Riemann Integrability

Lemma 1. Let Fy, E5 be Jordan measurable with E1 C Es. Then if f is integrable on Fs it is also integrable
on Fy.

Proof. Since f is integrable on E5 there are simple functions g, > f and h, < f such that

lim [gn(x) — hp(z)] dz=0. (1)
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Now we have

o= [ fonla) = hu(o)] da

0< /E oa(o) - ()] dr = /E 2
< r)]dx (2)

[gn () — ha(
[ outa) =t
E>
Application of Squeeze Theorem gives

lim [gn(x) — hp(x)] dz=0 (3)
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and integrability follows. O
Theorem 2. Let A be Jordan measurable and f: RN — R be continuous on A. Then f is integrable on A.

Proof. Since A is Jordan measurable it must be bounded and consequently A is bounded and closed. By
Heine-Borel A is compact. As a consequence f is uniformly continuous on A.

Take any € >0. Then there is § >0 such that whenever x,y € A with ||z — y|| <J, there holds

@) = W)l <oy (4)

Now set h:=4/ v/2 and consider the intersection of A with intervals of the form
I:=[iyh, (i1 +1) h) x - X [inh, (iy+1) h) (5)
where i1, ...,in € Z. Then we see that A can be written as a union
A=Um,A; (6)
where each A, is a subset of an interval of the above form, and furthermore A; N A;=@ when i+ j. Now define

gz)=sup f(z), x€A;  h(z)= inf f(z), z€A (7)
T€EA; Tx€A;

Clearly g > f > h and g, h are simple functions. Furthermore we have

V(E,yEAi, H(E—y”<6 (8)
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This gives
/ [g(z) — h(x)]dz<e (10)
A
and integrability follows. |

Theorem 3. Let A CRY be Jordan measurable and f: RN — R be bounded. Denote
S:={z €RY| f(x) is not continuous at }. (11)
Then
uw(SNA)=0= f(x) is integrable on A. (12)

Proof. Since f(z) is bounded, assume | f(z)| < M € R. Furthermore as A is Jordan measurable, 1(0A)=0.
Let T:= (SN A)UJA. We have u(T)=0.

For any & > 0, since u(T) =0, there is a simple graph £ C R" such that

— €
- _—
T CF and u(F)< 137 (13)
Enlarging F a little bit we can further require
T C E°. (14)

Now clearly f is continuous on Q:=A — E°= A — E° and therefore is integrable on A — E. Thus there are
simple functions g, h such that ¢g> f>h on A — E and

[ o) -h@)de<s. (15)
A-FE
Now define

wo={ 1T = {0 EE R 19

We have u> f > v on A and furthermore

/ [u(z) —v(z)]dz <e. (17)
A

Therefore f is integrable on A. |
Example 4. The Riemann function

| 1/q x=p/q with p, q co-prime
f(x)'_{o zef0,1]-Q (18)

is Riemann integrable but its discontinuity does not have zero Jordan measure.

Theorem 5. Let A CRYN be Jordan measurable and f: RN — R be bounded. Let

S:={z eRY| f(x) is not continuous at z}. (19)



Then

S=UpZ15n (20)
where
S, im {xe]RN| ose(f, z) >%} (21)
Here the oscillation of f is defined as
osc(f,x):= lim su — inf . 22
(f.2) T\O[%B(gﬂf(y) yeB(M)ﬂy)] (22)

Then f is Riemann integrable if 1(Sp) =0 for every n € N.
Proof. Left as exercise. O

Remark 6. The above theorem reveals one problem with our Jordan-Darboux-Riemann integration theory.
Also note that the theorem is not “if and only if”. It turns out that f is Riemann integrable if the Lebesgue
measure of the set of its discontinuities is zero.

Question 7. Compare the above with the following theorem by Lebesgue: f is Riemann integrable if and only
if the set of its discontinuous points has Lebesque measure 0.

Exercise 1. Let A CRY be Jordan measurable. Let f, g: RN — R be integrable on A and such that
(AN {z e RN| f(z) # g(x)}) =0. (23)
Prove that

[ f@aa= [ ga)a. (24)

Exercise 2. (USTC2) Let f: RN — R be integrable on an interval I with J; f(z)dz > 0. Prove that there is an interval
J C I such that f >0 on J.

Exercise 3. Is the following function integrable on [0, 1] x [0, 1]?

flz,y)i= “(:ﬁ) TEO, (25)
0 zy=0

Exercise 4. Let f: RN — R be integrable on a measurable set A. Then so does | f|. Does the converse hold? Justify.

Exercise 5. Let A be Jordan measurable and f,,: RN — R be continuous on A. Further assume that for every = € A, fn(z)
is decreasing and lim,,_, o frn(z) =0. Prove

lim A fn(z)dx=0. (26)
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Can we drop continuity or decreasing? Justify your answers.



