Application: Constrained Optimization

Single equality constraint

We consider the following problem:
min f(x) subject to g(x) =0 (1)

where f, g: RV R.

Recall that the necessary condition involving first order derivatives is the following Lagrange multiplier
theory. Define the Lagrange function:

L(z, \):= f(z) = Ag(x). (2)

If x is a local minimizer for the equality constrained problem (1), then there is Ao € R such that (xo, Ag) is
a critical point of L(x, ).

Exercise 1. Prove that (@, A\o) is neither a local minimizer nor a local maximizer of L.
Clearly, if (xg, A\o) is a critical point of L, g may be neither local minimizer nor local maximizer of f.
Exercise 2. Give an example illustrating the above point.
Now we try to derive second order conditions that are sufficient or necessary for ¢ to be a local minimizer.
Theorem 1. Consider the constrained minimization problem (1). Let (xo, \o) be a critical point of L(x, ).

Further assume (grad g)(zo) # 0. Then xq is a local minimizer if the following holds: GT Hy, G is positive
definite at xq, where
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with X the implicit function determined through g(x)=0 (assuming %#0)'

Proof. Since (grad g)(xo) # 0, by Implicit Function Theorem we can represent on x; as functions of other
x;’s. Wlog assume zny = Xn(21,...,ZN 1)

Now define

F(Ilv -"7fo1) = f(xlv ---werleN(xlv ---werl))- (4)

Observe that xo= o ) is a local minimizer for (1) if and only if (

) is a local minimizer of F' without
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any constraint.

The Lagrange multiplier theory dictates that ( ) is a critical point of F'. Also recall that from
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at xg, we have



We calculate the second derivatives of F'.
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Substituting into (9) we reach (denote A:= (%)71%)
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Recalling the definition of the Lagrange function, we reach
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This leads to the following matrix relation
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Thus ends the proof. O
Remark 2. Again, in fact xq is a strict local minimizer.
Remark 3. The positive definiteness of GT Hy, G is equivalent to
vIHpv>0 (16)

for every v € RY that is a tangent vector of the surface g(x)=0.

Remark 4. Note that the following is not sufficient for xy to be a local minimizer for the constrained
optimization problem (1):

(xo, \o) is a critical point for L(z, \), and for every v € RY tangent to g(z) =0, v Hv >0
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where H = ( aiéij (:130)).

Exercise 3. Give an example justifying the above remark. (Hint: Consider g(z,y) =y — x2).
Exercise 4. Prove that if g is linear, then the claim

(0, Xo) is a critical point for L(ax, )\), and for every v € RY tangent to g(x) = 0, v7 H v > 0 where
_(_of
1 = (57 (0))-

is indeed true.

Question 5. Derive the theory for general equality constrained problem:

min f(x) subject to g(x)=0. (17)

Question 6. Prove the following result from [H. Hancock, Theory of Mazima and Minima, Dover, New
York, 1960]: A a matriz A satisfies vT Av >0(=0) for every v satisfying G v=0 if and only if all solutions to

A—zI GT
det = 1
e< G 0 ) 0 (18)



are positive (non-negative). Here G € RM*N. Discuss how this result can be applied to checking optimality
of critical points. Note that (18) is an algebraic equation in z of order N — M.

Exercise 5. (S. S. Rao, Engineering Optimization: Theory and Practice, 2009) Apply the above result to solve

max f(z,y)=mx?y subject to 27 x? + 2wy =24T. (19)

(Solution: (2,4).)

Single inequality constraint and KKT conditions
Now we consider the problem
min f(x) subject to g(x) > 0. (20)
Then if x( is a local minimizer, we have to discuss two cases:
1. g(x) > 0 (the constraint is “not active”);
2. g(xp) =0 (the constraint is “active”);
We discuss the two cases. The discussion in this section will not be fully rigorous.

e g(xo)>0. In this case there is r > 0 such that B(zo.r) C {x| g(x) >0} and therefore the condition is
the same as unconstrained minimization:

x( is a local minimizer if
1. @ is a critical point for f: (grad f)(xo)=0;
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2. The Hessian matrix of f, (89“3ch
0T j

(wo)) is positive definite.

