
Application: Constrained Optimization

Single equality constraint

We consider the following problem:

min f(x) subject to g(x)= 0 (1)

where f , g:RN� R.

Recall that the necessary condition involving first order derivatives is the following Lagrange multiplier
theory. Define the Lagrange function:

L(x, λ)7 f(x)−λ g(x). (2)

If x0 is a local minimizer for the equality constrained problem (1), then there is λ0∈R such that (x0, λ0) is
a critical point of L(x, λ).

Exercise 1. Prove that (x0, λ0) is neither a local minimizer nor a local maximizer of L.

Clearly, if (x0, λ0) is a critical point of L, x0 may be neither local minimizer nor local maximizer of f .

Exercise 2. Give an example illustrating the above point.

Now we try to derive second order conditions that are sufficient or necessary for x0 to be a local minimizer.

Theorem 1. Consider the constrained minimization problem ( 1). Let (x0, λ0) be a critical point of L(x, λ).
Further assume (grad g)(x0) � 0. Then x0 is a local minimizer if the following holds: GT HL G is positive
definite at x0, where

HL =

(

∂2L

∂xi∂xj

)

i,j=1

N

, G =
∂(x1,	 , xN−1, XN)

∂(x1,	 , xN−1)
(3)

with XN the implicit function determined through g(x)= 0 (assuming
∂g

∂xN
� 0).

Proof. Since (grad g)(x0)� 0, by Implicit Function Theorem we can represent on xi as functions of other
xj’s. Wlog assume xN = XN(x1,	 , xN−1).

Now define

F (x1,	 , xN−1)7 f(x1,	 , xN−1, XN(x1,	 , xN−1)). (4)

Observe that x0=





x01�
x0N



 is a local minimizer for (1) if and only if





x01�
x0N −1



 is a local minimizer of F without

any constraint.

The Lagrange multiplier theory dictates that





x01�
x0N −1



 is a critical point of F . Also recall that from

∂F

∂xi
=

∂f

∂xi
+

∂f

∂xN

∂XN

∂xi
,

∂g

∂xi
+

∂g

∂xN

∂XN

∂xi
=0 (5)

at x0, we have

λ0 =

(

∂g

∂xN

(x0)

)

−1
(

∂f

∂xN

(x0)

)

. (6)
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We calculate the second derivatives of F .

∂F

∂xi
(x1,	 , xN−1)=

∂f

∂xi
(x1,	 , xN−1, XN) +

∂f

∂xN
(x1,	 , xN−1, XN)

∂XN

∂xi
(x1,	 , xN−1). (7)

Taking derivative again

∂2F

∂xi∂xj
=

∂2f

∂xi∂xj
+

∂2f

∂xi∂xN

∂XN

∂xj

+

[

∂2f

∂xj∂xN
+

∂2f

∂xN
2

∂XN

∂xj

]

∂XN

∂xi

+
∂f

∂xN

∂2XN

∂xi∂xj

. (8)

Now using
∂g

∂xi
+

∂g

∂xN

∂XN

∂xi
= 0� ∂XN

∂xi
=−

(

∂g

∂xN

)

−1
(

∂g

∂xi

)

the above becomes

∂2F

∂xi∂xj
=

∂2f

∂xi∂xj
−

(

∂g

∂xN

)

−1
[

∂2f

∂xi∂xN

∂g

∂xj
+

∂2f

∂xj∂xN

∂g

∂xi

]

+

(

∂g

∂xN

)

−2 ∂2f

∂xN
2

∂g

∂xi

∂g

∂xj
+

∂f

∂xN

∂2XN

∂xi∂xj
. (9)

Now differentiating
∂g

∂xi
+

∂g

∂xN

∂XN

∂xi
=0 we have

0 =
∂2g

∂xi∂xj
+

∂2g

∂xi∂xN

∂XN

∂xj
+

[

∂2g

∂xj∂xN
+

∂2g

∂xN
2

∂XN

∂xj

]

∂XN

∂xi
+

∂g

∂xN

∂2XN

∂xi∂xj

=
∂2g

∂xi∂xj
−

(

∂g

∂xN

)

−1
[

∂2g

∂xi∂xN

∂g

∂xj
+

∂2g

∂xj∂xN

∂g

∂xi

]

+

(

∂g

∂xN

)

−2 ∂2g

∂xN
2

∂g

∂xi

∂g

∂xj
+

∂g

∂xN

∂2XN

∂xi∂xj
. (10)

which gives

∂2XN

∂xi∂xj
= −

(

∂g

∂xN

)

−1
[

∂2g

∂xi∂xj
−

(

∂g

∂xN

)

