, u) tn0+1

tn
= 0 (98)

where f(t) is a polynomial of t. We see that

it must be
∑

i+j=n0

hiju
j =0 for all u∈R.

That is

hn0,0 +hn0−1,1 u+� +h0,n0
un0 =0 (99)

for all u∈R. Setting u=0 we have hn0,0=0.

Taking
d

du
and set u = 0 we have hn0−1,1 = 0.

Keep doing this we have hij = 0 for all i +
j = n0. This contradicts the assumption that

n0 is the smallest with some hij � 0 with i +
j=n0.

Problem 3. For any ε > 0, let B be the

simple graph satisfying

B ⊆Eo, µ(B) > µin(E)− ε. (100)

Then since B is compact and B ⊆E =∪A∈WA,

there is a finite subcover:

B ⊆∪i=1
n Ai. (101)

This means

µ(B)6
∑

i=1

n

µ(Ai)6 sup
A1,
 ,An∈W

∑

i=1

n

µ(Ai) (102)

therefore

µin(E)− ε6 sup
A1,
 ,An∈W

∑

i=1

n

µ(Ai). (103)

The conclusion follows from the

arbitrariness of ε.

The conclusion does not hold anymore if

we drop the "open" assumption. For example

[0, 1] =∪x∈[0,1]{x} (104)

but µ({x})=0 for each x.

Problem 4. Note that the statement is

wrong. Check "devil’s staircase" on wiki to

see a Holder continuous function (with a =
log 2

log 3
) that maps the Cantor set (try prove

that its Jordan measure is 0!) to the unit

interval.

The statement is only true when a = 1. In

this case consider covering A by intervals

of the form Ih 8 [i1 h, (i1 + 1) h] × � × [iN h,

(iN +1)h]. We know that

lim
h→0

n(h)hN = µ(A)= 0 (105)

where n(h) is the number of intervals

needed to cover A. But now that f(Ih) ⊆ a

ball of radius 2
√

C h and consequently a

cube of side 2 2
√

Ch and therefore

µ(f(A)) 6n(h)
(

2 2
√

C
)

N hN� 0. (106)

8



Problem 5. Consider Iij 8 [i h, (i + 1) h] × [j h,
(j + 1) h]. Then there are three cases: Iij ⊆
Ao, Iij ∩∂A� ∅, Iij ∩A= ∅. We say (i, j)∈M1,

M2,M3 respectively. We have

∣

∣

∣

∣

∣

I −
∑

(i,j)∈M1

∫

Iij

sin (x + y) d(x, y)

∣

∣

∣

∣

∣

6

∑

(i,j)∈M2

µ(Iij)=
∑

(i,j)∈M2

h2. (107)

On the other hand we have similar

inequality for

∣

∣

∣Ih −∑
(i,j)∈M1

sin (i h+ j h) h2
∣

∣

∣.

Therefore

|I − Ih|6
∑

(i,j)∈M1

∣

∣

∣

∣

∣

∫

Iij

sin (x+ y) d(x, y)− sin (i h+

j h)h2

∣

∣

∣

∣

∣

+ 2
∑

(i,j)∈M2

h2. (108)

Now we have
∣

∣

∣

∣

∣

∫

Iij

sin (x+ y) d(x, y)− sin (i h+ j h)h2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Iij

|sin (x+ y)− sin (i h+ j h)|d(x, y)

∣

∣

∣

∣

∣

6

∫

Iij

|sin (x+ y)− sin (i h+ j h)| d(x, y)

6 h2 max
(x,y)∈Iij

‖(x, y)− (i h, j h)‖

< 2 h3. (109)

Note that there can be no more than
( 2

h

)

2

intervals in M1, therefore

|I − Ih|6 8h+ 2
∑

(i,j)∈M2

h2. (110)

Now note that if Iij∩∂A� ∅, then Iij ⊆A2h8
{(x, y)∈R2P dist( (x, y), ∂A)< 2 h}. Thus

∑

(i,j)∈M2

h2 < µ(A2h) = π (1 + 2 h)2 − π(1 − 2 h)2 =

8πh. (111)

Summarizing, we have

|I − Ih|< (8+ 16π)h< 100h. (112)

Thus taking h < 10−5 would guarantee what we

need.

Problem 6.

• If f is Riemann integrable.

Let Fn > f, Gn > g be two sequences

of simple functions such that

lim
n→∞

∫

A

Fn =U(f ,A) (113)

lim
n→∞

∫

A

Gn =U(g,A). (114)

Then clearly Fn + Gn > f + g are also

simple functions and thus

U(f + g, A) 6

∫

A

Fn + Gn =

∫

A

Fn +
∫

A

Gn. (115)

Taking limit n→∞ now gives

U(f + g,A)6U(f ,A)+U(g,A). (116)

Note that this holds for all

functions, integrable or not.

Now we prove the other direction.

Take any simple function H(x) > f + g

and any simple function F (x) 6 f. Then

H − F > g is a simple function and by

definition

∫

A

H −F >U(g,A). (117)

Consequently we have

∫

A

H =

∫

A

F +

∫

A

H −F

>

∫

A

F +U(g,A). (118)

Taking supreme over F we have

∫

A

H >L(f ,A)+U(g,A) (119)

then taking infimum over H we finally

reach

U(f + g,A)>L(f ,A) +U(g,A). (120)

Since f is integrable, L(f , A) = U(f , A)
and the conclusion follows.

• Assume

U(f + g,A)=U(f ,A) +U(g,A) (121)
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holds for all bounded function g. Take

g=−f. We have

0 = U(f + g,A)

= U(f ,A)+U(−f ,A)

= U(f ,A)−L(f ,A) (122)

and integrability of f follows.

Problem 7. We have

∫

α

β
[

∫

0

f(θ)

r dr

]

dθ=
1

2

∫

α

β

f2(θ) dθ. (123)

Problem 8. The answer is

∫

0

1
[
∫

−arccos r

arccos r

f(r, θ) dθ

]

dr. (124)

Problem 9.

• <A. Since <A coincide with the usual

order on R, all we need to show is

that F is dense in R yet F � R. Since

Q ⊂ F, F is dense in R. Now we prove

that 3
√ � F.

Assume the contrary. Then there are

r, s ∈ Q such that r + s 2
√

= 3
√

. Taking

square we have (r2 + 2 s2 − 3) + 2 r s 2
√

=

0, contradicting 2
√ � Q.

• <B. Consider the set E 8 {

−t 2
√ P t ∈Q,

t <
3

2

√

}

. Obviously E is bounded above

and not empty. Assume that

supE= r+ s 2
√

. (125)

Then we have, for any t > 3/2
√

, −
t 2
√

6B r + s 2
√

which means r + (s +

t) 2
√

>B 0 which by definition is r− (s+

t) 2
√

> 0 or

r> (s+ t) 2
√

. (126)

Clearly = cannot hold. Thus we have

r > (s+ t) 2
√

. (127)

But then there must be r ′ < r such that

r ′ > (s + t) 2
√

. Thus r ′ + s 2
√

is an

upper bound for E with order <B. But

r ′+ s 2
√

<B r+ s 2
√

. Contradiction.
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