On the other hand, if g is a local minimizer, then
1. @g is a critical point for f: (grad f)(xo) =0;
2. The Hessian matrix of f is positive semi-definite.

e g(xp) =0. In this case the situation is more complicated. To obtain sufficient conditions, we realize
that

1. @y must be a local minimizer for the equality constrained problem:
min f(x) subject to g(x)=0. (21)
This can be guaranteed by requiring
a. There is Ag € R such that (grad f)(zo) = Ao (grad g)(zo);

b. For every v tangent to g(x) =0 at xo, that is for every v.L(grad g)(xzo), we have

of dg \V
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2. There is r > 0 such that for all € B(zq, r) N {x| g(x) > 0}, f(x) > f(x). This can be
guaranteed by requiring

% >0 (23)
for every v “pointing into” {z| g(x) > 0}. Such v can be characterized by
v - (grad g)(zo) > 0. (24)
Recalling (grad f)(xo) = Ao (grad g)(xo), we see that this is equivalent to Ag> 0.

Exercise 6. Prove that if

of
e >0 (25)
for every v satisfying
v- (grad g) (o) > 0. (26)

then for all @ € B(xo, r) N {x| g(x) >0}, f(x) > f(xo)-

One way to summarize the above is as follows. x( is a local minimizer for
min f(x) subject to g(x) > 0. (27)
if the following are satisfied: There exists Ag € R such that
i. (xo, Ao) is a critical point of the Lagrange function L(x, \):= f(x) — A g(x);

. Ag=0;

i, g(a0) > 0;

iv. Ao g(xo) =0; A, g(xo) not both 0.
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v. The Hessian matrix of f at x is positive definite if A\g=0; The matrix (%
1O j

0’L
T
v (8xi8xj>v>0 (28)

for all v satisfying v - (grad g)(xo) =0.
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Problem 1. (S. S. Rao, Engineering Optimization: Theory and Practice, 2009) Solve
max f(z,y)=2x+y+ 10 subject to z + 2 y%2=3. (29)

Discuss the effect of changing the right hand side of the constraint to the optimum value of f.

General KKT conditions

The analysis in the previous section can be readily generalized to the following general constrained
optimization:

min f(x) subject to g(x) >0, h(z)=0 (30)



where g: RV — RM and h: RN — R¥. All functions are assumed to be having continuous second order
derivatives.

Remark 7. Note that one can replace the K equality constraints h(xz) =0 by 2 K inequality constraints
h(x)>0 and h(z)<0.

The following set of conditions are called KKT (Karush-Kuhn-Tucker) conditions.

e Sufficient conditions. g is a local minimizer if there are Ag € RM and po € R¥ such that

1. (Feasibility) g(xo) >0, h(x) =0;

2. (Criticality) gradmL(wo, Ao, uo) =0 where
L@, A, ) = f(z) - \Tg(x) — uTh(z) (31)
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and grad,L:=| : |[;
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3. Ao 2 0;

4. (Strict complementarity) \; g;(xg) = 0 for every ¢ = 1, 2, ..., M; Furthermore for each %,
exactly one of \;, g; is 0.

5. (Second order condition) Let A C{1,2,..., M} be the set of “active” inequality constraints,
that is i € A<= g;(xo) =0. Then for every v such that Vi€ A, vT(grad g;)(zo) =0,

0?L
T
v ((?xi&z:j>v>0' (32)

e Necessary conditions. Change strictly complementarity to “complementarity”: A; g;(xg) =0 for every
i=1,2,..., M; And change the >0 in (32) to >0.

Remark 8. The (first order) KKT conditions take the form of solving a system of nonlinear equations. As
a consequence one can invoke popular methods such as Newton’s method to find the critical points. This
is the idea behind the so-called “Interior point revolution” in Optimization Theory which lies behind much
progress in the past half century in linear and convex programming.

Problem 2. (S. S. Rao, Engineering Optimization: Theory and Practice, 2009) Consider

max f(z,y) = (z —1)%+ y? (33)
subject to
gi(z,y)=2>—2y<0,  ga(z,y)=23+2y<0. (34)

Determine whether the KKT conditions are satisfied at the maximizer.



