Applications

Representation of surfaces

Theorem 1. Let f: RV — R, o€ RY. Then f(x)= f(xo) is a surface in RN. In particular, if grad f(zo)+
0, then the tangent plane at xq is

(grad f)(zo) - (z — o) =0. (1)

Proof. Since grad f(xo) # 0, there is at least one z; such that (aa—f)(wo) # 0. Thus we can apply implicit

T

function theorem and represent x; as a function of the other N — 1 variables. O

Example 2. Find the tangent planes for the sphere 22+ 32 + 22 = R2.
Solution. We check

2x 0
grad f=| 2y |#[ 0 (2)
2z 0

whenever 22+ y?+ 22 = R?. We see that the equation is

2ox 4+ Yoy + 202 = R2. (3)

Theorem 3. Consider the curve defined through

f(:z:,y,z)zO, g(x,y,z):O. (4)

then the equation for the tangent line for the curve is

r — X0
(grad f)(wo, yo,20) | ¥ — %o =0 (5)
zZ— 20
Tr — X
(grad g)(wo, Yo, 20) | ¥y—vo | = O. (6)
Z— 20
Proof. Exercise. O

Lagrange multiplier theory

Recall that when finding optimum of f: E C RV — R, since usually E is a closed set, we have to consider
the following two cases separately:

e FE°: In the interior we solve grad f =0 to obtain candidates;
e OF: So far we have to calculate the values of f on JF explicitly.

Clearly this is not satisfactory.

We notice that in optimization problems, the boundary OF is usually given through conditions like

¢(x) =0 (7)



. . b1(z)
for some “constraint” function ¢(x):= : .
br ()

We will postpone the dealing of this general situation to a later section when we discuss the Karush-Kuhn-
Tucker (KKT) conditions. Here we consider the following problem

max f (%) (8)

which in optimization literature is usually written as
max f(x) subject to ¢(x)=0. 9)

Here ¢: R™+— R is a scalar function. ¢(x)=0 is called a “constraint” of the problem.

Theorem 4. (Lagrange multiplier) Let @+ U CR" be open, let f, ¢ € C*, and let xo€ U be such that f
has a local mazimum or minimum, at o under the constraint ¢p(x) =0 and such that V$(xg) #0. then there
is Lagrange multiplier.

Proof. As grad ¢ # 0, we can apply the Implicit function theorem. Wlog, assume
an=X(z1,...,xN_-1). (10)
Now (zo1,-.-,Zon—1) is a local maximizer/minimizer of the following function
F(z1,.0yxn—1):= f(x1,..c;en -1, X (21, ..., TN -1)). (11)

Now applying the necessary condition we have

af  of ax

e, Duy 0w, (12)
foralli=1,2,..., N — 1. Since we have
(b(xlv-"vafle):O (13)
we obtain
Jdp  O0p 0X
(9&[:1' &vN (9&[:1' =0 (14)
Recall that % # 0 so we can solve gf and substitute into the f equation to obtain
of _|( 9¢ - of Ry (15)
ari &EN 8$N &EZ

If we denote

= <%>_1ﬁ (16)

&vN 6&[:]\[

we conclude that
grad f = Agrad ¢. (17)

Thus ends the proof. O



Remark 5. Often a “Lagrange function” is defined:
L\, z):= f(x) — A o(x).

The necessary condition is now stated as grady L =0.

Exercise 1. Prove that grady L =0 is a necessary condition for o to be a local maximizer/minimizer.

Example 6. Find maximum/minimum of

fla,y)=zy
on (z—1)2+y*=1.
Solution. We write the Lagrange function
LNz, y)=zy—Al(z—1)*+y>—1].

Now we have

oL
0 = —=zx—-2y\
g% ’
— — (7 —1)2 2 _
0 = N (-1 +y*—1

From the first two equations we can cancel A and obtain

v =x(z—1).

Substituting into the 3rd equation, we get

(z—-1)%+z(x—1)—1=0<=222>-32=0

and then
3
z=0, xr= 5
Correspondingly we have
y=0, =+ ?

Thus we have three candidates: ( 8 ), ( %?2 ), ( —f/;/? )

Now calculate

£(0,0) = o,
3V3)  3V3
f(??) =T
3 V3\  3V3
f(i"T) =TI

(19)



We see that ( %?2 ) is the maximizer, and ( —f//52/2 ) is the minimizer.

Example 7. Find maximum of z;--- x, satisfying 1+ -+ z,=1, x1,...,2, > 0.

Solution. Here we have the difficulty of n inequality constraints: x1 >0, ..., x, > 0. We will discuss general
theory of optimization problems with inequality constraints in a future lecture. On the other hand, for this
particular problem we claim that simply solving

maxxi---r, subjecttozi+-+ax,=1 (31)

is enough.

Let F:= {w| 214+ axn,=1, x1,..., 2y > 0}. We see that this is a bounded closed set and therefore the
continuous function x1---x, must reach its maximum in E. It is easy to see that at the maximum, it must
be x1>0,...,x, >0, which means the maximizer at least corresponds to a local maximizer for the problem

maxxi---r, subjecttozi+-+ax,=1 (32)
Define the Lagrange function
L\, 21,y ) =21 2p — A1+ -+ 2, — 1). (33)

Taking partial derivatives we have

oL
= e— = e n _— 5 4
0 o, Ty — A (34)
oL
O:E = X1 Tp_1— A, (35)
O:g_i = 1+ +x,— 1 (36)
From the first n equations we conclude
xl ...xn
22 A 37
- (37)
for all i =1,2,...,n which gives x; =--- = z,,.1 Now activating the last equation z1 + - + x, — 1 =0 we see

n
that the only candidate for maximizer is ( > with f(z1,...,2,)=1/n". Since it is the only candidate, it

1/n
has to be the maximizer, and the maximum is 1/n".

Problem 1. Develop the Lagrange multiplier theory for multiple constraints: ¢1(x) == ¢x(x) =0.

1. The other possibility is that one of x; is 0. But then we know it cannot be the maximizer.