−1
[

∂2g

∂xi∂xN

∂g

∂xj
+

∂2g

∂xj∂xN

∂g

∂xi

]

+
(

∂g

∂xN

)

−2 ∂2g

∂xN
2

∂g

∂xi

∂g

∂xj

]

. (11)

Substituting into (9) we reach (denote λ7 (

∂g

∂xN

)

−1 ∂f

∂xN
)

∂2F

∂xi∂xj

=
∂2f

∂xi∂xj

−λ
∂2g

∂xi∂xj

−

(

∂g

∂xN

)

−1 ∂g

∂xj

(

∂2f

∂xi∂xN
−λ

∂2g

∂xi∂xN

)

−

(

∂g

∂xN

)

−1 ∂g

∂xi

(

∂2f

∂xj∂xN
−λ

∂2g

∂xj∂xN

)

+

(

∂g

∂xN

)

−2 ∂g

∂xi

∂g

∂xj

(

∂2f

∂xN
2
−λ

∂2g

∂xN
2

)

. (12)

Recalling the definition of the Lagrange function, we reach

∂2F

∂xi∂xj
=

∂2L

∂xi∂xj
−

(

∂g

∂xN

)

−1 ∂g

∂xj

∂2L

∂xi∂xN

−

(

∂g

∂xN

)

−1 ∂g

∂xi

∂2L

∂xj∂xN
+

(

∂g

∂xN

)

−2 ∂g

∂xi

∂g

∂xj

∂2L

∂xN
2

. (13)
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This leads to the following matrix relation

(

∂2F

∂xi∂xj

)

=

(

∂g

∂xN

)

−2

GT HL G (14)

where HL =
(

∂2L

∂xi∂xj

)

i,j=1

N
, and

G7








1 0 0 
 0
0 1 0 
 0� 
 
 
 �
0 0 
 1 0
0 0 
 0 1

−
(

∂g

∂xN

)

−1 ∂g

∂x1


 
 −
(

∂g

∂xN

)

−1 ∂g

∂xN−2

−
(

∂g

∂xN

)

−1 ∂g

∂xN−1





















=
∂(x1,	 , xN−1, XN)

∂(x1,	 , xN−1)
. (15)

Thus ends the proof. �

Remark 2. Again, in fact x0 is a strict local minimizer.

Remark 3. The positive definiteness of GT HL G is equivalent to

vT HL v > 0 (16)

for every v ∈R
N that is a tangent vector of the surface g(x)= 0.

Remark 4. Note that the following is not sufficient for x0 to be a local minimizer for the constrained
optimization problem (1):

(x0, λ0) is a critical point for L(x, λ), and for every v ∈R
N tangent to g(x) = 0, vT H v > 0

where H =
(

∂2f

∂xi∂xj
(x0)

)

.

Exercise 3. Give an example justifying the above remark. (Hint: Consider g(x, y) = y − x2).

Exercise 4. Prove that if g is linear, then the claim

(x0, λ0) is a critical point for L(x, λ), and for every v ∈ R
N tangent to g(x) = 0, v

T H v > 0 where

H =
(

∂2f

∂xi∂xj
(x0)

)

.

is indeed true.

Question 5. Derive the theory for general equality constrained problem:

min f(x) subject to g(x)= 0. (17)

Question 6. Prove the following result from [H. Hancock, Theory of Maxima and Minima, Dover, New
York, 1960]: A a matrix A satisfies vT A v >0(>0) for every v satisfying G v =0 if and only if all solutions to

det

(

A− z I GT

G 0

)

=0 (18)
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are positive (non-negative). Here G∈R
M×N. Discuss how this result can be applied to checking optimality

of critical points. Note that ( 18) is an algebraic equation in z of order N −M.

Exercise 5. (S. S. Rao, Engineering Optimization: Theory and Practice, 2009 ) Apply the above result to solve

max f(x, y)= π x2 y subject to 2 π x2 +2 π x y = 24π. (19)

(Solution: (2, 4).)

Single inequality constraint and KKT conditions

Now we consider the problem

min f(x) subject to g(x)> 0. (20)

Then if x0 is a local minimizer, we have to discuss two cases:

1. g(x0)> 0 (the constraint is “not active”);

2. g(x0)= 0 (the constraint is “active”);

We discuss the two cases. The discussion in this section will not be fully rigorous.

• g(x0)> 0. In this case there is r > 0 such that B(x0.r)⊆{xO g(x)> 0} and therefore the condition is
the same as unconstrained minimization:

x0 is a local minimizer if

1. x0 is a critical point for f : (grad f)(x0)= 0;

2. The Hessian matrix of f ,
(

∂2f

∂xi∂xj
(x0)

)

is positive definite.

On the other hand, if x0 is a local minimizer, then

1. x0 is a critical point for f : (grad f)(x0)= 0;

2. The Hessian matrix of f is positive semi-definite.

• g(x0) = 0. In this case the situation is more complicated. To obtain sufficient conditions, we realize
that

1. x0 must be a local minimizer for the equality constrained problem:

min f(x) subject to g(x)= 0. (21)

This can be guaranteed by requiring

a. There is λ0∈R such that (grad f)(x0)= λ0 (grad g)(x0);

b. For every v tangent to g(x) =0 at x0, that is for every v⊥(grad g)(x0), we have

vT

(

∂f

∂xi∂xj
−λ0

∂g

∂xi∂xj

)

i,j=1

N

v > 0. (22)
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2. There is r > 0 such that for all x ∈ B(x0, r) ∩ {xO g(x) > 0}, f(x) > f(x0). This can be
guaranteed by requiring

∂f

∂v
> 0 (23)

for every v “pointing into” {xO g(x)> 0}. Such v can be characterized by

v · (grad g)(x0)> 0. (24)

Recalling (grad f)(x0)= λ0 (grad g)(x0), we see that this is equivalent to λ0 > 0.

Exercise 6. Prove that if

∂f

∂v

> 0 (25)

for every v satisfying

v · (grad g)(x0) > 0. (26)

then for all x∈B(x0, r)∩{xO g(x) > 0}, f(x) > f(x0).

One way to summarize the above is as follows. x0 is a local minimizer for

min f(x) subject to g(x)> 0. (27)

if the following are satisfied: There exists λ0∈R such that

i. (x0, λ0) is a critical point of the Lagrange function L(x, λ)7 f(x)−λ g(x);

ii. λ0 > 0;

iii. g(x0)> 0;

iv. λ0 g(x0)= 0; λ0, g(x0) not both 0.

v. The Hessian matrix of f at x0 is positive definite if λ0 = 0; The matrix
(

∂2L

∂xi∂xj

)

i,j=1

N
satisfies

vT

(

∂2L

∂xi∂xj

)

v > 0 (28)

for all v satisfying v · (grad g)(x0) =0.

——————————————————————————————————————————–

Problem 1. (S. S. Rao, Engineering Optimization: Theory and Practice , 2009) Solve

max f(x, y)= 2 x + y + 10 subject to x + 2 y2 = 3. (29)

Discuss the effect of changing the right hand side of the constraint to the optimum value of f .

General KKT conditions

The analysis in the previous section can be readily generalized to the following general constrained
optimization:

min f(x) subject to g(x) >0, h(x)= 0 (30)
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where g: RN � R
M and h: RN � R

K. All functions are assumed to be having continuous second order
derivatives.

Remark 7. Note that one can replace the K equality constraints h(x) = 0 by 2 K inequality constraints
h(x) >0 and h(x)6 0.

The following set of conditions are called KKT (Karush-Kuhn-Tucker) conditions.

• Sufficient conditions. x0 is a local minimizer if there are λ0∈RM and µ0∈RK such that

1. (Feasibility) g(x0) >0, h(x0)= 0;

2. (Criticality) gradxL
(

x0, λ0, µ0

)

= 0 where

L(x, λ, µ)7 f(x)−λT g(x)− µT h(x) (31)

and gradxL7 









∂L

∂x1�
∂L

∂xN











;

3. λ0 > 0;

4. (Strict complementarity) λi gi(x0) = 0 for every i = 1, 2, 	 , M ; Furthermore for each i,
exactly one of λi, gi is 0.

5. (Second order condition) Let A⊆{1, 2,	 ,M } be the set of “active” inequality constraints,
that is i∈A� gi(x0)= 0. Then for every v such that ∀i∈A, vT(grad gi)(x0)= 0,

vT

(

∂2L

∂xi∂xj

)

v > 0. (32)

• Necessary conditions. Change strictly complementarity to “complementarity”: λi gi(x0) = 0 for every
i = 1, 2,	 , M ; And change the >0 in (32) to >0.

Remark 8. The (first order) KKT conditions take the form of solving a system of nonlinear equations. As
a consequence one can invoke popular methods such as Newton’s method to find the critical points. This
is the idea behind the so-called “Interior point revolution” in Optimization Theory which lies behind much
progress in the past half century in linear and convex programming.

————————————————————————————————————————–

Problem 2. (S. S. Rao, Engineering Optimization: Theory and Practice , 2009) Consider

max f(x, y)= (x− 1)2 + y2 (33)

subject to

g1(x, y)= x3− 2 y 60, g2(x, y) = x3 + 2 y 60. (34)

Determine whether the KKT conditions are satisfied at the maximizer.
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